Home Publications

Electronic pre-prints of the following publications are available only for personal use and must abide to copyrights of the publisher.   

IEEE-copyright notice: Copyright 199x IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Elsevier copyrights: pamphlet

IFAC copyrights notice

 

 

Reporitory of past Ph.D. dissertations

Publications Lists     [ all BibTeX ]  

Publications of keyword: Machine learning
20YY
E. Marcelli, T. Barbariol, G.A. Susto. Active Learning-based Isolation Forest (ALIF): Enhancing Anomaly Detection in Decision Support Systems. 20YY    [url] [BibTeX]  
2023
D. Dandolo, C. Masiero, M. Carletti, D. Dalle Pezze, G.A. Susto. AcME - Accelerated Model-agnostic Explanations: Fast Whitening of the Machine-Learning Black Box. Expert Systems with Applications, vol. 214, 2023    [url] [BibTeX]  
M. Carletti, M. Terzi, G.A. Susto. Interpretable Anomaly Detection with DIFFI: Depth-based Feature Importance for the Isolation Forest. Engineering Applications of Artificial Intelligence, vol. 119, 2023    [ abstract ] [url] [BibTeX]  
F. Zocco, M. Maggipinto, G.A. Susto, S. McLoone. Lazy FSCA for Unsupervised Variable Selection. Engineering Applications of Artificial Intelligence, vol. 124, 2023    [ abstract ] [url] [BibTeX]  
L. Cristaldi, P. Esmaili, G. Gruosso, A. La Bella, M. Mecella, R. Scattolini, A. Arman, G.A. Susto, L. Tanca. The MICS Project. A Data Science Pipeline for Industry 4.0 Applications. 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence, and Neural Engineering (IEEE MetroXRAINE 2023), 2023   [BibTeX]  
2022
M. Maggipinto, A. Beghi, G.A. Susto. A Deep Convolutional Autoencoder-based Approach for Anomaly Detection with Industrial, Non-images, 2-Dimensional data: a Semiconductor Manufacturing case study. IEEE Transactions on Automation Science and Engineering, vol. 19(3), pp. 1477-1490, 2022    [url] [BibTeX]  
D. Dalle Pezze, D. Deronjic, C. Masiero, D. Tosato, A. Beghi, G.A. Susto. A Multi-label Continual Learning Framework to Scale Deep Learning Approaches for Packaging Equipment Monitoring. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery (ECML-PKDD), 2022    [url] [BibTeX]  
T. Barbariol, F. Dalla Chiara, D. Marcato, G.A. Susto. A review of Tree-based approaches for Anomaly Detection. Control Charts and Machine Learning for Anomaly Detection in Manufacturing, 2022    [ abstract ] [BibTeX]  
E. Marcelli, T. Barbariol, V. Savarino, A. Beghi, G.A. Susto. A Revised Isolation Forest procedure for Anomaly Detection with High Number of Data Points. 23rd IEEE Latin-American Test Symposium (LATS2022), 2022   [BibTeX]  
F. Simmini, M. Rampazzo, F. Peterle, G.A. Susto, A. Beghi. A Self-Tuning KPCA-based Approach to Fault Detection in Chiller Systems. IEEE Transactions on Control Systems Technology, vol. 30(4), 2022   [BibTeX]  
A. Fabris, S. Messina, G. Silvello, G.A. Susto. Algorithmic Fairness Datasets: the Story so Far. Data Mining and Knowledge Discovery, 2022    [url] [BibTeX]  
H.T. Jebril, M. Pleschberger, G.A. Susto. An Autoencoder-based Approach for Fault Detection in Multi-stage Manufacturing: a Sputter Deposition and Rapid Thermal Processing case study. IEEE Transactions on Semiconductor Manufacturing, 2022   [BibTeX]  
L.C. Brito, G.A. Susto, J.N. Brito, M.A.V. Duarte. An Explainable Artificial Intelligence Approach for Unsupervised Fault Detection and Diagnosis in Rotating Machinery. Mechanical Systems and Signal Processing, vol. 163, 2022    [ abstract ] [url] [BibTeX]  
E. Anello, M. Chiara, F. Ferro, F. Ferrari, B. Mukaj, A. Beghi, G.A. Susto. Anomaly Detection for the Industrial Internet of Things: an Unsupervised Approach for Fast Root Cause Analysis. IEEE Conference on Control Technology and Applications (CCTA), 2022   [BibTeX]  
L. Lorenti, G. De Rossi, A. Annoni, S. Rigutto, G.A. Susto. CUAD-Mo: Continuos Unsupervised Anomaly Detection on Machining Operations. IEEE Conference on Control Technology and Applications (CCTA), 2022   [BibTeX]  
D. Dalle Pezze, C. Masiero, D. Tosato, A. Beghi, G.A. Susto. FORMULA: A Deep Learning Approach for Rare Alarms Predictions in Industrial Equipment. IEEE Transactions on Automation Science and Engineering, vol. 19(3), pp. 1491--1502, 2022    [url] [BibTeX]  
G.A. Susto, A. Diebold, A. Kyek, C. Lee, N. Patel. Guest Editorial: Process-Level Machine Learning Applications in Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 2022   [BibTeX]  
M. Maggipinto, M. Terzi, G.A. Susto. IntroVAC: Introspective Variational Classifiers for Learning Interpretable Latent Subspaces. Engineering Applications of Artificial Intelligence, vol. 109, 2022    [ abstract ] [url] [BibTeX]  
A. Purpura, G. Silvello, G.A. Susto. Learning to Rank from Relevance Judgments Distributions. Journal of the Association for Information Science and Technology, 2022    [ abstract ] [BibTeX]  
L.C. Brito, G.A. Susto, J.N. Brito, M.A.V. Duarte. Mechanical faults in rotating machinery dataset (normal, unbalance, misalignment, looseness). Mendeley Data, 2022    [url] [BibTeX]  
T. Barbariol, G.A. Susto. TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios. Information Sciences, vol. 610, pp. 126-143, 2022    [url] [BibTeX]  
2021
M. Berno, M. Canil, N. Chiarello, L. Piazzon, F. Berti, F. Ferrari, A. Zaupa, N. Ferro, M. Rossi, G.A. Susto. A Machine Learning-based Approach for Advanced Monitoring of Automated Equipment for the Entertainment Industry. International Workshop on Metrology for Industry 4.0 & IoT, 2021   [BibTeX]  
S. Tedesco, G.A. Susto, N. Gentner, A. Kyek, Y. Yang. A Scalable Deep Learning-based Approach for Anomaly Detection in Semiconductor Manufacturing. Winter Simulation Conference, 2021    [ abstract ] [BibTeX]  
M. Terzi, A. Achille, M. Maggipinto, G.A. Susto. Adversarial Training Reduces Information and Improves Transferability. 35th AAAI Conference on Artificial Intelligence, (arXiv:2007.11259), 2021    [ abstract ] [url] [BibTeX]  
A. Fabris, A. Mishler, S. Gottardi, M. Carletti, M. Daicampi, G.A. Susto, G. Silvello. Algorithmic Audit of Italian Car Insurance: Evidence of Unfairness in Access and Pricing. Fourth AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES), 2021   [BibTeX]  
N. Bargellesi, A. Beghi, M. Rampazzo, G.A. Susto. AutoSS: A Deep Learning-Based Soft Sensor for Handling Time-Series Input Data. IEEE Robotics and Automation Letters, vol. 6(3), pp. 6100--6107, 2021    [ abstract ] [url] [BibTeX]  
N. Gentner, M. Carletti, A. Kyek, G.A. Susto, Y. Yang. DBAM: Making Virtual Metrology/Soft Sensing with Time Series Data Scalable Through Deep Learning. Control Engineering Practice, vol. 116, 2021    [ abstract ] [BibTeX]  
S. Arena, Y. Budrov, M. Carletti, N. Gentner, M. Maggipinto, Y. Yang, A. Beghi, A. Kyek, G.A. Susto. Exploiting 2D Coordinates as Bayesian Priors for Deep Learning Defect Classification of SEM Images. IEEE Transactions on Semiconductor Manufacturing, 2021    [ abstract ] [BibTeX]  
L.C. Brito, G.A. Susto, J.N. Brito, M.A.V. Duarte. Fault Detection of Bearing: an Unsupervised Machine Learning Approach Exploiting Feature Extraction and Dimensionality Reduction. Informatics, 2021   [BibTeX]  
R. Fantinel, A. Cenedese, G. Fadel. Hybrid Learning Driven by Dynamic Descriptors for Video Classification of Reflective Surfaces. IEEE Transactions on Industrial Informatics, vol. 17(12), pp. 8102--8111, 2021    [ abstract ] [url] [BibTeX]  
M. Viola, L. Brunelli, G.A. Susto. Instagram Images and Videos Popularity Prediction: a Deep Learning-Based Approach. Italian Workshop on Artificial Intelligence and Applications for Business and Industries, 2021   [BibTeX]  
D. Marcato, G. Arena, D. Bortolato, F. Gelain, V. Martinelli, E. Munaron, M. Roetta, G. Savarese, G.A. Susto. Machine Learning-based Anomaly Detection for Particle Accelerators. 5th IEEE Conference on Control Technology and Applications (CCTA), 2021    [ abstract ] [BibTeX]  
A. Purpura, K. Buchner, G. Silvello, G.A. Susto. Neural Feature Selection for Learning to Rank. Proceedings of the European Conference on Information Retrieval, 2021   [BibTeX]  
L. Mancin, I. Rollo, J.F. Mota, F. Piccini, M. Carletti, G.A. Susto, G. Valle, A. Paoli. Optimizing Microbiota Profiles for Athletes: Dream or Reality?. Exercise and sport sciences reviews, vol. 49(1), pp. 42--49, 2021    [ abstract ] [url] [BibTeX]  
L. Frau, G.A. Susto, T. Barbariol, E. Feltresi. Uncertainty estimation for Machine Learning models in Multiphase flow Applications. Informatics, vol. 8(3), 2021    [ abstract ] [BibTeX]  
2020
T. Barbariol, E. Feltresi, G.A. Susto. A Machine Learning-based System for Self-diagnosis Multiphase Flow Meters. International Petroleum Technology Conference, 2020   [BibTeX]  
J.A. Mat Jizat, I.M. Khairuddin, A. Razman, A.F. Nasir, M.S.A. Karim, A.A. Jaafar, L. Wei Hong, A. Abdul Majeed, H. Myung, H. Choi, G.A. Susto. Advances in Robotics, Automation and Data Analytics. Selected Papers from iCITES 2020. 2020    [ abstract ] [url] [BibTeX]  
D. Tosato, D. Dalle Pezze, C. Masiero, G.A. Susto, A. Beghi. Alarm Logs in Packaging Industry (ALPI). IEEEDataPort, 2020    [ abstract ] [url] [BibTeX]  
M. Maggipinto, M. Terzi, G.A. Susto. Beta-Variational Classifiers Under Attack. IFAC World Congress, 2020   [BibTeX]  
L. Meneghetti, M. Terzi, S. Del Favero, G.A. Susto, C. Cobelli. Data-Driven Anomaly Recognition for Unsupervised Model-Free Fault Detection in Artificial Pancreas. IEEE Transactions on Control Systems Technology, vol. 28(1), pp. 33-47, 2020    [ abstract ] [url] [BibTeX]  
M. Terzi, G.A. Susto, P. Chaudhari. Directional Adversarial Training for Cost Sensitive Deep Learning Classification Applications. Engineering Applications of Artificial Intelligence, vol. 91, 2020    [ abstract ] [url] [BibTeX]  
N. Gentner, M. Carletti, G.A. Susto, A. Kyek, Y. Yang. Enhancing Scalability of Virtual Metrology: a Deep Learning-based Approach for Domain Adaptation. Winter Simulation Conference, 2020    [ abstract ] [BibTeX]  
T. Barbariol, E. Feltresi, S. Galvanin, D. Tescaro, G.A. Susto. How to improve Water Cut measurements in MPFM using a Sensor Fusion and Machine Learning-based Approach. North Sea Flow Measurement Workshop, 2020   [BibTeX]  
A. Razman, A. Majeed, R.M. Musa, Z. Taha, G.A. Susto, Y. Mukai. Hyperparameter Tuning of the Model for Hunger State Classification. SpringerBriefs in Applied Sciences and Technology, pp. 49-57, 2020    [ abstract ] [url] [BibTeX]  
A. Razman, A. Majeed, R.M. Musa, Z. Taha, G.A. Susto, Y. Mukai. Image Processing Features Extraction on Fish Behaviour. SpringerBriefs in Applied Sciences and Technology, pp. 25-36, 2020    [ abstract ] [url] [BibTeX]  
G.A. Susto, M. Maggipinto, F. Zocco, S. McLoone. Induced Start Dynamic Sampling for Wafer Metrology Optimization. IEEE Transactions on Automation Science and Engineering, vol. 17(1), pp. 418-432, 2020    [url] [BibTeX]  
M. Carletti, N. Gentner, Y. Yang, A. Kyek, M. Maggipinto, A. Beghi, G.A. Susto. Interpretable Anomaly Detection for Knowledge Discovery in Semiconductor Manufacturing. Winter Simulation Conference, 2020    [ abstract ] [BibTeX]  
A. Razman, A. Majeed, R.M. Musa, Z. Taha, G.A. Susto, Y. Mukai. Machine Learning in Aquaculture Hunger Classification of Lates calcarifer. 2020    [ abstract ] [url] [BibTeX]  
A. Razman, A. Majeed, R.M. Musa, Z. Taha, G.A. Susto, Y. Mukai. Monitoring and Feeding Integration of Demand Feeder Systems. SpringerBriefs in Applied Sciences and Technology, pp. 11-24, 2020    [ abstract ] [url] [BibTeX]  
R. Fantinel, A. Cenedese. Multistep hybrid learning: CNN driven by spatial–temporal features for faults detection on metallic surfaces. Journal of Electronic Imaging, vol. 4, pp. 29, 2020    [ abstract ] [url] [BibTeX]  
M. Maggipinto, G.A. Susto, P. Chaudhari. Proximal Deterministic Policy Gradient. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020   [BibTeX]  
T. Barbariol, E. Feltresi, G.A. Susto. Self-Diagnosis of Multiphase Flow Meters through Machine Learning-based Anomaly Detection. Energies, vol. 12(13), pp. 1 -- 24, 2020    [ abstract ] [url] [BibTeX]  
T. Barbariol, E. Feltresi, G.A. Susto, D. Tescaro, S. Galvanin. Sensor Fusion And Machine LearningTechniques To Improve Water Cut Measurements Accuracy In Multiphase Application. 2020 SPE Annual Technical Conference and Exhibition, 2020   [BibTeX]  
M. Zanon, G. Zambonin, G.A. Susto, S. McLoone. Sparse Logistic Regression: Comparison of Regularization and Bayesian implementations. Algorithms, vol. 13(6), pp. 1 -- 24, 2020    [ abstract ] [url] [BibTeX]  
T. Barbariol, D. Masiero, E. Feltresi, G.A. Susto. Time series Forecasting to detect anomalous behaviours in Multiphase Flow Meter. North Sea Flow Measurement Workshop, 2020   [BibTeX]  
A. Razman, A. Majeed, R.M. Musa, Z. Taha, G.A. Susto, Y. Mukai. Time-Series Identification on Fish Feeding Behaviour. SpringerBriefs in Applied Sciences and Technology, pp. 37-47, 2020    [ abstract ] [url] [BibTeX]  
2019
M. Carletti, C. Masiero, A. Beghi, G.A. Susto. A deep learning approach for anomaly detection with industrial time series data: a refrigerators manufacturing case study. Procedia Manufacturing, vol. 38, pp. 233-240, 2019    [ abstract ] [url] [BibTeX]  
M. Maggipinto, A. Beghi, G.A. Susto. A Deep Learning-based Approach to Anomaly Detection with 2-Dimensional Data in Manufacturing. International Conference on Industrial Informatics (INDIN), pp. 187 -- 191, 2019    [ abstract ] [BibTeX]  
G.A. Susto, L. Vettore, G. Zambonin, F. Altinier, D. Beninato, T. Girotto, M. Rampazzo, A. Beghi. A Machine Learning-based Soft Sensor for Laundry Load Fabric Typology Estimation in Household Washer-Dryers. 5th IFAC International Conference on Intelligent Control and Automation Sciences, 2019   [BibTeX]  
N. Bargellesi, M. Carletti, A. Cenedese, G.A. Susto, M. Terzi. A Random Forest-based Approach for Hand Gesture Recognition with Wireless Wearable Motion Capture Sensors. 5th IFAC International Conference on Intelligent Control and Automation Sciences, 2019    [ abstract ] [url] [BibTeX]  
G. Zambonin, F. Altinier, A. Beghi, L.D.S. Coelho, T. Girotto, M. Rampazzo, G. Reynoso-Meza, G.A. Susto. Data-Driven Models for the Determination of Laundry Moisture Content in a Household Laundry Treatment Dryer Appliance. Lecture Notes in Control and Information Sciences – Proceedings, 2019    [ abstract ] [pdf] [BibTeX]  
L. Brunelli, C. Masiero, D. Tosato, A. Beghi, G.A. Susto. Deep Learning-based Production Forecasting in Manufacturing: a Packaging Equipment Case Study. Procedia Manufacturing, vol. 38, pp. 248-255, 2019    [ abstract ] [BibTeX]  
M. Maggipinto, A. Beghi, S. McLoone, G.A. Susto. DeepVM: A Deep Learning-based Approach with Automatic Feature Extraction for 2D Input Data Virtual Metrology. Journal of Process Control, vol. 84, pp. 24-34, 2019    [ abstract ] [url] [BibTeX]  
L. Meneghetti, G.A. Susto, S. Del Favero. Detection of insulin pump malfunctioning to improve safety in artificial pancreas using unsupervised algorithms. Journal of Diabetes Science and Technology, 2019    [ abstract ] [url] [BibTeX]  
M. Carletti, C. Masiero, A. Beghi, G.A. Susto. Explainable Machine Learning in Industry 4.0: Evaluating Feature Importance in Anomaly Detection to Enable Root Cause Analysis. 2019 IEEE International Conference on Systems, Man, and Cybernetics, 2019    [ abstract ] [url] [BibTeX]  
A. Purpura, C. Masiero, G. Silvello, G.A. Susto. Feature Selection for Emotion Classification. 10th Italian Information Retrieval Workshop (IIR), 2019   [BibTeX]  
A. Razman, A.S.A. Ghani, A. Cenedese, F.A. Adnan, G.A. Susto, K.M. Ismail, R.M. Musa, Y. Mukai, Z. Taha, A. Majeed. Hunger Classification of Lates Calcarifer by means of an automated feeder and image processing. Computers and Electronics in Agriculture, vol. 163, 2019    [ abstract ] [url] [BibTeX]  
M. Maggipinto, E. Pesavento, F. Altinier, G. Zambonin, A. Beghi, G.A. Susto. Laundry Fabric Classification in Vertical AxisWashing Machines using Data-driven Soft Sensors. Energies, vol. 12(21), 2019    [ abstract ] [url] [BibTeX]  
T. Barbariol, E. Feltresi, G.A. Susto. Machine Learning approaches for Anomaly Detection in Multiphase Flow Meters. 5th IFAC International Conference on Intelligent Control and Automation Sciences, 2019   [BibTeX]  
G. Zambonin, F. Altinier, A. Beghi, L.D.S. Coelho, N. Fiorella, T. Girotto, M. Rampazzo, G. Reynoso-Meza, G.A. Susto. Machine Learning-based Soft Sensors for the Estimation of Laundry Moisture Content in Household Dryer Appliances. Energies, vol. 20(12), pp. 1 -- 24, 2019    [ abstract ] [url] [BibTeX]  
A. Purpura, M. Maggipinto, G. Silvello, G.A. Susto. Probabilistic Word Embeddings in Neural IR: A Promising Model That Does Not Work as Expected (For Now). 5th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR), 2019   [BibTeX]  
A. Purpura, C. Masiero, G. Silvello, G.A. Susto. Supervised Lexicon Extraction for Emotion Classification. Proceedings of the 28th International Conference on World Wide Web Companion, pp. 1071 - 1078, 2019    [ abstract ] [url] [BibTeX]  
T. Barbariol, E. Feltresi, G.A. Susto. Validity and consistency of MPFM data through a Machine learning-based system. 37th International North Sea Flow Measurement Workshop, 2019   [BibTeX]  
M. Maggipinto, G.A. Susto, F. Zocco, S. McLoone. What are the Most Informative Data for Virtual Metrology? A use case on Multi-Stage Processes Fault Prediction. IEEE Conference on Automation Science and Engineering, 2019   [BibTeX]  
2018
M. Maggipinto, M. Terzi, C. Masiero, A. Beghi, G.A. Susto. A Computer Vision-inspired Deep Learning Architecture for Virtual Metrology modeling with 2-Dimensional Data. IEEE Transactions on Semiconductor Manufacturing, vol. 31(3), pp. 376 - 384, 2018    [ abstract ] [url] [BibTeX]  
M. Maggipinto, C. Masiero, A. Beghi, G.A. Susto. A Convolutional Autoencoder Approach for Feature Extraction in Virtual Metrology. Procedia Manufacturing, 28th International Conference on Flexible Automation and Intelligent Manufacturing, vol. 17, pp. 126-133, 2018    [ abstract ] [url] [BibTeX]  
G.A. Susto, M. Maggipinto, F. Zocco, S. McLoone. A Dynamic Sampling Approach for Cost Reduction in Semiconductor Manufacturing. Procedia Manufacturing, 28th International Conference on Flexible Automation and Intelligent Manufacturing, vol. 17, pp. 1031-1038, 2018    [ abstract ] [url] [BibTeX]  
G.A. Susto, M. Terzi, C. Masiero, S. Pampuri, A. Schirru. A Fraud Detection Decision Support System via Human On-line Behavior Characterization and Machine Learning. 1st International Conference on Artificial Intelligence for Industries (AI4I), pp. 9-14, 2018    [ abstract ] [url] [BibTeX]  
N. Normani, A. Urru, L. Abraham, M. Walsh, S. Tedesco, A. Cenedese, G.A. Susto, B. O'Flynn. A Machine Learning Approach for Gesture Recognition with a Lensless Smart Sensor System. 15th International Conference on Wearable and Implantable Body Sensor Networks, pp. 136--139, 2018    [ abstract ] [url] [BibTeX]  
S. McLoone, A.B. Johnston, G.A. Susto. A Methodology for Efficient Dynamic Spatial Sampling and Reconstruction of Wafer Profiles. IEEE Transactions on Automation Science and Engineering, vol. 15(4), pp. 1692-1703, 2018    [ abstract ] [url] [pdf] [BibTeX]  
G.A. Susto, G. Zambonin, F. Altinier, E. Pesavento, A. Beghi. A Soft Sensing approach for Clothes Load Estimation in Consumer Washing Machines. 2nd IEEE Conference on Control Technology and Applications (CCTA), 2018    [ abstract ] [url] [BibTeX]  
L. Meneghetti, M. Terzi, G.A. Susto, S. Del Favero, C. Cobelli. Fault Detection in Artificial Pancreas: A Model-Free approach. Conference on Decision and Control (CDC), pp. 303-308, 2018    [ abstract ] [url] [BibTeX]  
G.A. Susto, M. Maggipinto, G. Zannon, F. Altinier, E. Pesavento, A. Beghi. Machine Learning-based Laundry Weight Estimation for Vertical Axis Washing Machines. European Control Conference (ECC2018), pp. 3179 - 3184, 2018    [ abstract ] [url] [BibTeX]  
G. Zambonin, F. Altinier, L. Corso, A. Beghi, G.A. Susto. Soft Sensors for Estimating Laundry Weight in Household Heat Pump Tumble Dryers. Conference on Automation Science and Engineering (CASE), 2018    [ abstract ] [url] [BibTeX]  
M. Zorzi, A. Chiuso. The Harmonic Analysis of Kernel Functions. Automatica - accepted, 2018   [BibTeX]  
A. Purpura, C. Masiero, G.A. Susto. WS4ABSA: an NMF-based Weakly-Supervised Approach for Aspect-Based Sentiment Analysis with Application to Online Reviews. Lecture Notes in Computer Science, pp. 386--401, 2018    [ abstract ] [url] [BibTeX]  
2017
M. Terzi, A. Cenedese, G.A. Susto. A multivariate symbolic approach to activity recognition for wearable applications. IFAC World Congress 2017, pp. 16435-16440, 2017    [ abstract ] [pdf] [BibTeX]  
G.A. Susto, M. Terzi, A. Beghi. Anomaly Detection Approaches for Semiconductor Manufacturing. Procedia Manufacturing, 27th International Conference on Flexible Automation and Intelligent Manufacturing, vol. 11, pp. 2018-2024, 2017    [ abstract ] [url] [BibTeX]  
G.A. Susto, A. Beghi, S. McLoone. Anomaly Detection through on-line Isolation Forest: an Application to Plasma Etching. IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2017    [ abstract ] [url] [BibTeX]  
M. Terzi, C. Masiero, A. Beghi, M. Maggipinto, G.A. Susto. Deep Learning for Virtual Metrology: Modeling with Optical Emission Spectroscopy Data. IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), 2017    [ abstract ] [url] [BibTeX]  
M. Todescato, A. Dalla Libera, R. Carli, G. Pillonetto, L. Schenato. Distributed Kalman Filtering for Time-Space Gaussian Processes (with proofs). 20th World Congress of International Federation of Automatic Control (IFAC), pp. 13234--13239, 2017    [pdf] [BibTeX]  
G. Prando, M. Zorzi, A. Bertoldo, A. Chiuso. Estimating effective connectivity in linear brain network models. 56th IEEE Conference on Decision and Control, pp. accepted, 2017   [BibTeX]  
F. Altinier, E. Pesavento, A. Beghi, G.A. Susto, G. Zambonin, G. Zannon. Method for the Determination of a Laundry Weight in a Laundry Treatment Appliance. (Pub. No.: WO/2017/144085 International Application No.: PCT/EP2016/053788), 2017    [ abstract ] [url] [BibTeX]  
M. Todescato, A. Carron, R. Carli, G. Pillonetto, L. Schenato. Multi-Robots Gaussian Estimation and Coverage Control: from Server-based to Peer-to-Peer Architecture. Automatica, vol. 80, pp. 284--294, 2017    [url] [pdf] [BibTeX]  
M. Zorzi, A. Chiuso. Sparse plus Low rank Network Identification: A Nonparamteric Approach. Automatica, vol. 53(2), 2017   [BibTeX]  
G.A. Susto, A. Cenedese, M. Terzi. Big Data Application in Power Systems - Ch. 2.5. Time Series Classi cation Methods: Review and Applications to Power Systems Data. 2017    [ abstract ] [url] [BibTeX]  
2016
A. Cenedese, G.A. Susto, M. Terzi. A Parsimonious Approach for Activity Recognition with Wearable Devices: an Application to Cross-country Skiing. European Control Conference 2016 (ECC'16), pp. 2541-2546, 2016    [ abstract ] [url] [BibTeX]  
T. Chen, G. Pillonetto, A. Chiuso, L. Ljung. DC kernel - a stable generalized first order spline kernel. Proc. of CDC 2016 - accepted, 2016   [BibTeX]  
G.A. Susto, A. Beghi. Dealing with Time-Series Data in Predictive Maintenance Problems. Emerging Technologies and Factory Automation, 2016    [ abstract ] [url] [BibTeX]  
A. Cenedese, L. Minetto, G.A. Susto, M. Terzi. Human Activity Recognition with Wearable Devices: A Symbolic Approach. PsychNology, vol. 14(2-3), pp. 99-115, 2016    [ abstract ] [url] [BibTeX]  
M. Todescato, A. Carron, R. Carli, L. Schenato, G. Pillonetto. Machine Learning meets Kalman Filtering (with proofs). 55th IEEE Conference on Decision and Control (CDC16), pp. 4594--4599, 2016    [pdf] [BibTeX]  
S. Soatto, A. Chiuso. Modeling Visual Representations:Defining Properties and Deep Approximations. International Conference on Learning Representation (ICLR), 2016   [BibTeX]  
G.A. Susto, A. Schirru, S. Pampuri, S. McLoone. Supervised Aggregative Feature Extraction for Big Data Time Series Regression. IEEE Transactions on Industrial Informatics, vol. 12, pp. 1243 - 1252, 2016    [ abstract ] [url] [BibTeX]  
2015
D. Romeres, G. Pillonetto, A. Chiuso. Identification of stable models via nonparametric prediction error methods. Proc. of the European Control Conference, 2015    [ abstract ] [BibTeX]  
G.A. Susto, A. Schirru, S. Pampuri, S. McLoone, A. Beghi. Machine Learning for Predictive Maintenance: a Multiple Classifiers Approach. IEEE Transactions on Industrial Informatics, vol. 11(3), pp. 812 - 820, 2015    [ abstract ] [url] [BibTeX]  
G.A. Susto, S. McLoone. Slow Release Drug Dissolution Profile Prediction in Pharmaceutical Manufacturing: a Multivariate and Machine Learning Approach. 11th IEEE Conference on Automation Science and Engineering, pp. 1218-1223, 2015    [ abstract ] [url] [BibTeX]  
S. Soatto, A. Chiuso. Visual Scene Representations: Sufficiency, Minimality, Invariance and Deep Approximation. International Conference on Learning Representation (ICLR), Workshop Track, 2015   [BibTeX]  
2014
G. Belgioioso, A. Cenedese, G.I. Cirillo, F. Fraccaroli, G.A. Susto. A Machine Learning based Approach for Gesture Recognition from Inertial Measurements. IEEE 53rd Conference on Decision and Control, pp. 4899--4904, 2014    [ abstract ] [url] [pdf] [BibTeX]  
A. Chiuso. System Identification Techniques: Convexification, Regularization, Relaxation. Springer Encyclopedia of Systems and Control, 2014   [BibTeX]