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Abstract—In semiconductor manufacturing, metrol-

ogy is generally a high cost, non-value added op-

eration that impacts significantly on cycle time. As

such, reducing wafer metrology continues to be a

major target in semiconductor manufacturing efficiency

initiatives. A novel data-driven spatial dynamic sam-

pling methodology is presented that minimises the

number of sites that need to be measured across a

wafer surface while maintaining an acceptable level

of wafer profile reconstruction accuracy. The method-

ology is based on analysing historical metrology data

using Forward Selection Component Analysis (FSCA)

to determine, from a set of candidate wafer sites,

the minimum set of sites that need to be monitored

in order to reconstruct the full wafer profile using

statistical regression techniques. Dynamic sampling is

then implemented by clustering unmeasured sites in

accordance with their similarity to the FSCA selected

sites, and temporally selecting a different sample from
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each cluster. In this way, the risk of not detecting

previously unseen process behaviour is mitigated. We

demonstrate the efficacy of the proposed methodology

using both simulation studies and metrology data from

a semiconductor manufacturing process.

Note To Practitioners–Here we consider a practical

metrology problem encountered in semiconductor man-

ufacturing, namely, design of a wafer measurement

plan where measurements have to be taken from

several sites across a wafer surface in order to monitor

the accuracy and spatial consistency of a given process-

ing step. A methodology is presented for designing

a dynamic measurement plan for this scenario that

minimises the number of sites that need to be measured

while maintaining an acceptable level of process visi-

bility in terms of wafer profile reconstruction accuracy

and the ability to detect previously unseen process

behaviour. Our approach can significantly reduce the

number of sites that need to be measured on each wafer

enabling greater throughput on metrology tools. While

developed for wafer metrology in semiconductor manu-

facturing, the methodology can potentially be applied

to the design of measurement plans for any surface

whose variation exhibits strong spatial correlation.

Index Terms—Dynamic Sampling, Forward Selection

Component Analysis, Metrology, Principal Component

Analysis, Semiconductor Manufacturing, Wafer Site

Selection.

I. INTRODUCTION
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METROLOGY is a critical activity in indus-

try [21], [23] and, in particular in semi-

conductor manufacturing [13], [27], where it is in-

creasingly becoming the focus of attention as fea-

ture sizes continue to shrink and wafer diameters

increase from the current industrial standards of

200 mm and 300 mm to 450 mm [11]. In Chemical

Vapor Deposition (CVD), for example, the feature

of interest is the depth of the layer/film of mate-

rial deposited on the wafer [22], while in plasma

etching it is the dimensions (depth and width) of

the trenches etched into the wafer surface [18].

The spatial variation of these features over the full

wafer, defined as the wafer profile, and their wafer-

to-wafer (temporal) variation need to be tightly

controlled to meet the demanding specifications of

current and next generation semiconductor devices.

This is achieved using Advanced Process Control

(APC), typically run-to-run control, with metrology

employed in one of two contexts; as a feedback

control signal to adapt the operation of the current

process for the next wafer, and/or as a feedforward

control signal to enable the next process to compen-

sate for the deviations introduced by the current

process.

Ideally each wafer should be measured at a large

number of locations to provide detailed perfor-

mance information for APC, and also for Predictive

Maintenance (PdM) and product quality assess-

ment activities [10], [25], [26], [29]. In practice, such

extensive metrology is not feasible due to the im-

pact on cycle-time and the high cost of the precision

metrology technologies needed [24]. Consequently,

standard practice is to undertake limited sampling

both temporally [9] and spatially, [1], [4], [22] and

to rely on the information this provides for process

monitoring and control.

A key consideration is how to determine the

number, and location of measurement sites. Initial

measurement plans are usually determined by pro-

cess engineers based on a priori knowledge of wafer

spatial variability patterns for a given process, or

by employing space filling sampling designs such

as Latin Hypercube Sampling [12]. Additional sites

are then added during ramp-up and production

to monitor new process issues as they arise. Typ-

ically, the spatial correlation structure of wafer

variability is not explicitly taken into account in

these approaches with the result that substantial

redundancy can arise within measurement plans.

Furthermore, the level of redundancy can increase

over time as processes mature and process issues

are engineered out.

In recent years there has been increasing interest

in developing data driven wafer measurement plan

optimization methodologies that can take account

of spatial correlation to further reduce the number

of sites that need to be measured. Vincent et al. [25]

developed a methodology based on Principal Com-

ponent Analysis (PCA) modelling and minimum-

variance estimation. They considered both within

wafer spatial patterns and temporal correlation pat-

terns in their formulation, but concluded that only

spatial patterns were present in the practical litho-

etch process case study they used to validate their

approach.

Borgoni et al. [2] proposed a simulated anneal-

ing and spatial prediction strategy to optimise the

selection of a reduced set of sites from a larger can-

didate grid for a silicon oxide deposition process.

In [28], Zheng addresses the issue of optimal site
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selection for monitoring and wafer map interpo-

lation of electrical metrology data in the context

of developing effective Fault Detection and Clas-

sification (FDC) schemes. Four approaches are in-

vestigated. Two are supervised selection techniques

where sites are sequentially selected based on their

utility as inputs for specified wafer classification

tasks, and two are unsupervised techniques where

the objective is to identify a subset of sites that

best represent the remaining sites. Here, supervised

refers to approaches that employ both input and

target output data (a.k.a. labeled data) to guide

the learning process, while unsupervised refers

to approaches which learn based on input data

only (a.k.a. unlabeled data). The first of the unsu-

pervised approaches is a two stage methodology

where candidate sites are initially clustered using

k-means clustering and then a PCA based within-

cluster site selection technique employed to select

a subset of sites from within each cluster. The sec-

ond approach involves estimating a bootstrapped

forward selection Partial Least Square (PLS) model

with measured sites as input and unmeasured sites

as outputs to be predicted. Zheng concludes that

the two stage clustering/PCA methodology yields

the best FDC performance.

In [7], a Gaussian process model based sequen-

tial measurement strategy is developed where, for

each wafer, an initial set of sites is measured and

used to estimate a Gaussian Process (GP) model,

which then guides the selection of additional mea-

surements sites to update the GP model until its

prediction error on test sites is within an acceptable

level. The distinguishing characteristic of this ap-

proach is that it does not require historical data for

model building, however the number and location

of measurement sites change from wafer to wafer,

and the need for an initial set of measurements for

in-line model estimation means that it is not suited

to low measurement density scenarios.

In [15] we introduced a methodology for opti-

mum wafer site selection for wafer sampling plan

design based on Forward Selection Component

Analysis (FSCA) [16], [17], an unsupervised exten-

sion of forward selection regression that determines

the contribution that individual sites make to the

variability observed in a process across a set of

candidate wafer sites. In addition to eliminating

redundancy, the methodology provides for accurate

wafer profile reconstruction through the use of

statistical regression models to predict unmeasured

sites.

One of the concerns when using a reduced sam-

pling plan is that there is risk of not detecting

previously unseen abnormal process behavior. Here

we extend our previous work in [15] to address

this concern by developing a novel dynamic spatial

sampling methodology that improves wafer cover-

age temporally with minimal information loss in

terms of the ability to reconstruct the full wafer

profile with the optimally selected FSCA sites. The

paper also provides, for the first time, a complete

description of the underpinning FSCA based site

selection and wafer profile reconstruction method-

ology.

The remainder of the paper is organised as fol-

lows. The FSCA based site selection methodology

is introduced in Section II. The dynamic sampling

framework is then developed in Section III. Using

metrology data from a semiconductor manufactur-

ing case study, and two simulated datasets (de-

scribed in Section IV), we demonstrate the efficacy

of the overall methodology in Section V. Finally,

conclusions are presented in Section VI.
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II. FSCA METHODOLOGY

Let X ∈ RN×V , be a matrix of historical metrol-

ogy data for a given process, where N is the

number of samples (wafers measured), V is the

number of candidate sites (measurement locations)

on each wafer, and N > V . Thus, xji denotes the

feature measurement taken at site i on the j-th

wafer (e.g. etch depth, film thickness) and column

vector xi ∈ RN×1 is a vector of measurements taken

at site i for all N wafers in the data set. We are

interested in determining the minimum set of sites

from candidate set I = {1, 2, ..., V } to measure in

order to capture the information contained in all

sites. In terms of the data matrix X we can define

this problem as searching for the subset of columns

of X that best represent the information contained

in all columns of X.

Classical PCA [8] can be used to check for re-

dundancy in the measurements (with respect to

observing process driven wafer surface variability)

and to establish a lower bound φPCA on the number

of measurement sites needed [15]. If φPCA << V

significant redundancy exists, in which case it may

be possible to select a reduced set of sites that yield

similar levels of process visibility.

However, PCA does not tell us what sites to

measure since each PCA loading (latent variable) is

a linear combination of all candidates sites, and in

general the contribution of individual sites does not

reveal which sites are most important. In particular,

identification of key sites is difficult if they are part

of a highly correlated group, as their contribution

to a loading will be distributed evenly across the

group.

A. FSCA Wafer Site Selection

As introduced in [15], FSCA provides a solution

to this problem by sequentially searching for indi-

vidual sites that make the greatest contribution in

terms of explaining the process variability observed

across all sites. FSCA, is essentially the unsuper-

vised equivalent to Forward Selection Regression

[17], a well established technique for variable se-

lection [5], [6]. It employs an iterative procedure

consisting of the following steps:

1) Initialization: Set index set IFSC = {}, iteration

count k = 1 and X̃1 = X − X̄, where X̄ is as

defined in eqt. (14), i.e. X̃1 = mean centered

X.

2) Search: Identify the index of the variable with

maximum contribution to X̃k and add it to

IFSC. This is computed as

i∗ = argmin
i=1,...,V

∥∥∥X̃k − X̂k(x̃i)
∥∥∥2
F

(1)

where x̃i is the i-th column of X̃k, ||.||F is the

Frobenius norm and X̂k(x̃i) is the estimate of

X̃k obtained by regressing on x̃i, that is:

X̂k(x̃i) =
x̃ix̃

T
i

x̃T
i x̃i

X̃k. (2)

Vector x̃i∗ is defined as a Forward Selection

Component (FSC) and i∗ is the index of the

selected wafer site.

3) Deflation: Remove the contribution of x̃i∗ from

X̃k:

X̃k+1 = X̃k − X̂k(x̃i∗). (3)

4) Repeat: While the cumulative variance ex-

plained (CVE) is less than a specified thresh-

old τCVE, e.g. 99%, set k = k + 1 and repeat

from Step 2. Here, the cumulative variance
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explained by the first k FSC components is

defined as

vc(k) =

∥∥∥X̃1

∥∥∥2
F
−
∥∥∥X̃1 − X̃k+1

∥∥∥2
F∥∥∥X̃1

∥∥∥2
F

× 100. (4)

5) End: Output the optimum number of sites k∗,

the CVE vector vc, defined as

vc = [vc(1), vc(2), ..., vc(k
∗)],

and the prioritized list of metrology sites IFSC.

The final number of metrology sites k∗ selected by

FSCA is bounded in the range

φPCA ≤ k∗ ≤ rank(X) ≤ V

where φPCA is the number of principal components

needed to exceed the specified CVE threshold τCVE.

This threshold should be chosen taking into account

the signal to noise ratio (SNR) of the metrology

data. When the SNR is not known, analysis of the

CVE trend (Scree plot) for a PCA analysis of the

data can be used to estimate an appropriate thresh-

old [8]. The PCA lower bound φPCA follows from

the fact that PCA yields the linear combination of

the variables that maximises the observed variance,

hence any linear combination of a subset of these

variables, as provided by FSCA, can only approach,

but never exceed this optimum [16].

It should be noted that FSCA is not guaranteed to

identify the optimum solution for a given problem.

Determining the subset of columns from X which

best represents X is an NP hard problem and not

tractable for large V [6]. In this context, FSCA repre-

sents a pragmatic compromise, which although not

guaranteed to be optimal, consistently yields good

results at an acceptable computational cost.

B. Wafer Profile Reconstruction

In general the reduced set of measurements iden-

tified using FSCA are insufficient to accurately

reconstruct the 3D profile of a wafer surface using

interpolation techniques such as Biharmonic Spline

Interpolation (BSI) [19]. However, as demonstrated

in [15], unmeasured sites can be estimated using

linear regression models, herafter referred to as

Wafer Metrology Reconstruction (WMR) models,

enabling accurate reconstructions to be achieved.

The WMR models, which employ the measured

sites as regressors, are trained using the historical

metrology data. Specifically, denoting ~xFSC ∈ R1×k∗

as the measurements from the FSCA selected sites

for a given wafer, the unmeasured sites ~xu ∈

R1×(V−k∗) can be estimated using a linear regres-

sion model

~xu = [~xFSC 1]β, (5)

where β ∈ Rk∗×(V−k∗+1) is the matrix of regression

coefficients. Given historical metrology data X, par-

titioned into X′FSC ∈ RN×k∗
(metrology sites) and

Xu ∈ RN×(V−k∗) (unmeasured sites), that is:

X′FSC = {xi|i ∈ IFSC} and Xu = {xi|i ∈ I/IFSC},

β is computed as the least squares estimate:

β =
(
XT

FSCXFSC

)−1
XT

FSCXu. (6)

where XFSC =
[
X′FSC

~1
]
, and ~1 is a column vector

of ones of appropriate length.

III. DYNAMIC SAMPLING

The basic assumption of the data driven wafer

site selection methodologies, as presented here, is

that the historical data used to select the optimum

sites and train the WMR models captures the full

range of process behaviour. As such, one concern

with implementing a fixed sampling plan with
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a reduced set of sites is that previously unseen

spatially localized process behaviour may go unde-

tected. This risk can be mitigated by employing a

dynamic sampling plan that measures a different

subset of locations on each wafer, such that all

candidate measurement sites are visited periodi-

cally. Depending on the sampling algorithm design,

the periodicity may be different for different sites,

hence, defining the ’site sampling interval’ as the

number of wafers processed without a given site

being measured (i.e. a value that is one less than

the site sampling rate), we introduce the metric

Maximum Site Sampling Interval (MSSI), to define

the largest sampling interval among all sites. MSSI

is defined in this way so that MSSI = 0 when all

sites are measured on each wafer, and MSSI =∞ if

a site is never measured. Hence MSSI takes a value

in the range [0 ∞].

The underlying requirement for detectability is

that any new process behaviour that appears must

persist beyond the MSSI of the sampling method.

Otherwise it is not guaranteed to be detected.

Obviously this implies that up to MSSI wafers

may be processed before the abnormal behaviour

is detected. Hence, it is desirable to keep the MSSI

as low as possible.

Since the FSCA selected sites are the optimum

subset of sites to measure for accurate reconstruc-

tion of the wafer profile, any deviation from this

will lead to diminished performance. The chal-

lenge, therefore, is to have a dynamic sampling

plan with low MSSI that minimizing the impact on

wafer profile reconstruction accuracy. This can be

achieved as follows.

Given V sites, with Vm measured and Vu es-

timated virtually we cluster all unmeasured sites

around the Vm measured sites based on similarity.

The simplest approach to assessing similarity is

to evaluate the correlation between sites. Denoting

Im = IFSC as the index set for measured sites,

Iu = I/IFSC as the index set for unmeasured sites,

and Im[k] as the k-th element of Im, the clusters are

defined as

Ck = Cu
k ∪ Im[k] (7)

with

Cu
k = {i|corr(xi,xp) ≥ max

j
(corr(xi,xj)),

p = Im[k], j ∈ Im, j 6= p, i ∈ Iu} (8)

for k = 1, 2, .., Vm. Dynamic sampling is then per-

formed by sequentially selecting one site from each

of the Vm clusters, C = {C1, C2, ..., CVm}, at each

process iteration. Hence, at the tth process iteration

the sampling plan is:

IDS(t) = {C1[i1(t)], C2[i2(t)], ..., CVm [iVm(t)]} (9)

where

ik(t) = t mod (card(Ck)) + 1. (10)

In this way each site is guaranteed to be visited at

least once every max
k

(card(Ck)) wafers.

An alternative cluster assignment strategy, which

is computationally much more expensive to deter-

mine, is to assign each unmeasured site to the FSCA

cluster where it has the least impact on prediction

performance (as defined below) when used instead

of the FSCA site for that cluster.

With reference to eqt. (5) and eqt. (6), the FSCA

estimate of unmeasured sites for all N wafers in

dataset X can be expressed as

X̂u = Φ(XFSC)Xu (11)

where

Φ(XFSC) = XFSC

(
XT

FSCXFSC

)−1
XT

FSC (12)
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and the prediction for all V sites is given by

X̂ = Φ(XFSC)X. (13)

Defining X̄ as a matrix with column entries equal

to the mean of the corresponding columns of X,

that is:

X̄ = {x̄i|x̄i = x̄i1N , x̄i =
1

N

N∑
j=1

xji, i = 1, ..., V }

(14)

the normalized mean squared error (NMSE) over

all sites and all wafers can be expressed as

N (XFSC) =
‖X−Φ(XFSC)X‖2F∥∥X− X̄

∥∥2
F

× 100. (15)

Finally, denoting X
(i)
FSC(x) as matrix XFSC with its

i-th column replaced by x, the optimal clusters can

be defined as

Ck = Cu*
k ∪ Im[k] (16)

where

Cu*
k = {i|N (X

(k)
FSC(xi)) ≤ max

j
(N (X

(j)
FSC(xi))),

j ∈ Im, j 6= k, i ∈ Iu} (17)

for k = 1, 2, .., Vm.

A consequence of dynamic sampling is that the

regressors for the WMR models change at each

process iteration, and hence new models need to

be computed as follows. Denoting xDS(t) as the

dynamically measured sites at process iteration t,

as defined by IDS(t), and partitioning the historical

data matrix X as [X′DS X′u] then

xu(t) = [xDS(t) 1]β (18)

where β is computed as in eqt. (6), but with XFSC

replaced by XDS = [X′DS
~1].

The overall FSCA clustering-based sequential dy-

namic sampling (SDS) methodology, which consists

of an off-line training phase followed by an on-

line sampling and virtual metrology phase, is sum-

marised in Algorithm 1.

Algorithm 1: FSCA Clustering-based Se-

quential Dynamic Sampling (SDS)
Offline:

Data: X, τCVE, I

1. IFSC ← FSCA(X, τCVE)

2. C ← cluster(X, I, IFSC)

Result: C, IFSC

Online (at process iteration t):

Data: X, C, t

1. IDS(t)← SDS(C, t)

2. xDS(t)←Measure(IDS(t))

3. β(t)←WMRmodel(X, IDS(t))

4. x̂u(t)← xDS(t)β(t)

Result: IDS,x(t) = [xDS(t) x̂u(t)]

IV. CASE STUDIES

This section introduces three cases studies, which

will be used to investigate and demonstrate the

effectiveness of the proposed SDS methodology.

Case study 1 [Industrial]: This consists of wafer

metrology data for a process used in read-write

head formation within disk drive semiconductor

manufacturing. This dataset was collected over sev-

eral weeks from a single production tool for the

process in question using a static 50-site measure-

ment plan (V = 50), yielding a dataset consisting

of metrology for N = 316 wafers of different

product types. For confidentiality reasons the data

has been normalized. Fig. 1 shows four sample

wafer profiles from this dataset. As can be seen the

process exhibits substantial variation with regard to

the shape of the wafer profiles produced.

Case study 2 [RBF]: In this case study wafer pro-

files are simulated as sums of randomly generated

Gaussian Radial Basis Functions (RBF) defined on
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figures_eps/wafer1withLines-eps-converted-to.pdffigures_eps/wafer2withLines-eps-converted-to.pdffigures_eps/wafer3withLines-eps-converted-to.pdf

figures_eps/wafer4withLines-eps-converted-to.pdf

Fig. 1: [Industrial] Sample wafer surfaces belonging to the industrial case study.

figures_eps/RBF_03wafer1withLines-eps-converted-to.pdffigures_eps/RBF_03wafer2withLines-eps-converted-to.pdffigures_eps/RBF_wafer3withLines-eps-converted-to.pdf

figures_eps/RBF_wafer4withLines-eps-converted-to.pdf

Fig. 2: [RBF] Sample wafer surfaces generated by the RBF model: Sf = 0.3 (left), Sf = 0.6 (right).

the unit radius disc centred on the origin, that is:

z(x, y) =

Ng∑
i=1

hiexp(
(x− cxi

)2 + (y − cyi
)2

S2
f

)+ε (19)

where hi ∼ N(0, 1), cxi
, cyi

∼ U(−1, 1), z(x, y)

is the profile height at the coordinates (x, y), and

ε ∼ N(0, 0.02) simulates measurement noise. The

smoothness of the resulting wafer profiles is con-

trolled by the number of RBFs (Ng) and the spread

factor Sf . In particular, Sf can be adjusted to vary

the spatial correlation of the variation occurring

on the synthesized wafer surfaces. Fig. 2 shows

typical wafer profiles generated by the RBF model

for Ng = 100, Sf = 0.3 (left) and Ng = 100, Sf = 0.6

(right).
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figures_eps/zernike_simple_wafer1withLines-eps-converted-to.pdffigures_eps/zernike_simple_wafer2withLines-eps-converted-to.pdffigures_eps/zernike_simple_wafer3withLines-eps-converted-to.pdf

figures_eps/zernike_simple_wafer4withLines-eps-converted-to.pdf

Fig. 3: [Zernike] Sample wafer surfaces generated by the Zernike model.

Case study 3 [Zernike]: Here wafer profiles are

generated based on randomly weighted combina-

tions of Zernike polynomials. Zernike polynomials

are an infinite set of orthonormal functions de-

fined on a unit disk that are widely used in the

field of optics to describe complex non-rotationally

symmetric surfaces over a circular domain [3]. A

finite set of Zernike polynomials is defined by the

degree N and a function Zm
n parameterized by two

indices n and m , with n = 0, 1, . . . ,N and m =

−n,−n + 1, . . . ,n − 1,n . For a given N the generic

Zernike polynomial is defined in polar coordinates

as

Zm
n (ρ, θ) = Rm

n (ρ)

 cos(mθ) if m ≥ 0

sin(mθ) if m < 0

where θ ∈ [0, 2π], ρ ∈ [0, 1], and the radial function

Rm
n (ρ) = 0 if (n−m) is odd, and

Rm
n (ρ) =

(n−m)/2∑
l=0

(−1)l(n− l)!
l!
[
1
2 (n + n)− l

]
!
[
1
2 (n − n)− l

]
!
ρn−2l

if (n−m) is even. For the case study N = 7 giving

a basis set of 36 Zernike polynomials, denoted as

Zi, i = 1, 2, .., 36. Wafer surfaces are then generated

as

z(ρ, θ) =

36∑
i=1

αiZi(ρ, θ) (20)

where αi ∼ N(0, 8 exp(−0.3i)). Fig. 3 shows typical

wafer profiles generated by this model.

V. EXPERIMENTAL RESULTS

A. Performance Evaluation

To provide a statistically robust evaluation of

the performance of the various wafer sampling

and profile reconstruction approaches Monte Carlo

cross-validation (MCCV) is employed [14], [20].

Here the dataset of N samples is randomly split

into:

• a training dataset of qN samples (where 0 <

q < 1) used to estimate the FSCA sites and con-

struct the WMR models for the unmeasured

sites; and

• a validation dataset of (1 − q)N samples used

to assess wafer profile reconstruction perfor-

mance, as measured by the NMSE (eqt. 15).
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This is repeated K times, each time with a different

random split of the data, and the average and stan-

dard deviation of the reconstruction NMSE over the

K repetitions used as performance metrics.

A second consideration with dynamic sampling

is the frequency with which individual sites are

visited (i.e. measured), as encapsulated by the

Maximum Site Sampling Interval (MSSI) metric. For

static sampling approaches MSSI = ∞, while for

dynamic sampling techniques it is bounded below

by dV/Vme − 1, a bound which is achieved when

sites are distributed evenly across all clusters, i.e.

clusters are balanced. Thus, a Wafer Observability

Index (WOI) can be defined as:

WOI(Vm) =
dV/Vme − 1

MSSI(Vm)
× 100 (21)

for Vm < V , to quantify the effectiveness of a given

sampling algorithm in terms of providing wafer

coverage with a given number measurements Vm.

WOI provides a normalized measure (%) of the

MSSI performance of a given method with respect

to the theoretical minimum MSSI achievable.

B. FSCA based site selection

The results of a PCA and FSCA analysis of the

industrial metrology dataset are summarized in

Table I. The analysis reveals a very high level of

redundancy in the measurement plan. With τCVE

set at 99% there are only 5 significant modes of

variation identified by PCA (φPCA = 5) and this

variation can be captured with as few as 7 FSCA

selected sites (k∗ = 7). Thus, using FSCA based site

selection a 7-fold reduction in metrology (V/k∗) can

be achieved for this process.

Fig. 4 shows the average NMSE performance for

K = 100 MC simulations of FSCA as a function

TABLE I: [Industrial] Variance explained by the

top 10 Principal Components (PCs) and Forward

Selection Components (FSCs)

(a) PCA

PC Var. Exp. [%]

1 41.05

2 70.20

3 88.35

4 98.47

5 99.07

6 99.43

7 99.64

8 99.72

9 99.79

10 99.85

(b) FSCA

FSC Site ID Var. Exp. [%]

1 45 38.81

2 27 67.86

3 1 86.28

4 24 96.68

5 9 97.87

6 49 98.53

7 14 99.02

8 21 99.42

9 28 99.60

10 11 99.69

figures_eps/static_corrected-eps-converted-to.pdf

Fig. 4: [Industrial] Average NMSE over K = 100

MC simulations of WMR wafer profile reconstruc-

tions using Random and FSCA based metrology

site selection and least squares WMR model esti-

mation as a function of the number of measured

sites.

of the number of measured sites (Vm). For compar-

ison purposes the performances of WMR models

based on randomly selected metrology sites are also

included. As expected, FSCA based site selection

strongly outperforms randomly selected sites. Fig.

5 shows a typical wafer profile reconstruction ob-

tained using FSCA when k∗ = 7. The actual profile
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figures_eps/real_surf-eps-converted-to.pdf

5.a. 3D: Actual Measures

figures_eps/estimated_surf-eps-converted-to.pdf

5.b. 3D: FSCA+WMR

figures_eps/real-eps-converted-to.pdf

5.c. 2D: Actual Measures

figures_eps/estimated-eps-converted-to.pdf

5.d. 2D: FSCA+WMR

Fig. 5: [Industrial] Typical wafer profile reconstruc-

tion obtained using FSCA based site selection (k =

7): 3D plots (top) and corresponding contour plots

(bottom) for the actual (left) and estimated wafer

profile (right). Dots (•) and squares (�) indicate

measured and WMR sites, respectively. The axes

have been normalised for confidentially reasons.

is displayed on the left and the estimate profile

on the right. The circular black markers in the

contour plots show the locations of the measured

sites while the square markers are the locations of

the unmeasured sites estimated using WMR.

It may seem counterintuitive that linear WMR

models yield such good performance in terms of

profile reconstruction, since the profiles themselves

are highly nonlinear, however, this is a misconcep-

tion. The reason that the linear WMR models are

effective is that they are not trying to reproduce

the full nonlinear profile or explicitly consider the

spatial coordinates; rather, they are tracking the

relative changes from one site to another from

the mean profile and these relative changes can

be approximated to be linear (at least locally). As

such they can be adequately represented by linear

models. The accuracy of the models, and hence

ultimately the number of sites that need to be mea-

sured, is dictated by the level of spatial correlation

across the wafer surface.

To illustrate the link between spatial correlation

of wafer profile variation and metrology site selec-

tion, Fig. 6 shows the number of FSCA selected

sites needed to achieve 99% wafer profile recon-

struction accuracy as a function of the spread factor

Sf when using the RBF model (Case study 2).

Results are presented for two different values of Ng

and the corresponding PCA lower bound is also

plotted. The dataset used for each Sf , Ng combi-

nation consisted of N = 500 randomly generated

wafers sampled using a uniform sampling grid of

0.1 units. This yielded 317 candidate metrology

sites per wafer, over which reconstruction accuracy

was computed. As expected, as Sf increases fewer

metrology sites are needed. A similar pattern is

observed with the Zernike model (Case study 3) as

the model order N is reduced. For example, when

N = 6, k∗ = 13 and when N = 3, k∗ = 9.

C. Dynamic Sampling

To evaluate the performance of the correlation

and NMSE based FSCA clustering implementations

of the proposed SDS methodology Monte Carlo

simulations were performed for each of the three

case studies. For the RBF and Zernike model cases

studies 500 wafer datasets were generated, with

the RBF and Zernike model parameters selected as

Sf = 0.6, Ng = 100 and N = 7. For each Monte

Carlo run V = 50 candidate metrology sites were

randomly selected subject to the constraints that; (1)

the Euclidean distance between any two sites was
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figures_eps/RBFmodel_Sf_Nsites-eps-converted-to.pdf

Fig. 6: [RBF] A plot of the number of FSCA selected

sites needed to achieve 99 % reconstruction accu-

racy and the corresponding PCA lower bound as a

function of the spread factor Sf for the RBF model

wafer profiles with Ng = 10 (solid) and Ng = 100

(dashed)

greater than or equal to 0.16, and; (2) the distance

between a site and the edge of the unit disk was at

least 0.07. The SDS algorithms were compared with

the ’static’ Random and ’static’ FSCA approaches

and with:

• ’Random Dynamic Sampling’ (RDS) where

wafer sites are ordered randomly then visited

sequentially, Vm sites at a time, and;

• ’Conservative Dynamic Sampling’ (CDS)

where Vm − 1 sites are fixed according to

FSCA with only the Vm-th site selected

dynamically in a similar fashion to RDS.

It should be noted that the ’static’ sampling

approaches provide approximate upper and lower

bounds on the performance achievable with dy-

namic sampling algorithms which seek to visit

all sites over time. In particular, for statistically

stationary processes FSCA defines an approximate

lower bound on the achievable NMSE, since by

design dynamic sampling trades of reconstruction

performance to obtain better wafer coverage tem-

figures_eps/NMSE_stats_up3_noIS-eps-converted-to.pdf

Fig. 7: [Industrial] Average Wafer Profile Recon-

struction NMSE (K = 100 MC simulations) with a

number of static and dynamic sampling approaches

as a function of the number of measured sites. (The

Vm range is plotted over two intervals for clearer

presentation of the differences between algorithms

at lower NMSE levels)

porally. It is not a precise lower bound since, as

already noted, FSCA is not guaranteed to identify

the optimal combination of Vm sites.

Figs 7, 8 and 9 show the average wafer profile re-

construction NMSE (over K = 100 MC simulations)

as a function of the number of measured sites for

each sampling strategy, for the Industrial, RBF and

Zernike case studies, respectively. To illustrate the

MC variability, the average and standard deviation

of the reconstruction NMSEs is also reported in

Table II for the Industrial case study, while Fig. 10

and 11 show the corresponding NMSE boxplots for

each approach for Vm = 4 and Vm = 7, respectively.

It can be seen that static ’Random’ sampling pro-

vides the worst NMSE performance of all methods

while static FSCA achieves the best performance for

all values of Vm, and therefore, serve as bounds on

the NMSE performance achievable with Dynamic

Sampling.
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TABLE II: [Industrial] Average (standard deviation) wafer profile reconstruction NMSE for a number of

static and dynamic sampling approaches (K = 100 MC simulations)

Vm

Random FSCA RDS CDS SDS-Corr SDS-NMSE

Static Static Dynamic Dynamic Dynamic Dynamic

2 48.87 (7.30) 36.54 (2.04) 48.68 (2.77) 43.79 (2.21) 46.64 (2.94) 46.64 (3.00)

3 26.80 (6.82) 18.35 (1.30) 27.43 (2.54) 21.35 (2.00) 24.05 (1.90) 23.58 (2.05)

4 11.61 (5.57) 3.51 (0.32) 11.76 (2.01) 8.40 (1.02) 8.19 (1.17) 8.29 (1.26)

5 6.66 (4.98) 2.45 (0.31) 6.26 (1.48) 2.81 (0.28) 4.00 (0.61) 3.93 (0.59)

6 3.60 (2.27) 1.64 (0.30) 3.73 (0.62) 1.93 (0.27) 2.35 (0.40) 2.48 (0.49)

7 2.53 (1.31) 0.96 (0.25) 2.64 (0.63) 1.29 (0.25) 1.43 (0.23) 1.44 (0.23)

8 1.65 (0.80) 0.70 (0.11) 1.79 (0.39) 0.80 (0.19) 1.01 (0.12) 1.06 (0.17)

9 1.25 (0.58) 0.51 (0.06) 1.35 (0.26) 0.57 (0.09) 0.74 (0.08) 0.67 (0.14)

figures_eps/GD_grid005_sf06_ng10020_K100_NMSE_stats_up3_noIS_unique_plot-eps-converted-to.pdf

Fig. 8: [RBF] Average Wafer Profile Reconstruction

NMSE (K = 100 MC simulations) with a number

of static and dynamic sampling approaches as a

function of the number of measured sites

figures_eps/Zernike_K100_NMSE_stats_up3_noIS_unique_plot-eps-converted-to.pdf

Fig. 9: [Zernike] Average Wafer Profile Reconstruc-

tion NMSE (K = 100 MC simulations) with a

number of static and dynamic sampling approaches

as a function of the number of measured sites

figures_eps/126_R04_averaged_NMSE_boxplot_noIS-eps-converted-to.pdf

Fig. 10: [Industrial] Boxplots of the NMSE with

Vm = 4

figures_eps/129_R07_averaged_NMSE_boxplot_noIS-eps-converted-to.pdf

Fig. 11: [Industrial] Boxplots of the NMSE with

Vm = 7

There is little difference in average NMSE perfor-

mance between random static sampling and RDS,

but RDS exhibits substantially lower variability in

performance. This is simply a consequence of the
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fact that static random sampling is much more

sensitive to the impact of selecting good or bad site

combinations that RDS which averages this effect

out over multiple wafers.

In theory, SDS-NMSE should be superior to SDS-

Corr, since it is specifically designed to form clus-

ters based on minimizing the impact on reconstruc-

tion accuracy (i.e. a supervised learning algorithm),

whereas SDS-Corr simply selects cluster members

based on correlation between sites with no con-

sideration of the overall objective of minimizing

the NMSE (i.e. it is an unsupervised method).

However, comparing the performance of the two

SDS implementations it can be seen that there is

little to choose between them. Both implementa-

tions substantially outperform RDS and are only

marginally inferior to CDS, the most conservative

form of dynamically sampling. As expected, static

FSCA yields the best NSME performance for a

given number of measurement sites. However, SDS

can in general achieve a similar level of accu-

racy by including one additional measurement per

wafer. For example, with the optimum number of

measurement sites (Vm = 7) the average NMSE

reconstruction error with static FSCA is 0.96%. In

contrast SDS-Corr yields a NMSE of 1.43%, but this

drops to 1.01% when Vm is increased to eight.

The average WOI performances of the four dy-

namic sampling algorithms (RDS, CDS, SDS-Corr

and SDS-NMSE) for the three case studies are plot-

ted as a function of Vm in Figs 12-14. The mean and

standard deviation of WOI for each algorithm for

the Industrial case study are also reported in Table

III. Note that WOI is independent of the data in the

case of RDS and CDS and hence the WOI standard

deviation is zero for these algorithms. By design

RDS achieves optimal wafer coverage (WOI=100%)

figures_eps/woi_industrial-eps-converted-to.pdf

Fig. 12: [Industrial] Average WOI (K = 100 MC

simulations) with various dynamic sampling ap-

proaches

figures_eps/woi_gaussian-eps-converted-to.pdf

Fig. 13: [RBF] Average WOI (K = 100 MC simula-

tions) with various dynamic sampling approaches

and hence is the upper bound on the performance

that can be achieved by other methods. While

CDS yielded the best NMSE performance it is the

poorest algorithm in terms of wafer coverage with

a WOI of less than 20% for Vm ≥ 5. In contrast,

the proposed SDS-Corr algorithm performs much

better achieving WOI values of 70% or better for

Vm ≤ 5.

Comparing SDS-Corr and SDS-NMSE reveals

that in general the former produces a higher mean

WOI and is more stable (smaller WOI variance)

than the latter. Fig. 15 shows typical cluster assign-

ments obtained with Correlation and NMSE based

clustering for Vm = 2, 4, 6 and 7 for the Industrial
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figures_eps/woi_zernike-eps-converted-to.pdf

Fig. 14: [Zernike] Average WOI (K = 100 MC simu-

lations) with various dynamic sampling approaches

TABLE III: [Industrial] Average (standard devia-

tion) WOI for the proposed dynamic sampling

approaches (K = 100 MC simulations)

Vm RDS CDS SDS-Corr SDS-NMSE

2 100 (-) 50.0 (-) 92.3 ( 4.7) 82.0 ( 5.7)

3 100 (-) 34.0 (-) 73.4 ( 3.6) 73.0 ( 7.8)

4 100 (-) 26.1 (-) 67.4 ( 8.3) 84.4 ( 8.1)

5 100 (-) 20.0 (-) 69.7 ( 9.7) 45.9 (10.42)

6 100 (-) 18.2 (-) 66.4 (10.3) 55.8 (18.5)

7 100 (-) 16.3 (-) 61.4 (13.1) 56.2 (20.46)

8 100 (-) 14.3 (-) 65.4 (10.2) 45.7 (14.5)

9 100 (-) 12.2 (-) 59.6 ( 9.2) 30.7 (16.5)

Case Study. As can be seen NMSE clusters are much

less balanced than those obtained using correlation,

hence the poorer WOI performance of SDS-NMSE.

Overall, considering both NMSE and WOI per-

formance metrics, SDS-Corr provides the best all-

round performance among the sampling techniques

considered.

D. Detecting Previously Unseen Process Behaviour

To demonstrate the effectiveness of SDS over

static FSCA sampling, as a final example, we in-

vestigate their performance for the industrial case

study where, following training on normal wafers,

a previously unseen localized anomaly is intro-

duced into the test wafers. Recall that the Industrial

figures_eps/CLU_corr_fixed_2-eps-converted-to.pdf

figures_eps/CLU_nmse_fixed_2-eps-converted-to.pdf

figures_eps/CLU_corr_fixed_4-eps-converted-to.pdf

figures_eps/CLU_nmse_fixed_4-eps-converted-to.pdf

figures_eps/CLU_corr_fixed_6-eps-converted-to.pdf

figures_eps/CLU_nmse_fixed_6-eps-converted-to.pdf

figures_eps/CLU_corr_fixed_7-eps-converted-to.pdf

figures_eps/CLU_nmse_fixed_7-eps-converted-to.pdf

Fig. 15: [Industrial] Typical FSCA cluster assign-

ments using correlation and NMSE methods with

different values of Vm
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dataset is composed of N = 316 wafers, each

measured at V = 50 locations. Using a seven-point

measurement plan (i.e., Vm = 7), 200 randomly

selected wafers are used as a historical dataset to

train the static and dynamic sampling and wafer

profile reconstruction methodologies described in

the previous sections. The remaining 116 wafers

are ordered randomly and modified to simulate the

occurrence of a previously unseen, persistent, spa-

tially localized, production anomaly. The anomaly

is generated by adding a RBF perturbation at a

fixed random location on each wafer surface. The

location is selected at random among the V candi-

date measurement sites and is the same location on

all test wafers. The height h(n) and spread S
(n)
f of

the perturbation for the n-th wafer are drawn from

the following normal distributions:

h(n) ≈ N(0.8, 0.2),

S
(n)
f ≈ N(0.4, 0.1).

Starting from the first wafer in the test dataset,

and proceeding sequentially through the wafers,

the following anomaly detection procedure is run:

1) Using linear models derived from the training

dataset, each of the Vm sites measured for the

current wafer is estimated from the measured

values of the other Vm − 1 sites;

2) If the mismatch between the real and esti-

mated measurement is too high, as defined

by the 95% confidence intervals of the linear

prediction model, an anomaly flag is raised.

3) If an anomaly is detected, signifying that pre-

viously unseen process behaviour has been

detected, wafer processing stops, and the

wafer count until anomaly detection recorded;

otherwise, processing proceeds to the next test

wafer.

TABLE IV: [Industrial] Anomaly detection rate

(ρD), and Median (ND) and Mean (µD) wafer count

to anomaly detection, with various static and dy-

namic sampling approaches

Sampling Method Type ρD ND µD

Random Static 29.7 1 1.12

FSCA Static 43.8 1 1.14

RDS Dynamic 100 7 7.32

CDS Dynamic 99.8 24 24.41

SDS-Corr Dynamic 100 8 8.76

SDS-NMSE Dynamic 100 10 11.09

To generate statistically robust results, the above

procedure was repeated K = 1000 times, that is, the

experiment is repeated for 1000 different instances

of the test data set, where each instance has a

different random sequence of wafers and a different

random anomaly location. The results obtained are

reported in Table IV. This shows the anomaly detec-

tion rate (ρD), defined as the percentage of the 1000

repetitions in which the anomaly was detected, and

the median (ND) and mean (µD) wafer counts to

anomaly detection, for each sampling method.

As expected, the Random and FSCA static sam-

pling methods perform poorly with detection rates

of 29.7% and 43.8%, respectively. In contrast, the

dynamic sampling strategies, achieves a 100% de-

tection rate, with the exception of CDS which

achieves a 99.8% detection rate. Recalling that RDS

has the lowest possible MSSI (= 8), it is not sur-

prising that is has the lowest ND and µD values

of the dynamic sampling methods. However, SDS-

Corr is a close second with µD = 8.76 versus

7.32 for RDS. It is interesting to note that SDS-

Corr is superior to SDS-NMSE, which in turn is

substantially superior to CDS. This is consistent

with the WOI performances of each method, as
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discussed in the previous section and plotted in

Figure 12.

VI. DISCUSSION AND CONCLUSIONS

A novel methodology and algorithms for dy-

namic spatial sampling and reconstruction of wafer

profiles have been presented. The key elements of

the methodology are FSCA based site selection to

eliminate measurement redundancy, WMR estima-

tion of unmeasured sites to enable accurate pro-

file reconstruction, and sequential dynamic sam-

pling (SDS) of sites from FSCA clusters (formed

by clustering unmeasured wafer sites around the

FSCA selected sites) to mitigate the risk of missing

previously unseen process behaviour. By design the

proposed methodology can detect localized anoma-

lies that persist over several runs (greater than the

MSSI) and anomalies whose extent is such that they

impact on neighbouring sites that are being mea-

sured. Significantly, detection of the former class

of anomaly is not guaranteed by traditional static

sampling plans.

Two variations of SDS were considered, one em-

ploying correlation based clustering and the other

NMSE based clustering. Results from both practical

and simulated case studies have shown that while

both approaches provide similar wafer reconstruc-

tion accuracy, the former is preferred by virtue of

its superior wafer coverage and substantially lower

algorithm computational complexity. The effective-

ness of SDS in providing good wafer coverage

(as measured by the WOI metric) with minimal

degradation in wafer reconstruction accuracy has

also been demonstrated through comparisons with

a number of static and dynamic sampling alter-

natives including static FSCA, the optimal NMSE

wafer reconstruction benchmark, and RDS, the op-

timal wafer coverage benchmark.

The fundamental requirement when applying

the FSCA based methodology is that the training

dataset X used to optimise the FSCA sites and

clusters, and estimate the WPR models, must be

representative of the spatial correlation (exhibited

across the wafer surface) and the production vari-

ability over time that will be encountered going

forward. The industrial case study presented in the

paper was for wafers corresponding to several dif-

ferent products/recipes processed through a single

chamber. The resulting variability in wafer profiles

(see Fig.1) did not present an issue for WPR and

DS performance. If wafers come from more than

one chamber there is no guarantee that this will be

the case if the dataset does not contain data from

each chamber. For optimum performance, training

of bespoke models for each chamber is likely to be

needed if there is significant chamber mismatch.

A number of avenues exist for future research. In

SDS sites are sequentially selected in random order

within each cluster independently of the selections

made in other clusters. Therefore, the possibility

exists of sites in close proximity, but residing in

different clusters, being selected simultaneously,

potentially leading to reduced wafer profile re-

construction performance. While our experimental

studies have not shown this to be a major concern

in terms of performance, and interesting question

is how to coordinate the selection of sites across

clusters to maximize reconstruction accuracy. A

further, challenging task is to develop an approach

to updating the WMR models online with the in-

complete data that arises with dynamic sampling.

Finally, it would be of interest to evaluate to what

extent wafer profile reconstruction accuracy can
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be enhanced by incorporating production/process

variables into the proposed WMR approach.
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