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Abstract. Two methods based on Regression are presented to deter-
mine the moisture content of items, e.g. clothes and the like, which are
introduced in a household laundry dryer appliance. The aim of this work
is to develop Soft Sensors (SS) for a household Heat Pump Washer-Dryer
(WD-HP) to provide an estimation of the desired signal (the laundry
moisture during drying) avoiding the use of additional physical sensors
with the goal of improving the current performance in terms of precision
and energy consumption of the automatic drying cycle and using the
machine equipment already available.
On an algorithmic point of view, the SS developed in this work exploits
regularization methods and Genetic Programming for Symbolic Regres-
sion in order to find suitable models for the purpose at hand. Proposed
approaches have been tested on real data provided by an industrial part-
ner.

Keywords: Domestic Appliances, Fabric Care, Genetic Programming,
Heat PumpWasher-Dryer, Machine Learning, Moisture Transfer Models,
Soft Sensors, Symbolic Regression.

1 Introduction

Household appliance manufactures are nowadays competing to provide more ac-
curate, resources-efficient and user-friendly products. One of the main obstacles
in optimizing household appliances processes can be related to the uncertainty
in the laundry loaded in the appliance; the laundry characteristics (like weight,
fabric, contained water) have a major impact in the drying and washing pro-
cesses: being aware or estimating such characteristics can enable several process
optimizations, in terms of both performance and consumption measurements.

The usage of dedicated physical sensors to characterize laundry is generally
not possible or not costly-effective in household appliances. For these reasons,
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manufacturers have to resort to indirect information on the laundry inferred
from other sensors or provided by the users. In this perspective, Soft Sensing [1]
technologies may provide a viable solution. SS are statistical model-based tech-
nologies used in industrial environments to provide an estimate of quantities
that may be unmeasurable or costly/time-consuming to measure, based on more
accessible variables. SS exploits already in-place sensors/information, therefore
representing a cost-free solutions for improving product/process performances.
Such technology is generally based on Machine Learning (ML) supervised tech-
niques [2] that exploit the availability of historical data where the relationship
between inputs and output is measured.

SS technologies are used for several purposes and a relevant reference for
the development of data-driven SS for process industry can be found in [3] in
which an introduction to the most popular SS modelling techniques as well as
a discussion of some open issues in the SS development and maintenance is
provided. Another essential reference can be found in [4] which presents some
ensemble learning methodologies for SS development in industrial processes.

Few ML-based solutions for fabric care appliances are available in the lit-
erature; for example in [5, 6, 7, 8]. SS based on Machine Learning approaches
have been presented to estimate the laundry weight in washing machines and
we believe that this may be traced back to two main issues in developing SS for
fabric care appliances: (i) the effort in collecting a sufficient amount of labora-
tory data, where the load weight and water content is accurately measured; (ii)
the complexity of embedding a ML-based solutions in household equipment. In
this work we overcome these two issues by exploiting laboratory data already
collected for other product development purposes and by exploiting regulariza-
tion [9], a Machine Learning framework that allows, in some cases, to provide
effective sparse linear models that are easily implementable.

The mainly original contribution of this paper is the proposal of a model
starting from real data for the online estimation of laundry moisture during
drying cycles in household dryer appliances (the case study is a Washer-Dryer
machine). An in-dept study has been done considering available works in liter-
ature for different drying applications; moreover, Symbolic Regression has been
used to determine appropriate models for the goal with the assumption to use
entire available signals as predictors.

The rest of this paper is organized as follows. Section 2 is dedicated to in-
troduce the problem and to review SS solutions and estimation approaches in
fabric care appliances; in Section 3, two methods for the estimation of the laun-
dry moisture content during drying are illustrated. In Section 4 the description
of the available dataset and experimental settings for each of the method tried
is given. Section 5 is devoted to summarize the experimental results obtained on
real industrial data. Concluding remarks are then reported in Section 6.
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2 Related works

In simple terms, we could describe the physical process at hand (laundry drying
cycles) as a phenomenon in which the transfer of moisture from a porous media
(laundry) to the environment (the drum) takes place, in particular drying is a
process of simultaneous heat and moisture transfer which induces changes in the
product undergoing dehydration.
Heat and mass transfer in porous media is a complicated phenomenon; Schei-
degger [10] claimed that the structure of porous media is too complex to be
described precisely either in micro-scale or macro-scale. The mechanism of heat
and mass transfer in moist porous media is so sophisticated that Luikov [11]
attributed all the transport phenomena to the effects of temperature, moisture
content, and pressure from the macro-phenomenon viewpoint by applying irre-
versible thermodynamics.
In the literature, the study of textile drying is limited, however, there are nu-
merous studies of the technique of drying of foods, (for example [12, 13, 14]).
In particular kucuk et al. [13] proposes a comprehensive review of drying curve
models available and their comparisons for several applications while Younis et
al. [14] is a recent work which makes comparisons between thirteen different
mathematical models with non-linear regression analysis for describing the gar-
lic drying process. Talking about food preservation, the mechanism of moisture
transfer in food is complex and very often diffusion models (e.g., [15]) are given
significant attention in the literature due to ease of formulation.
One of the challenges for drying research still is the incorporation of the knowl-
edge of basic thermodynamics and transport phenomena into the description of
phase equilibria and drying kinetics [16]. Although many theoretical and exper-
imental drying studies have been undertaken by many researchers (e.g.,[17]) to
predict/determine moisture transfer, particularly drying profiles of various prod-
ucts, some models on moisture transfer parameters are available in the literature
(e.g., [18]), with a wide variation of reported values, due to the complexity of
the products and methods of estimation [19].
The goal of the present work is to select a suitable model to describe the laundry
moisture evolution during drying process of our interest (in a household Washer-
Dryer machine) with the aim of improving performances being more accurate in
the automatic determination of the End-of-the-Cycle (EoC) which correspond
to the instant in which the laundry is perfectly dryed4.
Considering the difficulties described above and the variability due to several
possibilities for the laundry composition inside the drum during drying cycles in
machines of our interest (WD or household dryers as well), the challenge is not

4An important expected improvement is also the possibility to get better estima-
tions of how much time is needed to stop the cycle at a predefined moisture target
(Time-to-End) from the instant in which the model is available, e.g. 20 minutes from
the beginning. Such an estimate can be used to provide an information to the user
(through the user interface) which is more accurate than the one provided now on
machines.
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limited to the determination of the best model, but also implies an accurate es-
timation of the parameters belonging to that model using information available
on household appliances and data-driven techniques.
Significant references for the problem at hand in this work are [20, 21]. Haghi et
al. [20] provide an experimental examination of the convective drying behaviour
of wool; using the acquired data, the aim is to assess the ability of some selected
drying models from literature to quantify the moisture removal behaviour, espe-
cially for wool convective drying. In [21] the applicability of three mathematical
models for the description of the drying kinetics was investigated for describ-
ing the drying kinetics of materials of various origins and of the inner structure
dried in four different dryers. One of the most significant references for the work
presented here is [22] which presents results of an experimental study on textile
thermal drying after wet processing treatments; its importance in this context
relies both on the application which is very similar to the one treated here (dry-
ing technology for textile fabric) and on results because the model suggested
is the same proposed in this work after the analysis on data provided by our
industrial partner; these results were found independently.

3 Modelling

In this section a description of methods used to obtain models for moisture trans-
fer during drying is presented; in particular moisture transfer through laundry
during drying is the process of interest and the first part is a basic explanation
of this phenomenon reporting the main references from literature.

3.1 Moisture transfer modelling by diffusion

Here an introduction to the physical description of the process of interest will be
given without aspiration of fully explain the subject (interested reader will find
excellent references provided below). A drying process always involves moisture
transfer which is essentially driven by heat and mass transfer; heat and mass
transfer are governed by similar equations of diffusion (transfer along a concen-
tration gradient), so, any drying process involves diffusion as the main physical
phenomenon and equations of diffusion are always the starting point to provide
a mathematical description in this case [23].

Moisture diffusion is the process during which water molecules migrate through
given materials. When we are only interested in mono-component mass transfer,
i.e. water, the diffusion process is quite similar to the thermal conduction process
[23]. Moisture transfer through porous media (like laundry) can be therefore
simply explained according to moisture concentration gradient variation using
the same equations exploited for heat and mass transfer ([24] and [25]). Then,
the most simple equation that can be used to describe the process of interest is
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the one known as Fick’s general second law of diffusion:

∂φ(x, t)

∂t
= D

∂2φ(x, t)

∂x2
(1)

where t is the time in [s], x is the spatial coordinate ([m]) (gradient direction
through the porous medium), D is the diffusion coefficient [m2/s] and φ is the
particle concentration of water [kg/m3]. From these types of mathematical so-
lution, the following general model for transient moisture transfer was proposed
as a simplified solution by Dincer & Dost ([23]):

φ = LFe−St (2)

where LF is called Lag Factor (adimensional) and S is the moisture transfer
coefficient [s−1]; drying coefficient shows the drying capability of an object or
product per unit time and Lag Factor is an indication of internal resistance of
an object to the heat and/or moisture transfer during drying. This simplified
solution is widely used in literature to describe drying processes. The model
provided by equation (2) is the most simple description of the phenomenon of
moisture transfer through porous media; its parameters have physical meaning
but this model could be inaccurate depending on the application. For this rea-
son it is used here as a reference and starting point for further analysis based
on real data available from machines in order to compare similar models in a
data-driven framework even though the physical meaning is not maintained in
models with more parameters. The main reference for our study on physical
models for diffusion processes is reported here: [26], it contains details about the
solution of the aforementioned equation (1) as well.

Here it is pointed out that, for the rest of the paper our moisture reference is com-

puted in percentage according to the following relation: y[%] = (weight−wc)
wc

100[%]
where y is used for moisture, weight is the laundry weight (in Kg) signal ob-
tained from a balance positioned under the machine during drying cycles, after
filtering and rescaling5 procedures while wc is the conditioned weight, i.e. the
weight of dry laundry. Besides, the desired target for improvements of automatic
EoC is to keep the moisture error (RMSE explained below) under the threshold
of 3% for available data (Cotton laundry).

3.2 Data-Driven methods

Method 1: Genetic Programming for Symbolic Regression This kind of
approach has been used with the aim of reveal the nonlinear relation between
input signals and output available. This proposal can be used to discover not
only the coefficients of the desired model but also the structure, i.e. how some
kind of operations specified by the user could be used to process input signals

5Details about computed features, will be omitted here because of intellectual prop-
erty rights.
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to obtain the output reference (which is a reconstruction from the signal that
comes from the balance under the machine during drying tests in laboratory).
The focus has been the development of this method without a priori assumptions
on the model (linear or polynomial form etc.) in order to discover suitable models
for our purpose although hardly representable on a firmware version.

Operands:

�,�

Operators:

+,−, :, ���(⋅), ���(⋅), ���(⋅),…

�(⋅)

Fig. 1: Representation of GP-based symbolic regression; y=laundry moisture
content during drying cycle, x=independent variables (signals available), k=
parameters

Genetic Programming (GP) is a supervised learning method of the evolutionary
computation field motivated by an analogy to biological evolution. GP creates
successor hypotheses by repeatedly mutating and cross-overing parts of the cur-
rent best hypotheses, with expectation to find a good solution in the evolution
process. A symbolic regression problem consists in finding the symbolic function
that matches a given set of data as closely as possible (Fig. 1). By training the
Genetic Programming algorithm with the given data set, the relationship be-
tween the input and output is represented by functions generated in the training
process. If the error rate reached a certain threshold, the training can be stopped
and the testing can be applied to verify the effectiveness of the best function.
This method is usually used to discover governing equations from noisy measure-
ment data [27]; in this work it has been exploited to discover relations between
the output (laundry moisture content) and signals already available online on the
machine. A benchmarking of recent GP approaches to Symbolic Regression in
the context of state of the art machine learning approaches is available here: [28].

In GP approach a population of computer programs is developed. The primary
genetic operations that are used to create new programs from existing ones are:

– Crossover: The creation of a child program by combining randomly chosen
parts from two selected parent programs.

– Mutation: The creation of a new child program by randomly altering a
randomly chosen part of a selected parent program.

GP departs significantly from other evolutionary algorithms in the implementa-
tion of the operators of crossover and mutation.

Symbolic Regression has been tested using a GP tool called GPTIPS (Ge-
netic Programming Toolbox for the Identification of Physical Systems, [29]) for
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use with MATLAB R©; it employs a unique type of symbolic regression called
multigene Symbolic Regression that evolves linear combinations of non-linear
transformations of the input variables.

In the first generation of the algorithm, a population of random individuals
is generated. For each new individual, a tree representing each gene is randomly
generated (subject to depth constraints) using the users specified palette of build-
ing block functions and the available M input variables x1, . . . , xM . In the first
generation the algorithm attempts to maximize diversity by ensuring that no in-
dividuals contain duplicate genes. However, due to computational expense, this
is not enforced for subsequent generations of evolved individuals. Each individ-
ual is specified to contain (randomly) between 1 and Gmax genes (trees). Gmax

is a parameter set by the user.

Method 2: Polynomial model for drying cycle prediction The approach
discussed here deals with a mathematical model developed to provide a smooth
description of the drying phenomenon of fabrics basing on our available data.
Differently from previous method the structure of the model is fixed and de-
termined after a preliminary offline analysis comparing some candidate forms
provided by literature (models used to describe moisture transfer in food preser-
vation and other areas different from fabric care).

Fig. 2 shows an explanation of the proposed procedure in details. The available
dataset has been used offline to select the best model for our purpose and it was
done checking performance of fitting comparing each candidate model and the
available output which is the result of some elaborations from the signal of the
weight evolution of laundry during drying cycle in laboratories. The best model
between the candidates was chosen to consider some well-known indices used
for goodness-of-fit analysis: Root Mean Square Error (RMSE) and coefficient of
determination6 (R2), moreover, also the number of parameters for each model
was taken into account in order to avoid too complex models for a firmware
implementation.
The final trade-off was found in a 3rd degree polynomial model in time (t) and
parameters a, b, c, d:

ŷ(t) = a+ bt+ ct2 + dt3 (3)

this is the structure that provides the best fit performance on our data (WD
HP case study) and is proposed here as the model to explain the evolution of
our drying cycles of interest. After our fit analysis, the structure of the proposed
model is fixed and the values of parameters for each observation as well (i.e. for
each observation the fit analysis provides the values for a, b, c, d which are used
then as the output reference for the linear regression step). Once the model and
its true parameters are fixed, we need a procedure to estimate such parameters

6RMSE is represented in the next Section; the coefficient of determination is the
square of the correlation coefficient; a higher coefficient of determination is an indicator
of a better goodness of fit for the observations.
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Fig. 2: Visual explanation of the algorithm proposed as Method 2
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online using the available information from signals.

The method chosen here to do this is to follow a simple Linear Regression
procedure, using some values computed from signals as inputs; these values will
be called features and summarize the information provided by each available
signal. These features were defined using the expert knowledge and are fixed.
The hand-craft features7 used to estimate the parameters of the polynomial
model are available after t∗ = 20[min] from the beginning of the cycle, i.e. after
20 minutes from the start phase, an estimation of the laundry moisture content
for the entire drying cycle is ready; examples of such features are quantities
computed from temperature at the output of the drum and from the motor
torque during drying.
An essential information that is exploited here is the one related to the (dry)
weight of the laundry [dry laundry load estimation block in Fig. 2 OFFLINE
part], which is a value that is estimated online using the available information
of the inertia of the laundry weight. So we use the information of the laundry
weight quantity to train a linear model offline which is different depending on the
laundry weight: the structure of the model is always linear but the coefficients
of the trained linear model vary depending on the laundry weight level.

Table 1: Drying models fitted to experimental data; t =time, y =moisture

Model expression RMSE[%] R2 #params

Lewis y = e−at 9.069 0.781 2

Henderson & Pabis y = ae−bt 1.147 0.996 3

quadratic y = a+ bt+ ct2 1.051 0.997 3

poly3 y = a+ bt+ ct2 + dt3 0.399 0.999 4

rational y = a+bt
1+ct+dt2

6.564 0.897 4

gaussian y = ae
−(t−b)2

2c2 0.417 0.999 4

sigmoid y = a+ b 1
(1+cet)

0.496 0.999 3

two exp y = ae−bt + ce−dt + e 0.746 0.998 5

mixed y = ae−bt + ct2 + dt+ e 0.453 0.999 5

Table 2 summarises the results of fitting between moisture references and several
models used for different drying applications (see also [13, 20]); this study is
represented as “Fit Analysis” block in Fig. 2 ONLINE part.
At the end of the offline part the form of the model is available together with the
coefficients of linear models used to estimate the parameters of the polynomial
structure; indeed, for each parameter a linear model has been used exploiting
the same set of defined features, so in this case 4 linear models are involved in
this step. The online part is executed on the machine (WD-HP) and it deals

7Details will be omitted here because of intellectual property rights.

ACD2019, 088, v11 (final): ’Data-Driven Models for the Determination of Laundry Moist� . . . 9



10 Zambonin et al.

with some simple passages: the first is the feature extraction process which is
performed computing the features defined in the offline part after the first part
of the cycle (20 minutes from the start) in order to have time to collect useful
information from signals; the second passage is the merging of the computed
features with the coefficients determined in the offline part and such a merging
is made-up by the linear models used to estimate the 3rd degree polynomial
parameters. The set of coefficients used by the firmware here varies depending
on the estimation provided by the laundry weight estimation procedure [dry
laundry load estimation block in Fig. 2 ONLINE part]: once the estimation of
the (dry) laundry load weight is available8, it is used to select the correct set
of coefficients of the linear models employed to determine the estimation of the
moisture model parameters (a∗, b∗, c∗, d∗). Therefore, for each load size, a set of
linear models has been trained, for example:

a∗ = α0 + α1h1 + · · ·+ α7h7

b∗ = β0 + β1h1 + · · ·+ β7h7

c∗ = γ0 + γ1h1 + · · ·+ γ7h7

d∗ = δ0 + δ1h1 + · · ·+ δ7h7

where hi, i = 1, . . . , 7 are the features selected offline and αi, βi, γi, δi; i = 0, . . . , 7
are linear regression coefficients.
We point out that the computation of the drying rate which is the derivative of
the moisture content in time, can be useful to detect anomalous estimation of
laundry and this fact is exploited in Method 2 to modify the estimation in case;
this situation is handled as a ‘control on shape’9 of the polynomial model (Fig.
2).

4 Experimental Setting

Details about the available dataset are reported here. In particular Fig. 3a and
Fig. 3b show distribution of the available drying tests in terms of nominal weight
(weight of dry laundry); in particular in Fig. 3b the output reference is depicted
(i.e. the laundry moisture evolution during drying obtained from the evolution
of weight of the wet laundry during drying). Time series represented here were
used as output reference to train models. It’s easy to see that moisture references
are very different comparing small and large loads. A number of 56 drying tests
are available for our development and 29 signals acquired for each observation.

8Load estimation is done using linear models as well and particular features; details
are not reported here.

9This simple control consists on a simple fixed decrease of the moisture every pre-
defined time interval [every minute]. When the computed drying rate goes under a
certain threshold (equal to 0[%/s]) the control starts and continues until the moisture
target is reached (0% in case of Cotton).
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Fig. 3: Data visualization by (dry) laundry load weight: (a) Laundry load weight
distribution in the data, 4 classes in [kg]; (b) laundry moisture reference

As regards the methods introduced before, talking about Symbolic Regres-
sion, some choices have been made in order to ensure the convergence of the
optimization procedure implemented in the used tool and to reduce the overfit-
ting risk due to models that are not suitable for test data.
In particular our decisions for configuration setting is summarized and explained
below: (i) population size = 500; (ii) number of generations = 1000; (iii) max
number of genes (Gmax)= 5; (iv) max depth = 5; (v) number of repeated simu-
lations = 30. The first two points deal with the number of initial random models
(i) and the number of allowed subsequent generations (ii). The choice made for
these two values is essential for the convergence of the optimization part of the
algorithm performed by the GP procedure; there is no specific rule to choose
them, but a rule of thumb is to follow number of generations greater than popu-
lation size, typically high values in order to avoid convergence problems. Clearly,
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the max number of genes (iii −Gmax) is the number of trees or single models
combined together in the multigene approach; in this case the value has been
fixed to 5 (low value) in order to prevent overfitting problems using models se-
lected by Symbolic Regression on unknown test data.
For the same reason the max depth (iv) allowed for each tree has been fixed to a
low value to avoid too complex models. As explained before, GP is a stochastic
approach because of the randomness of the initial population of models, there-
fore, a fixed number of repeated simulations, i.e. a loop for the entire symbolic
regression code has been imposed (v) to verify the robustness of GP to initial
population. The number of iterations has been fixed to 30 in this case to avoid
a huge computational effort but, obviously, it should be set to a value as high
as possible. The stopping criterion is related to the number of generations (ii);
we used a high value here (1000) in order to be more confident about the con-
vergence of the algorithm.
An entire moisture time series is selected randomly at each iteration to belong to
a training or a test set and for each case the Symbolic Regression selects the best
model according to the steps required by Genetic Programming. Performances in

terms of RMSE for drying test i are computed:
√

1
ni

∑ni

t=1(yi(t)− ŷi(t)) where

ni is the number of samples for each observation and ŷi is the estimation in per-
centage of laundry moisture; error distributions are then visualized to evaluate
the goodness of the provided models (see Section 5). Estimation error is always
computed considering th last part of the cycle: under 20% of reconstructed mois-
ture because it is the part of interest in the application for the EoC.

In Method 2 linear models used to obtain the parameters a,b,c and d for
the model summarized in equation (3) were trained using regularized linear re-
gression with LASSO [2] which is exploited for its sparsity to select a set of
statistically meaningful predictors (the features mentioned in Section 5). In this
phase, the 70% of available observations for each load are used as the training
set, while, the 30% are used for test in 100 Monte Carlo Cross Validations. All
results also in this case appear in terms of error distributions and visualized
using boxplots (Section 5).

As regards inputs and outputs of the 2 proposed methods, the output is
the laundry moisture content value for both, while inputs are signals already
available on machine and the difference between the procedures consists in the
processing of signals: in particular, Method 1 exploits signals as they are online
and combine them offline in linear and nonlinear ways in order to determine a
suitable model (the model with the lowest RMSE); once the model has been
fixed, it’s necessary to evaluate its complexity for an implementation online.
On the other hand, in Method 2 another input is the time elapsed from the
beginning of the cycle (in [s]); some predefined features are computed online
from available signals and used as predictors in linear regression models which
compute the parameters of a 3rd degree polynomial in time that provides the
laundry moisture predicted value.
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5 Results

Method 1: Genetic Programming for Symbolic Regression Fig. 4 refers
to Method 1 (Symbolic Regression) and shows results obtained so far as moisture
error in percentage taking into account the final part of the drying cycle which
is the main part of interest for an automatic procedure for the EoC.
The entire set of available signals have been exploited here to collect the results.

3
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4

4.5

5

R
M

S
E

 [%
]

median: 3.51

Fig. 4: Current performance in terms of RMSE distribution (in [%] of moisture
content) using Symbolic Regression with GP approach using all input signals
available

The obtained solutions are visualized in distribution in Fig. 4, but each iteration
could give a different result in terms of the structure of the selected model, e.g.
one solution can be the following:

ŷ =k0 + k1x2
3 + k2x7x2 + k3x3 + k4x7 + k5x8

+ k6x16 + k7x21 + k8x23 + k9x26 + k10x27

where ki, i = 1, . . . 10 are found coefficients10 and xi are signals.
The solution selected at the next iteration could show different powers of involved
input signals, but the goal here is the discovery of the most useful models for our
purpose i.e. which structures have been selected more frequently in all iterations
(if any). It turns out that the most selected structures are the ones which involve
main signals of temperatures and motor torque (or signals that are elaboration
of those); this suggests that these are also the meaningful signals for our goal.

10Details about computed coefficients and solution, will be omitted here because of
intellectual property rights.

ACD2019, 088, v11 (final): ’Data-Driven Models for the Determination of Laundry Moist� . . . 13



14 Zambonin et al.

Method 2: Polynomial model for drying cycle prediction In Fig. 5 results
in terms of error distribution are represented. It shows that in this case the
variability of the error is high and its due to the variability of the estimation of
parameters of the polynomial model, nevertheless, the focus of our work now is on
the reduction of this variability. In particular Fig. 5 shows results for each laundry
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Fig. 5: Current performance in terms of RMSE distribution (in [%] of moisture
content) using Method 2. Results divided by laundry nominal weight

load amount considering the fact that the algorithm exploits a load estimation
phase (as represented in Fig. 2). As depicted in Fig. 5 median term in each
distribution (in percentage of moisture) is very low and always under the limit
of 3% which is considered the threshold for an acceptable performance for the
EoC in Cotton laundry typology which is the case study at hand, but the current
problem which is still present is the error variability as explained before. Fig.
6 shows also an example of estimation of the laundry moisture content during
drying made using the polynomial model compared with the reference for the
specific observation. It is noted that the use of this approach (polynomial shape
of the moisture estimation) is preferable as a solution because of its smoothness;
in fact in this case inputs are not rough signals from the acquisitions and once
the estimation of parameters of the model is ready the result is a 3rd degree
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Fig. 6: An example of laundry moisture content estimation using the 3rd degree
polynomial model in time, on y-axis the moisture content in percentage [the
square represents the time in which the estimation is provided during drying
cycle]

polynomial in time which is smooth in contrast to results obtained with the
other approach.

Table 2: Comparison between the proposed methods; ∗ = the target for per-
formance refers to the EoC estimation error, i.e. the error between the moisture
reference and the estimate. The target formalized is to remain under the a cer-
tain value of the error quantified using the RMSE metric defined before.

Methods performance low error algorithm implementation
target* variance calibration facility

Method 1 X X
Method 2 X X X
Current algorithm X X X

Table 2 summarizes the comparison between (data-driven) methods proposed
in this work. Method named Current algorithm11 refers to the current procedure
implemented online on machines and it is mentioned here in order to make clear

11Details about it will be omitted here because of intellectual property rights.
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the features of each proposed procedure and the contribution for each item of
interest12.

The last two columns in Table 2 show a comparison in terms of calibration
and implementation effort. As regards the former, it turns out that the current
algorithm in production suffers from a time-consuming calibration phase because
operators have to fix some thresholds on the EoC signal and these thresholds
have to be managed on firmware; in the latter case, Method 1 suffers from an
additional complexity level because model selected by Symbolic Regression could
include some nonlinear terms which are difficult to write on firmware, e.g., combi-
nations of exponential, trigonometric functions etc. The other method is simpler
to represent online because the model is a time series with few parameters.
Method 2 has been chosen because it shows good results in terms of performance
target and it makes the calibration process easier respect to the current algo-
rithm once implemented on machine; the current focus is on the improvement
of the error variance (due to the variability of estimations) using other different
regression techniques.

6 Conclusion

This work dealt with the development of Soft Sensors to estimate laundry mois-
ture content in household Heat Pump Washer-Dryers during drying in order to
improve drying performance and user experience. This paper focuses on:

1. the use of different approaches to obtain the estimation of laundry moisture
content during drying cycles in domestic washer-dryers;

2. the determination of the best model to provide the estimation of laundry
moisture content as a time series obtaining a smooth curve to predict the
End-of-the-Cycle automatically.

As regards the first point, experimental data were used to train models with
available signals as predictors and laundry moisture content samples as the out-
put in a supervised manner. Models were chosen to try the Symbolic Regression
approach which exploits the Genetic Programming to construct the best model
from data and provides coefficients for such a model.

The operating difference between the two proposed methods relies on the
nature of the model: in Symbolic Regression predictors are signals and they are
combined in (non-linear) ways, while using the 3rd degree polynomial model
(equation (3)) the prediction is a time series and the difficulty is on the online
estimation of the parameters of such a model.
Main results of the work described in this paper can be summarized as below:

12Items summarized here are the main requests made by the industrial partner with
the goal of selecting a new algorithm for the control of the drying cycles on machines;
the main focus is clearly on performance but also on the complexity and calibration
effort in order to avoid some time-consuming procedures involved in the use of the
current algorithm.
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– The best non-linear models selected by Symbolic Regression always involve
main signals of temperatures and motor torque (or signals that are elabo-
ration of those) which confirms that these signals are the most useful for
our purpose; the models provided by this method use available signals as
predictors which affect the estimations with their noise;

– the best model for the description of laundry moisture content as a time
series is the 3rd degree polynomial model (equation (3)) and it comes from
a comparison between several options from literature. It turns out that this
model is the best model to describe laundry moisture content during drying
cycles basing on our available real data.

In addition, two strengths of this work needs to be underlined: (i) the novelty
of the work: to the best of our knowledge there’s no similar cases in literature
concerning the online estimation of parameters of a moisture transfer model for
fabric care applications; (ii) an effective ‘soft’ approach: no impact on hardware
and no dedicated Design of Experiments (DOE) was required.

The research employed in this paper is a part of a doctoral thesis, which is
still in development. Such doctoral thesis is expected to be completed in the
coming months and is focused on the development of SS for fabric care major
appliances with the purpose of improving the performances of the implemented
drying algorithm and simplifying the calibration phases of them.
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