Home People Schenato Teaching Modern Control for Energy Systems

 

tl_files/utenti/lucaschenato/Figure/FotoApplicazioniControlli.jpg
MODERN CONTROL FOR ENERGY SYSTEMS

a.y. 2017-2018

Laurea Magistrale in Ingegneria Energetica

tl_files/utenti/lucaschenato/Figure/Feedback.jpg

 

tl_files/utenti/lucaschenato/Figure/square.png Instructor

Prof. Luca Schenato
Phone: 049 827 7925
Office: 315 DEI/A
E-mail:
 ( NO luca.schenato@dei.unipd.it !!!!)
Webpage: http://automatica.dei.unipd.it/people/schenato.html
Office hours: appointment by email or phone

 

tl_files/utenti/lucaschenato/Figure/square.png Description
  • Mathematical modeling of dynamical systems
  • Definitions and mathematical model classes for dynamical systems
  • Representation in State Space
  • Linear Systems
  • Stability and Lyapunov theory
  • Linearization around working points
  • Transient and stationary responce to step, impulse and sinuisoidal inputs
  • Relevant LTI systems: I and II order systems
  • Laplace transform
  • Frequency domain control: PID controllers

 

tl_files/utenti/lucaschenato/Figure/square.png Lectures

Each lecture references the specific textbook sections

 

Week

MONDAY

(10:30-12:30 classroom M4)

THURSDAY

(12:30-14:15 classroom M3)

 

1 (25-28/09)

Class Introduction (Slides)

Water Tank, Car on inclined plane

DC Motor, Heat-Trasfer, Building temperature dynamics, Hydraulic piston, Temperature regulator  

2 (2-5/10)

Water level regulator, electronic circuit (Astrom-Murray, exercise 3.4). Recup in Linear Algebra: determinant, rank, image, kernel,etc..

Jordan form. Exponential of a matrix. Solution of LTI systems.(Chaper 5 of Astrom-Murray)

 

3 (9-12/10)

Modes of LTI systems, free evolution of the output, stability (Wednesday 10/10 Room Fe)

Equilibrium confuguration for stable LTI systems. Examples.

 

4 (16-19/10)

More example on LTI systems.
The value of control. Nominal control and integral control. Pole placement: examples and naive approach.
 

5 (23-26/10)

Reachability definition and matrix. Reachable canonical form. Pole placement problem. Ackerman formula.

Example of desing of state-feedback control


6 (30/10-2/11)

INTRODUCTION TO SIMULINK (Room Te)

MATLAB/SIMULINK: the water-tank model (Room Te)

 

7 (6-9/11)

Stability of linearized systems via Lyapunov Theory. Observability and observers
Stability of Observers and examples. Robustness to parameter uncertainty
 

8 (13-16/11)

MATLAB/SIMULINK: nominal and robust control of the water-tank model (Room Te)

Laplace Transform, Transfer Fucntions, Mapping from state-space to transfer function and vice-versa. Definition zeros and poles, Bode Diagrams

 

9 (20-23/11)

 Example of LTI representations, Steady-state behaviour to impulse, step and sinusoidal input
NO LECTURE
 

10 (27-30/11)

Bode Dyagrams;
(Wednesday 29/11 8:45-10:30 Room Fe) Nyquist plots
 

11 (4-7/12)

Nyquist criterion for stability 
Stability margins.  

12 (11-14/12)

Frequency domain design of PIDs PID desing
 

13 (18-21/12)

24
 
14 (15-18/01)
 
 

 

tl_files/utenti/lucaschenato/Figure/square.png Materiale

Official textbook:

  1. K.J. Astrom, R.M. Murray, Feedback Systems: An introduction for Scientists and Engineers, Princeton University Press, 2008

Optional textbook:

  1. G.F. Franklin, J.D. Powell, Emami-Naeini, Feedback Control of Dynamical Systems, Pearson, Prentice Hall, Fifth Edition, 2006

 

tl_files/utenti/lucaschenato/Figure/square.png Control  Problems
  1. TBD