A. Purpura, G.A. Susto.
A Bayesian Neural Model for Documents’ Relevance Estimation. Design of Experimental Search & Information Retrieval Systems, 2021 [
BibTeX]
M. Berno, M. Canil, N. Chiarello, L. Piazzon, F. Berti, F. Ferrari, A. Zaupa, N. Ferro, M. Rossi, G.A. Susto.
A Data Management and Anomaly Detection Solution for the Entertainment Industry. Italian Symposium on Database Systems (SEBD), 2021 [
BibTeX]
M. Hosseinzadeh, E. Garone, L. Schenato.
A distributed optimal power management system for microgrids with plug&play capabilities. Advanced Control for Applications, vol. 3(1), 2021 [
url] [
BibTeX]
M. Fabris, G. Michieletto, A. Cenedese.
A General Regularized Distributed Solution for System State Estimation from Relative Measurements. IEEE Control Systems Letters, vol. 6, pp. 1580--1585, 2021
Abstract:
This work presents a novel general regularized distributed solution for the state estimation problem in networked systems. Resting on the graph-based representation of sensor networks and adopting a multivariate least-squares approach, the designed solution exploits the set of the available inter-sensor relative measurements and leverages a general regularization framework, whose parameter selection is shown to control the estimation procedure convergence performance. As confirmed by the numerical results, this new estimation scheme allows (i) the extension of other approaches investigated in the literature and (ii) the convergence optimization in correspondence to any (undirected) graph modeling the given sensor network.
[ abstract ] [
url] [
BibTeX]
M. Berno, M. Canil, N. Chiarello, L. Piazzon, F. Berti, F. Ferrari, A. Zaupa, N. Ferro, M. Rossi, G.A. Susto.
A Machine Learning-based Approach for Advanced Monitoring of Automated Equipment for the Entertainment Industry. International Workshop on Metrology for Industry 4.0 & IoT, 2021 [
BibTeX]
S. Tedesco, G.A. Susto, N. Gentner, A. Kyek, Y. Yang.
A Scalable Deep Learning-based Approach for Anomaly Detection in Semiconductor Manufacturing. Winter Simulation Conference, 2021
Abstract:
The diffusion of the Industry 4.0 paradigm lead to the creation and collection of huge manufacturing datasets; such datasets contain for example measurements coming from physical sensors located in different equipment or even in different productive manufacturing organizations. Such large and heterogeneous datasets represent a challenge when aiming for developing data-driven approaches like Anomaly Detection or Predictive Maintenance. In this work we present a new approach for performing Anomaly Detection that is able to handle heterogeneous data coming from different equipment, work centers or production sites.
[ abstract ] [
BibTeX]
G. Michieletto, A. Cenedese, D. Zelazo.
A Unified Dissertation on Bearing Rigidity Theory. IEEE Transactions on Control of Network Systems, vol. 8(4), pp. 1624--1636, 2021
Abstract:
This work focuses on bearing rigidity theory, namely the branch of knowledge investigating the structural properties necessary for multi-element systems to preserve the inter-unit bearings under deformations. The contributions of this work are twofold. The first one consists in the development of a general framework for the statement of the principal definitions and properties of bearing rigidity. We show that this approach encompasses results existing in the literature, and also provides a systematic approach for studying bearing rigidity on any differential manifold in SE(3)^n, where n is the number of agents.The second contribution is the derivation of a general form of the rigidity matrix, a central construct in the study of rigidity theory. We provide a necessary and sufficient condition for the infinitesimal rigidity of a bearing framework as a property of the rank of the rigidity matrix. Finally, we present two examples of multi-agent systems not encountered in the literature and we study their rigidity properties using the developed methods
[ abstract ] [
url] [
BibTeX]
S. Chevalier, L. Schenato, L. Daniel.
Accelerated Probabilistic Power Flow in Electrical Distribution Networks via Model Order Reduction and Neumann Series Expansion. IEEE Transactions on Power Systems, 2021 [
url] [
BibTeX]
S. Chevalier, L. Schenato, L. Daniel.
Accelerated Probabilistic State Estimation in Distribution Grids via Model Order Reduction. 2021 IEEE Power & Energy Society General Meeting (PESGM), 2021 [
url] [
BibTeX]
M. Terzi, A. Achille, M. Maggipinto, G.A. Susto.
Adversarial Training Reduces Information and Improves Transferability. 35th AAAI Conference on Artificial Intelligence, (arXiv:2007.11259), 2021
Abstract:
Recent results show that features of adversarially trained networks for classification, in addition to being robust, enable desirable properties such as invertibility. The latter property may seem counter-intuitive as it is widely accepted by the community that classification models should only capture the minimal information (features) required for the task. Motivated by this discrepancy, we investigate the dual relationship between Adversarial Training and Information Theory. We show that the Adversarial Training can improve linear transferability to new tasks, from which arises a new trade-off between transferability of representations and accuracy on the source task. We validate our results employing robust networks trained on CIFAR-10, CIFAR-100 and ImageNet on several datasets. Moreover, we show that Adversarial Training reduces Fisher information of representations about the input and of the weights about the task, and we provide a theoretical argument which explains the invertibility of deterministic networks without violating the principle of minimality. Finally, we leverage our theoretical insights to remarkably improve the quality of reconstructed images through inversion.
[ abstract ] [
url] [
BibTeX]
A. Fabris, A. Mishler, S. Gottardi, M. Carletti, M. Daicampi, G.A. Susto, G. Silvello.
Algorithmic Audit of Italian Car Insurance: Evidence of Unfairness in Access and Pricing. Fourth AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES), 2021 [
BibTeX]
N. Bastianello, R. Carli, L. Schenato, M. Todescato.
Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence. IEEE Transactions on Automatic Control, 2021
Abstract:
In this work we focus on the problem of minimizing the sum of convex cost
functions in a distributed fashion over a peer-to-peer network. In particular,
we are interested in the case in which communications between nodes are prone
to failures and the agents are not synchronized among themselves. We address
the problem proposing a modified version of the relaxed ADMM, which corresponds
to the Peaceman-Rachford splitting method applied to the dual. By exploiting
results from operator theory, we are able to prove the almost sure convergence
of the proposed algorithm under general assumptions on the distribution of
communication loss and node activation events. By further assuming the cost
functions to be strongly convex, we prove the linear convergence of the
algorithm in mean square in a neighborhood of the optimal solution, and provide
an upper bound to the convergence rate. Finally, we present numerical results
testing the proposed method in different scenarios.
[ abstract ] [
url] [
BibTeX]
N. Bargellesi, A. Beghi, M. Rampazzo, G.A. Susto.
AutoSS: A Deep Learning-Based Soft Sensor for Handling Time-Series Input Data. IEEE Robotics and Automation Letters, vol. 6(3), pp. 6100--6107, 2021
Abstract:
Soft Sensors are data-driven technologies that allow to have estimations of quantities that are impossible or costly to be measured. Unfortunately, the design of effective soft sensors is heavily impacted by time-consuming feature engineering steps that may lead to sub-optimal information, especially when dealing with time-series input data. While domain knowledge may come into help when handling feature extraction in soft sensing applications, the feature extraction typically limits the adoption of such technologies: in this work, we propose AutoSS, a Deep-Learning based approach that allows to overcome such issue. By exploiting autoencoders, dilated convolutions and an ad-hoc defined architecture, AutoSS allows to develop effective soft sensing modules even with time-series input data. The effectiveness of AutoSS is demonstrated on a real-world case study related to Internet of Things equipment.
[ abstract ] [
url] [
BibTeX]
R. Opromolla, F. Branz, A. Francesconi, A. Cenedese, R. Antonello, P. Iob, Z. Pavanello, D. Vertuani, A. Et.
Chaser-Robotic Arm Combined Control and Optical Relative Navigation for Space Target Capture. 26th Conference of the Italian Association of Aeronautics and Astronautics (AIDAA 2021), pp. 1-11, 2021 [
BibTeX]
Z. Pavanello, F. Branz, A. Francesconi, A. Cenedese, R. Antonello, F. Basana, P. Iob, A. Et.
Combined control and navigation approach to the robotic capture of space vehicles. 72nd International Astronautical Congress (IAC), pp. 1-13, 2021
Abstract:
The potentialities of In-Orbit Servicing (IOS) to extend the operational life of satellites and the need to implement
Active Debris Removal (ADR) to effectively tackle the space debris problem are well known among the space community. Research on technical solutions to enable this class of missions is thriving, also pushed by the development of
new generation sensors and control systems. Among private companies, space agencies and universities, the European
Space Agency (ESA) has been developing technologies in this field for decades. Several solutions have been proposed
over the years to safely capture orbital objects, the majority relying on robotic systems. A promising option is the
employment of an autonomous spacecraft (chaser) equipped with a highly dexterous robotic arm able to perform the
berthing with a resident space object. This operation poses complex technical challenges both during the approach
phase and after contact. In this respect, the design of an effective, reliable, and robust Guidance, Navigation and
Control (GNC) system, for which several algorithmic architectures and hardware configurations are possible, plays a
key role to ensure safe mission execution.
This work presents the outcomes of a research activity performed by a consortium of universities under contract
with ESA with the goal to develop the navigation and control subsystems of a GNC system for controlling a chaser
equipped with a redundant manipulator. Both the final approach until capture and the target stabilization phase after
capture are considered in the study. The proposed solution aims at the implementation of a combined control strategy.
Robust control methods are adopted to design control laws for the uncertain, nonlinear dynamics of the chaser and
of the complete chaser–target stack after capture. Visual–based solutions, i.e., relying on active/passive electro–
optical sensors, are selected for relative navigation. A complete sensor suite for relative and absolute navigation
is part of the GNC system, including transducers for robot joint measurements. To properly validate the proposed
solutions, a complete numerical simulator has been developed. This software tool allows to thoroughly assess the
system performance, accounting for all the relevant external disturbances and error sources. A realistic synthetic
image generator is also used for relative navigation performance assessment. This paper presents the design solutions
and the results of preliminary numerical testing, considering three mission scenarios to prove the flexibility of the
solution and its applicability to a wide range of operational cases.
[ abstract ] [
url] [
BibTeX]
M. Pezzutto, E. Garone, L. Schenato.
Constrained Control with Communication Blackouts: Theory and Experimental Validation over Wi-Fi. Proceedings of IEEE Mediterranean Conference (MED'21), 2021 [
BibTeX]
N. Gentner, M. Carletti, A. Kyek, G.A. Susto, Y. Yang.
DBAM: Making Virtual Metrology/Soft Sensing with Time Series Data Scalable Through Deep Learning. Control Engineering Practice, vol. 116, 2021
Abstract:
Machine Learning (ML) based technologies, like Virtual Metrology (VM)/Soft Sensing, Predictive Maintenance and Fault Detection, have been successfully applied in the past recent years in data intensive manufacturing industries, like semiconductor manufacturing, to improve process monitoring and related operations. Standardization and alignment over multiple equipment is a key element to ensure industry-wide adoption and scalability for ML-based technologies in complex production environment. In this work we address the topic of VM/Soft Sensing – a particular ML-based technology for process control – in the context of equipment matching and scalability. We present a Deep Learning-based domain adaptation approach, called DANN-Based Model Alignment (DBAM), that provides a common VM model for two identical-in-design systems whose data are following different distributions. The proposed approach has the merit of (i) exploiting directly raw sensor data (that typically present themselves in the form of time series) and (ii) offering interpretability of the features. The proposed approach is compared against other approaches in the literature for VM/Soft Sensing on a real-world case study from semiconductor manufacturing.
[ abstract ] [
BibTeX]
F. Branz, R. Antonello, M. Pezzutto, F. Tramarin, S. Vitturi, L. Schenato.
Drive–by–Wi-Fi: Model–Based Control over Wireless at 1-kHz. IEEE Transactions on Control Systems Technology, 2021 [
url] [
BibTeX]
S. Arena, Y. Budrov, M. Carletti, N. Gentner, M. Maggipinto, Y. Yang, A. Beghi, A. Kyek, G.A. Susto.
Exploiting 2D Coordinates as Bayesian Priors for Deep Learning Defect Classification of SEM Images. IEEE Transactions on Semiconductor Manufacturing, 2021
Abstract:
Deep Learning approaches have revolutionized in the past decade the field of Computer Vision and, as a consequence, they are having a major impact in Industry 4.0 applications like automatic defect classification. Nevertheless, additional data, beside the image/video itself, is typically never exploited in a defect classification module: this aspect, given the abundance of data in data-intensive manufacturing environments (like semiconductor manufacturing) represents a missed opportunity. In this work we present a use case related to Scanning Electron Microscope (SEM) images where we exploit a Bayesian approach to improve defect classification. We validate our approach on a real-world case study and by employing modern Deep Learning architectures for classification.
[ abstract ] [
BibTeX]
L.C. Brito, G.A. Susto, J.N. Brito, M.A.V. Duarte.
Fault Detection of Bearing: an Unsupervised Machine Learning Approach Exploiting Feature Extraction and Dimensionality Reduction. Informatics, 2021 [
BibTeX]
D. Biasion, A. Fabris, G. Silvello, G.A. Susto.
Gender Bias in Italian Word Embeddings. CLIC-IT 2020 Seventh Italian Conference on Computational Linguistics, 2021 [
BibTeX]
B. Pozzan, G. Michieletto, A. Cenedese, D. Zelazo.
Heterogeneous Formation Control: a Bearing Rigidity Approach. IEEE Conference on Decision and Control (CDC2021), pp. 6451--6456, 2021
Abstract:
This work proposes a formation control law for multi-agent systems whose components are heterogeneous in terms of actuation capabilities, but at the same time are all able to retrieve bearing information w.r.t. some neighbors in the group. The designed controller exploits the results of the bearing rigidity theory deriving from the modeling of heterogeneous formations as generalized frameworks. The outlined solution is compared with a leader-follower combination of existing rigidity based homogeneous formation controllers in order to highlight the easy tuning, the flexibility w.r.t. the formation composition, and the increased efficiency of the new proposed control approach. A sufficient condition ensuring the convergence of the designed controller is also given.
[ abstract ] [
url] [
BibTeX]
R. Fantinel, A. Cenedese, G. Fadel.
Hybrid Learning Driven by Dynamic Descriptors for Video Classification of Reflective Surfaces. IEEE Transactions on Industrial Informatics, vol. 17(12), pp. 8102--8111, 2021
Abstract:
Visual inspection has recently gained increasing importance in the manufacturing industry and is often addressed by means of learning methodologies applied to data obtained from specific lighting and camera system setups. The industrial scenario becomes particularly challenging when the inspection regards reflective objects, which may affect both the data acquisition and the classification decision process, thus limiting the overall performance. In this context, we observe that the dynamics of the reflected light is the key aspect to characterize these surfaces and needs to be accurately exploited to improve the performances of the learning algorithms. To this aim, we propose a combined model-based and data-driven approach designed to detect defects on the reflective surfaces of industrial products, captured as video sequences under coaxial structured illumination. Specifically, a tunable spatial-temporal descriptor of the evolution of the reflected light (Dynamic Evolution of the Light, DEL) is designed and employed within a Hybrid Learning (HL) framework, where the learning process of a Convolutional Neural Network (CNN) is driven by the model-based descriptor. This approach is also extended by adopting the similar in nature descriptor Dynamic Image. The proposed HL solutions are validated against a whole spectrum of state-of-the-art learning procedures and different descriptors. Experiments run on a dataset coming from an actual industrial scenario confirm the ability of DEL to accurately characterize reflective surfaces and the validity of the HL method, which shows remarkably better performance in fault detection even with respect to modern 3D- CNNs with comparable computational effort.
[ abstract ] [
url] [
BibTeX]
G.M. Di Nunzio, A. Fabris, G. Silvello, G.A. Susto.
Incentives for Item Duplication under Fair Ranking Policies. European Conference on Information Retrieval (ECIR) 2021, 2021 [
BibTeX]
M. Viola, L. Brunelli, G.A. Susto.
Instagram Images and Videos Popularity Prediction: a Deep Learning-Based Approach. Italian Workshop on Artificial Intelligence and Applications for Business and Industries, 2021 [
BibTeX]
M. Barbiero, A. Rossi, L. Schenato.
LQR Temperature Control in smart building via real-time weather forecasting. Proceedings of IEEE Mediterranean Conference (MED'21), 2021 [
BibTeX]
D. Marcato, G. Arena, D. Bortolato, F. Gelain, V. Martinelli, E. Munaron, M. Roetta, G. Savarese, G.A. Susto.
Machine Learning-based Anomaly Detection for Particle Accelerators. 5th IEEE Conference on Control Technology and Applications (CCTA), 2021
Abstract:
Particle accelerators are complex systems composed of multiple subsystems that must work together to produce high quality beams employed for physics experiments. A fault or an anomalous behaviour in one of such subsystems can lead to expensive downtime for the whole facility. Thus, it is of paramount importance to be able to promptly detect anomalies.Given the vast amount of streaming data generated by accelerator field sensors, Machine Learning (ML)-based tools are promising candidates for efficient monitoring of such systems: an approach based on unsupervised ML techniques exploiting the data from a Radio Frequency tuning system is here proposed. Feature importance is exploited to guide the definition of the optimal windowing for feature extraction. The proposed approach is here validated on real-world data related to the ALPI accelerator at Legnaro National Laboratories in Italy.
[ abstract ] [
BibTeX]
I. Zorzan, S. Del Favero, A. Giarretta, R. Manganelli, B. Di Camillo, L. Schenato.
Mathematical modelling of SigE regulatory network reveals new insights into bistability of mycobacterial stress response. BMC Bioinformatics, vol. 22(558), 2021 [
url] [
BibTeX]
A. Fabris, A. Purpura, G. Silvello, G.A. Susto.
Measuring Gender Stereotype Reinforcement in Information Retrieval Systems. Proceedings of the 2021 Italian Information Retrieval Workshop, 2021 [
BibTeX]
B. Elaamery, M. Pesavento, T. Aldovini, N. Lissandrini, G. Michieletto, A. Cenedese.
Model Predictive Control for Cooperative Transportation with Feasibility-Aware Policy. Robotics, vol. 10(3), pp. 84, 2021
Abstract:
The transportation of large payloads can be made possible with Multi-Robot Systems(MRS) implementing cooperative strategies. In this work, we focus on the coordinated MRS trajectory planning task exploiting a Model Predictive Control (MPC) framework addressing both the actingrobots and the transported load. In this context, the main challenge is the possible occurrence of a temporary mismatch among agents’ actions with consequent formation errors that can cause severe damage to the carried load. To mitigate this risk, the coordination scheme may leverage a leader–follower approach, in which a hierarchical strategy is in place to trade-off between the task accomplishment and the dynamics and environment constraints. Nonetheless, particularly in narrow spaces or cluttered environments, the leader’s optimal choice may lead to trajectories that are infeasible for the follower and the load. To this aim, we propose a feasibility-aware leader–follower strategy, where the leader computes a reference trajectory, and the follower accounts for its own and the load constraints; moreover, the follower is able to communicate the trajectory infeasibility to the leader, which reacts by temporarily switching to a conservative policy. The consistent MRS co-design is allowed by the MPC formulation, for both the leader and the follower: here, the prediction capability of MPC is key to guarantee a correct and efficient execution of the leader–follower coordinated action. The approach is formally stated and discussed, and a numerical campaign is conducted to validate and assess the proposed scheme, with respect to different scenarios with growing complexity.
[ abstract ] [
url] [
BibTeX]
N. Dal Fabbro, M. Rossi, G. Pillonetto, L. Schenato, G. Piro.
Model-free radio map estimation in massive MIMO systems via semi-parametric Gaussian regression. IEEE Wireless Communications Letters, 2021 [
url] [
BibTeX]
C. Favaretto, S. Spadone, C. Sestieri, V. Betti, A. Cenedese, S. Della Penna, M. Corbetta.
Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention. Neuroimage, 2021
Abstract:
The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent functional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported behaviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed a visuospatial attention task as compared to central fixation (Spadone et al., 2015).
Here we use magnetoencephalography (MEG) in the same group of subjects to identify the electrophysiological correlates of the BOLD-FC modulation found in our previous work. While BOLD-FC topography, separately at rest and during visual attention, corresponded to neuromagnetic Band-Limited Power (BLP) correlation in the alpha and beta bands (8-30 Hz), BOLD-FC modulations evoked by performing the visual attention task (Spadone et al. 2015) did not match any specific oscillatory band BLP modulation. Conversely, following the application of an orthogonal spatial decomposition that identifies common inter-subject co-variations, we found that attention–rest BOLD-FC modulations were recapitulated by multi-spectral BLP-FC components. Notably, individual variability of alpha connectivity between Frontal Eye Fields and visual occipital regions, jointly with decreased interaction in the Visual network, correlated with visual discrimination accuracy. In summary, task-rest BOLD connectivity modulations match multi-spectral MEG BLP connectivity.
[ abstract ] [
url] [
BibTeX]
A. Purpura, K. Buchner, G. Silvello, G.A. Susto.
Neural Feature Selection for Learning to Rank. Proceedings of the European Conference on Information Retrieval, 2021 [
BibTeX]
N. Rossello, M. Pezzutto, L. Schenato, I. Castagliuolo, E. Garone.
On the effect of the number of tests and their time of application in tracing policies against COVID-19. Proceeding of 11th IFAC Symposium on Biological and Medical Systems (BMS'21), 2021 [
BibTeX]
L. Varotto, A. Cenedese.
Online and Adaptive Parking Availability Mapping: An Uncertainty-Aware Active Sensing Approach for Connected Vehicles. IEEE Intelligent Vehicles (IV2021) - workshop on Online Map Validation and Road Model Creation, pp. 31--36, 2021
Abstract:
Research on connected vehicles represents a continuously evolving technological domain, fostered by the emerging Internet of Things (IoT) paradigm and the recent advances in intelligent transportation systems. Nowadays, vehicles are platforms capable of generating, receiving and automatically act based on large amount of data. In the context of assisted driving, connected vehicle technology provides real-time information about the surrounding traffic conditions. Such information is expected to improve drivers' quality of life, for example, by adopting decision making strategies according to the current parking availability status. In this context, we propose an online and adaptive scheme for parking availability mapping. Specifically, we adopt an information-seeking active sensing approach to select the incoming data, thus preserving the onboard storage and processing resources; then, we estimate the parking availability through Gaussian Process Regression. We compare the proposed algorithm with several baselines, which attain inferior performance in terms of mapping convergence speed and adaptivity capabilities; moreover, the proposed approach comes at the cost of a very small computational demand.
[ abstract ] [
url] [
BibTeX]
L. Ballotta, M. Jovanovic, L. Schenato.
Optimal Network Topology of Multi-Agent Systems subject to Computation and Communication Latency. Proceedings of IEEE Mediterranean Conference (MED'21), 2021 [
BibTeX]
L. Mancin, I. Rollo, J.F. Mota, F. Piccini, M. Carletti, G.A. Susto, G. Valle, A. Paoli.
Optimizing Microbiota Profiles for Athletes: Dream or Reality?. Exercise and sport sciences reviews, vol. 49(1), pp. 42--49, 2021
Abstract:
Gut microbiome influences athletes’ physiology but, due to the complexity of sport performance and the great inter-variability of microbiome features, it is not reasonable to define a single healthy microbiota profile for athletes. We suggest the use of specific meta-omics analysis coupled with innovative computational systems to uncover the hidden relationship between microbes and athlete’s physiology and predicting personalized recommendation.
[ abstract ] [
url] [
BibTeX]
L. Varotto, A. Cenedese, A. Cavallaro.
Probabilistic Radio-Visual Active Sensing for Search and Tracking. European Control Conference (ECC2021), pp. 417--422, 2021
Abstract:
Active Search and Tracking for search and rescue missions or collaborative mobile robotics relies on the actuation of a sensing platform to detect and localize a target. In this paper we focus on visually detecting a radio-emitting target with an aerial robot equipped with a radio receiver and a camera. Visual-based tracking provides high accuracy, but the directionality of the sensing domain often requires long search times before detecting the target. Conversely,radio signals have larger coverage, but lower tracking accuracy. Thus, we design a Recursive Bayesian Estimation scheme that uses camera observations to refine radio measurements. To regulate the camera pose, we design an optimal controller whose cost function is built upon a probabilistic map. Theoretical results support the proposed algorithm, while numerical analyses show higher robustness and efficiency with respect to visual and radio-only baselines.
[ abstract ] [
url] [
BibTeX]
L. Varotto, A. Cenedese.
Probabilistic RF-Assisted Camera Wake-Up through Self-Supervised Gaussian Process Regression. Mediterranean Conference on Control and Automation (MED2021), 2021
Abstract:
Research on wireless sensors represents a continuously evolving technological domain thanks to their high flexibility and scalability, fast and economical deployment, pervasiveness in industrial, civil and domestic contexts. However, the maintenance costs and the sensors reliability are strongly affected by the battery lifetime, which may limit their use. In this paper we consider a wireless smart camera, equipped with a low-energy radio receiver, and used to visually detect a moving radio-emitting target. To preserve the camera lifetime without sacrificing the detection capabilities, we design a probabilistic energy-aware controller to switch on/off the camera. The radio signal strength is used to predict the target detectability, via self-supervised Gaussian Process Regression combined with Recursive Bayesian Estimation. The automatic training process minimizes the human intervention, while the controller guarantees high detection accuracy and low energy consumption, as numerical and experimental results show.
[ abstract ] [
url] [
BibTeX]
L. Varotto, A. Cenedese.
RaViPAS - Radio-Visual Probabilistic Active Sensing. R2T2: Robotics Research for Tomorrow's Technology, 2021 [
url] [
BibTeX]
M. Pezzutto, N. Rossello, L. Schenato, E. Garone.
Smart Testing and Selective Quarantine for the Control of Epidemics. Annual Reviews in Control, 2021 [
url] [
BibTeX]
L. Varotto, A. Cenedese.
Transmitter Discovery through Radio-Visual Probabilistic Active Sensing. 25th International Conference on Methods and Models in Automation and Robotics (MMAR 2021), 2021
Abstract:
Multi-modal Probabilistic Active Sensing (MMPAS) uses sensor fusion and probabilistic models to control the perception process of robotic sensing platforms. MMPAS is successfully employed in environmental exploration, collaborative mobile robotics, and target tracking, being fostered by the high performance guarantees on autonomous perception. In this context, we propose a bi-Radio-Visual PAS scheme to solve the transmitter discovery problem. Specifically, we firstly exploit the correlation between radio and visual measurements to learn a target detection model in a self-supervised manner. Then, the model is combined with antenna radiation anisotropies into a Bayesian Optimization framework that controls the platform. We show that the proposed algorithm attains an accuracy of 92%, overcoming two other probabilistic active sensing baselines.
[ abstract ] [
url] [
BibTeX]
L. Frau, G.A. Susto, T. Barbariol, E. Feltresi.
Uncertainty estimation for Machine Learning models in Multiphase flow Applications. Informatics, vol. 8(3), 2021
Abstract:
In oil and gas production, it is essential to monitor some performance indicators that are related to the composition of the extracted mixture, such as the liquid and gas content of the flow. These indicators cannot be directly measured and must be inferred with other measurements by using soft sensor approaches that model the target quantity. For the purpose of production monitoring, point estimation alone is not enough, and a confidence interval is required in order to assess the uncertainty in the provided measure. Decisions based on these estimations can have a large impact on production costs; therefore, providing a quantification of uncertainty can help operators make the most correct choices. This paper focuses on the estimation of the performance indicator called the water-in-liquid ratio by using data-driven tools: firstly, anomaly detection techniques are employed to find data that can alter the performance of the subsequent model; then, different machine learning models, such as Gaussian processes, random forests, linear local forests, and neural networks, are tested and employed to perform uncertainty-aware predictions on data coming from an industrial tool, the multiphase flow meter, which collects multiple signals from the flow mixture. The reported results show the differences between the discussed approaches and the advantages of the uncertainty estimation; in particular, they show that methods such as the Gaussian process and linear local forest are capable of reaching competitive performance in terms of both RMSE (1.9–2.1) and estimated uncertainty (1.6–2.6).
[ abstract ] [
BibTeX]
A. Fabris, L. Parolini, S. Schneider, A. Cenedese.
Use of probabilistic graphical methods for online map validation. IEEE Intelligent Vehicles (IV2021) - workshop on Online Map Validation and Road Model Creation, pp. 43--48, 2021
Abstract:
In the world of autonomous driving high resolution maps play a fundamental role. Such maps are highly accurate representations of the environment and are essential for all the algorithms of strategy and path planning operations.
Unfortunately it is not always possible to guarantee the total reliability of these maps and therefore it is necessary to introduce a system for its validation. In this paper we introduce a framework for validating map data at run-time based on probabilistic graphical models. Results from simulations show the capabilities of the proposed approach and highlight the need to find an appropriate balance between model accuracy and complexity.
[ abstract ] [
url] [
BibTeX]