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Model description

position s

velocity v
control
action
uPIDmass m

friction
force ff

so = 0

ff

v
f̄c− αv

uPID(t) := −k̄ps(t)− k̄i

∫ t

0

s(τ)dτ − k̄d
ds(t)

dt

= −k̄ps(t)− k̄iei (t)− k̄dv(t),

ff (uPID, v) :=


f̄c sign(v) + αvv , if v 6= 0

uPID, if v = 0, |uPID| < f̄c

f̄c sign(uPID), if v = 0, |uPID| ≥ f̄c

mv̇ = uPID − ff (uPID, v)

With u := uPID−αv v
m

, (kp, kv , ki ) :=
( k̄p

m
, k̄d+αv

m
, k̄i
m

)
, fc := f̄c

m
uPID = m u for v = 0

ėi = s

ṡ = v

v̇ =


u − fc if v > 0 or (v = 0, u ≥ fc)

0 if (v = 0, |u| < fc)

u + fc if v < 0 or (v = 0, u ≤ −fc)

u = −kps − kvv − kiei ,

Physical parameters k̄p, k̄i , k̄d , f̄c vs normalized parameters kp, ki , kd , fc . 4 / 47
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ṡ = v

v̇ =


u − fc if v > 0 or (v = 0, u ≥ fc)

0 if (v = 0, |u| < fc)

u + fc if v < 0 or (v = 0, u ≤ −fc)

u = −kps − kvv − kiei ,

Physical parameters k̄p, k̄i , k̄d , f̄c vs normalized parameters kp, ki , kd , fc . 5 / 47



Outline Model Main result (1) Lyap’-like function Global attractivity Stability Main result (2) Conclusions

Reformulation with a special differential inclusion

ėi = s

ṡ = v

v̇ =


u − fc if v > 0 or (v = 0, u ≥ fc )

0 if (v = 0, |u| < fc )

u + fc if v < 0 or (v = 0, u ≤ −fc )

u = −kps − kvv − kiei ,

⇓1

x

ẋ ∈ F (x)

ẋ

differential inclusions in general

ėi = s

ṡ = v

v̇ ∈ −kiei − kps − kvv − fcSGN(v)

SGN(v)

v

−1

−−1

SGN(v) =

{
sign(v) if v 6= 0

[−1, 1] if v = 0

1R. I. Leine and N. van de Wouw, Stability and convergence of mechanical
systems with unilateral constraints. Springer Science & Business Media, 2007.
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Motivation for using this special differential inclusion

1 The physical model is intuitive, but its discontinuous right hand side
makes it hard to prove existence of solutions for each initial conditions
and stability properties, whereas the differential inclusion guarantees
structurally existence of solutions and lets us adopt Lyapunov tools.

2 No artificial solutions are introduced by the differential inclusion, for which
the next Lemma establishes uniqueness of solutions. The unique solution
to the diff’ incl’ must be necessarily the unique sol’ to the physical model
because the diff’ incl’ allows more selections for v̇ than the phys’ model.

Lemma (solutions are unique and complete)

For any initial condition z(0) ∈ R3, the differential inclusion has a unique
solution defined for all t ≥ 0.

Intuition behind the lemma:

fcSGN(v)

v

−fc

− −fc

v̇

v

−fc
−−kiei − kps

v̇

v

−fc
−−kiei − kps

v̇ ∈ −kiei − kps− kvv − fcSGN(v)
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The standing assumption

System:

ż =

ėiṡ
v̇

∈
 s

v
−kiei − kps − kvv − fcSGN(v)

=

 0 1 0
0 0 1
−ki −kp −kv

z−
0

0
fc

 SGN(v)

Assumption

In the absence of friction (fc = 0), the origin is globally asymptotically stable
(GAS). Equivalently,

ki > 0, kp > 0, kvkp > ki .
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Equilibria, attractor and first result

• For z = (ei , s, v) and

ėi = s

ṡ = v

v̇ ∈ −kiei − kps − kvv − fcSGN(v)

the set of equilibria making ż = 0 are s = v = 0 and |ei | ≤ fc
ki

.

• Denote the corresponding set

A :=

{
(ei , s, v) : s = 0, v = 0, ei ∈

[
− fc

ki
,
fc
ki

]}
.

• Our first main result:

Proposition

Under our Assumption, A is 1) globally attractive and 2) Lyapunov stable for
the differential inclusion.

• so = 0 for simplicity, but the result is easily generalized to piecewise
constant setpoints.
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Illustration

. fc = 1 m/s2 ż ∈
[

0 1 0
0 0 1
−ki −kp −kv

] [
ei
s
v

]
−
[

0
0
fc

]
SGN(v)

(kv , kp, ki ) = (6.4, 3, 4)
Ô complex conjugate roots
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Ô three distinct real roots
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Discussion about result and literature

The interest in the dynamical properties of friction had its peak in the 1990’s.
• modeling direction

I Dahl model:
P. R. Dahl, A solid friction model. Tech. Rep. of The Aerospace Corporation El

Segundo CA, 1968.
I models by Bliman and Sorine:

P.-A. Bliman and M. Sorine, Easy-to-use realistic dry friction models for automatic

control. Proc. of 3rd European Control Conf., 1995.
I LuGre model:

C. Canudas-de-Wit, H. Olsson, K. J. Åström, and P. Lischinsky, A new model for

control of systems with friction. IEEE Trans. Autom. Control, 1995.

K. J. Åström and C. Canudas-de-Wit, Revisiting the LuGre friction model. Control

Systems, IEEE, 2008.

N. Barahanov and R. Ortega, Necessary and sufficient conditions for passivity of the

LuGre friction model. IEEE Trans. Autom. Control, 2000.
I Leuven model:

J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, An integrated friction

model structure with improved presliding behavior for accurate friction

compensation. IEEE Trans. Autom. Control, 2000.
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Discussion about literature and result

• use of set-valued mapping for the friction force, and hence differential inclusions

I uncontrolled multi-degree-of-freedom mechanical systems:
N. van de Wouw and R. I. Leine, Attractivity of equilibrium sets of systems with dry

friction. Nonlinear Dynamics, 2004.
I PD controlled 1 d.o.f. system:

D. Putra, H. Nijmeijer, and N. van de Wouw, Analysis of undercompensation and

overcompensation of friction in 1 DOF mechanical systems. Automatica, 2007.
I combination of set-valued friction laws and Lyapunov tools:

R. I. Leine and N. van de Wouw, Stability and convergence of mechanical systems

with unilateral constraints. Springer Science & Business Media, 2007.
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Discussion about literature and result

• for the same setting (point mass + PID controller + Coulomb and viscous
friction) it was proven that no stick-slip limit cycle (so-called hunting) exist:

I B. Armstrong-Hélouvry and B. Amin, PID control in the presence of static friction.

Tech. Rep. of Dept. of Elec. Eng. and Computer Science, UW–Milwaukee, 1993.

B. Armstrong-Hélouvry and B. Amin, PID control in the presence of static friction:

exact and describing function analysis. Amer. Control Conf., 1994.

B. Armstrong and B. Amin, PID control in the presence of static friction: A

comparison of algebraic and describing function analysis. Automatica, 1996.

• the contributions of this work are

I the proof of GAS of A Main result (1)

I GAS of A + model regularity ⇒ robustness of AS Main result (2)

a perturbation of interest is an inflation of ρv of SGN;
A is globally input-to-state stability (ISS) from ρv ;
more gen’ friction (Stribeck effect) cause gradual deterioration in ISS sense.
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In order to prove global attractivity and stability:

1 we perform a change of coordinate

2 we define a Lyapunov-like function.
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Change of coordinates
• Apply change of coordinates

σ := −ki s
φ := −kiei − kps

v := v

to ż :=
[
ėi
ṡ
v̇

]
∈
[

0 1 0
0 0 1
−ki −kp −kv

]
z −

[
0
0
fc

]
SGN(v)

• . . . and get dynamics

ẋ :=

σ̇φ̇
v̇

∈
 −kiv

σ − kpv
φ− kvv − fc SGN(v)

=

0 0 −ki
1 0 −kp
0 1 −kv

σφ
v

−
0

0
fc

SGN(v)

= Ax − b SGN(v) =: F (x)

• Attractor

A = {(σ, φ, v) : |φ| ≤ fc , σ = 0, v = 0}

• Distance from attractor

|x |2A :=
(

inf
y∈A
|x − y |

)2
= σ2 + v 2 + dzfc (φ)2

dzfc(φ)

φfc

−fc| |

−fc fc

0
0

φ

σ

v
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Lyapunov-like function

W (x) : =

[
σ
v

]T [ kv
ki

−1

−1 kp

] [
σ
v

]
+ min

f∈fc SGN(v)
|φ− f |2

= min
f∈fc SGN(v)

[
σ
φ−f
v

]T kv
ki

0 −1

0 1 0
−1 0 kp

[ σ
φ−f
v

]
= min

f∈fc SGN(v)

[
σ
φ−f
v

]T
P
[

σ
φ−f
v

]

complex conjugate roots three distinct real roots

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

W
(x

(t
))

t (s)
0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

W
(x
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Immediate to check:
. W (x) = 0 for all x ∈ A
. W is not continuous
for {(σi , φi , vi )}+∞

i=0 = {(0, 0, ( 1
2
)i}+∞

i=0 , W converges to f 2
c but W (0) = 0
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Properties of the Lyapunov-like function W

Properties of W

The Lyapunov-like function W is:

1 lower semicontinuous (lsc)

2 lower bounded:

∃c1 > 0: c1|x |2A ≤W (x) ∀x ∈ R3

3 decreasing along trajectories:

∃c > 0: for each sol’ x = (σ, φ, v) to the diff’ incl’,

∀t2 ≥ t1 ≥ 0 W (x(t2))−W (x(t1)) ≤ −c
∫ t2

t1

v(t)2dt.
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Lower semicontinuity of W

Properties of W

The Lyapunov-like function W is:

1 lower semicontinuous (lsc)

• W : Rn → R is lower semicontinuous if

lim inf
x→x0

W (x) ≥W (x0)

and lim inf
x→x0

W (x) = lim
ε→0

(
inf

{
W (x) : x ∈ B(x0, ε)\{x0}

})
= sup
ε>0

(
inf

{
W (x) : x ∈ B(x0, ε)\{x0}

}) .

• the proof is merely technical

V

xx0

|

lim inf
x→x0

V (x)

for {(σi , φi , vi )}+∞
i=0 = {(0, 0, ( 1

2
)i}+∞

i=0 , W converges to f 2
c but W (0) = 0
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Lower boundedness of W

Properties of W

The Lyapunov-like function W is:

2 lower bounded:

∃c1 > 0: c1|x |2A ≤W (x) ∀x ∈ R3

With |x |2A :=
(

infy∈A |x − y |
)2

= σ2 + v 2 + dzfc (φ)2,

=:c1︷ ︸︸ ︷
min{g, 1} |x |2A ≤

=dzfc (φ)2︷ ︸︸ ︷
min

f∈[−fc ,fc ]

(
φ− f

)2
+ g(σ2 + v 2) ≤

min
f∈fc SGN(v)

|φ− f |2 +

[
σ
v

]T [ kv
ki

−1

−1 kp

] [
σ
v

]
=:W (x)
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Decrease of W

Properties of W

The Lyapunov-like function W is:
3 decreasing along trajectories:

∃c > 0: for each sol’ x = (σ, φ, v) to the diff’ incl’,

∀t2 ≥ t1 ≥ 0 W (x(t2))−W (x(t1)) ≤ −c
∫ t2

t1

v(t)2dt.

Claim → Fact → 3
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Decrease of W : Claim

Given ẋ ∈ Ax − b SGN(v) :=

[
0 0 −ki
1 0 −kp
0 1 −kv

]
x −

[
0
0
fc

]
SGN(v),

consider the three affine systems (|ξ|2P := ξTPξ)
Claim → Fact → 3

Initial value problem Its Lyap’ function

ξ̇ = f1(ξ) := Aξ − b, ξ(0) = ξ̄1, W1(ξ) :=
∣∣∣[ σ
φ−fc
v

]∣∣∣2
P

ξ̇ = f0(ξ) :=
[

0 0 0
1 0 0
0 0 0

]
ξ, ξ(0) = ξ̄0, W0(ξ) :=

∣∣∣[ σ0
0

]∣∣∣2
P

ξ̇ = f−1(ξ) := Aξ + b, ξ(0) = ξ̄−1, W−1(ξ) :=
∣∣∣[ σ
φ+fc
v

]∣∣∣2
P

Claim

There exists c > 0 such that, for each initial condition (σ̄, φ̄, v̄), one can select
k ∈ {−1, 0, 1} and T > 0 such that:

1 the solution to ξ̇ = fk(ξ), ξ̄k = (σ̄, φ̄, v̄) satisfies

ξ(t) = x(t) ∀t ∈ [0,T ]

2 the function Wk satisfies

W (ξ(t)) = Wk(ξ(t)) and d
dt
Wk(ξ(t)) ≤ −c|ξv (t)|2 ∀t ∈ [0,T ].
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Decrease of W : Fact
Claim → Fact → 3

Fact: a generalized inequality for integrals and Dini derivatives2

Given t2 > t1 ≥ 0,
1 W (x(·)) is lsc

2 −c v(·)2 is locally integrable in [t1, t2]

3 D+W (x(τ)) ≤ −cv 2(τ), ∀τ ∈ [t1, t2]

⇒W (x(t2))−W (x(t1)) ≤
∫ t2
t1
−cv 2(τ)dτ.

lower right Dini derivative of h: D+h(t) := lim infε→0+
h(t+ε)−h(t)

ε

1 X because the composition of a lsc and a continuous function is lsc

2 X because solutions are absolutely continuous

3 X from the claim: for each (σ̄, φ̄, v̄) &
on nonzero closed intervals
I x and ξ coincide

I W and Wk coincide

I W (x(·)) differentiable from the right

I D+W (x(·)) coincides with right derivative

I right derivative upper bounded by −cv 2.
2

J. W. Hagood and B. S. Thomson, Recovering a function from a Dini derivative, The American Mathematical Monthly, 2006.
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1 the solution to ξ̇ = fk(ξ),
ξ̄k = (σ̄, φ̄, v̄) satisfies
∀t ∈ [0,T ] ξ(t) = x(t).

2 Wk satisfies ∀t ∈ [0,T ]

W (ξ(t))= Wk(ξ(t))

d
dt
Wk(ξ(t))≤ −c|ξv (t)|2
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I D+W (x(·)) coincides with right derivative

I right derivative upper bounded by −cv 2.
2

J. W. Hagood and B. S. Thomson, Recovering a function from a Dini derivative, The American Mathematical Monthly, 2006.
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Claim
1 the solution to ξ̇ = fk(ξ),
ξ̄k = (σ̄, φ̄, v̄) satisfies
∀t ∈ [0,T ] ξ(t) = x(t).

2 Wk satisfies ∀t ∈ [0,T ]

W (ξ(t))= Wk(ξ(t))

d
dt
Wk(ξ(t))≤ −c|ξv (t)|2
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Connection with the results by Armstrong & Amin
Just proved that:

Properties of W

The Lyapunov-like function W is:
3 decreasing along trajectories: ∃c > 0: ∀sol’ x = (σ, φ, v) to the diff’ incl’,

∀t2 ≥ t1 ≥ 0 W (x(t2))−W (x(t1)) ≤ −c
∫ t2

t1

v(t)2dt.

In the discussion about literature, we mentioned:

• for the same setting (point mass + PID + Coulomb & viscous friction) it was
proven that no stick-slip limit cycle (hunting) exist3 because |σ(ti+1)| < |σ(ti )|

 

 

ti ti+1

fc

−fc
0

σ
φ
v stick phase stick phase

slip phase

| |
ti ti+1

v(t) 6= 0

ti − δ ti+1 + δ

| |

v(t) = 0
|φ(t)| ≤ fc

But W (x(ti+1)) <W (x(ti )) and W (x) :=[ σv ]T
[

kv
ki
−1

−1 kp

]
[ σv ] + min

f∈fc SGN(v)
|φ− f |2 imply

straightforwardly kv
ki
σ(ti+1)2 < kv

ki
σ(ti )

2.

3B. Armstrong and B. Amin, PID control in the presence of static friction: A
comparison of algebraic and describing function analysis, Automatica, 1996.
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Proof of global attract’y: a general’d invariance principle

Fact: a generalized invariance principle4

For x = (σ, φ, v), let `(x) = v 2. If x is a complete and bounded solution
satisfying

∫ +∞
0

`(x(t))dt < +∞, then x converges to the largest forward

invariant subset M of Σ := {x ∈ R3 : `(x) = 0} = {x : v = 0}.

X all x ’s are complete from lemma uniqueness

X all x ’s are bounded: ∀t ≥ 0
W (x(t)) ≤W (x(0))
c1|x(t)|2A ≤W (x(t))

}
⇒ c1|x(t)|2A ≤W (x(0))

X bounded integral from c
∫ t

0
v 2(τ)dτ≤W (x(0))−W (x(t))≤W (x(0)) &

t → +∞

4E. P. Ryan, An integral invariance principle for differential inclusions with appli-
cations in adaptive control, SIAM Journal on Control and Optimization, 1998.
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Properties of W

2 lower boundedness: ∃c1 > 0: c1|x |2A ≤W (x) ∀x ∈ R3

3 decrease along trajectories: ∃c > 0: for each sol’
x = (σ, φ, v),
∀t2 ≥ t1 ≥ 0 W (x(t2))−W (x(t1)) ≤ −c

∫ t2
t1

v(t)2dt.
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Properties of W

2 lower boundedness: ∃c1 > 0: c1|x |2A ≤W (x) ∀x ∈ R3

3 decrease along trajectories: ∃c > 0: for each sol’
x = (σ, φ, v),
∀t2 ≥ t1 ≥ 0 W (x(t2))−W (x(t1)) ≤ −c

∫ t2
t1

v(t)2dt.



Outline Model Main result (1) Lyap’-like function Global attractivity Stability Main result (2) Conclusions

Proof of global attractivity

Fact: a generalized invariance principle

For x = (σ, φ, v), let `(x) = v 2. If x is a complete and bounded solution
satisfying

∫ +∞
0

`(x(t))dt < +∞, then x converges to the largest forward

invariant subset M of Σ := {x ∈ R3 : `(x) = 0} = {x : v = 0}.

The largest forward invariant subset M is A.

• v = 0 in M
• σ = 0 in M: by contradiction each x starting from v = 0 and σ 6= 0

causes a ramp of φ that eventually reaches |φ| > fc and drives v away
from zero, hence out of Σ

• |φ| ≤ fc : otherwise v would become nonzero again.σ̇φ̇
v̇

∈
 −kiv

σ − kpv
φ− kvv − fc SGN(v)
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Ingredients for stability

• Stability is proven by finding γ such that

|x(t)|A ≤ γ|x(0)|A, ∀t ≥ 0.

• The Lyapunov-like function W is not enough to prove stability because we
missed an upper bound

c1|x |2A ≤W (x) ≤�
��c2|x |2A.

If we had it, we could just write ∀t > 0 (using decrease along solutions)

c1|x(t)|2A ≤W (x(t)) ≤W (x(0)) ≤����
c2|x(0)|2A.

• However, we can build the two bounds for W in a region R and for an
auxiliary function Ŵ in a R̂.
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Properties of Ŵ (and W ) in regions R̂ (and R)

Properties of Ŵ

Define the auxiliary function Ŵ

Ŵ (x) := 1
2
k1σ

2 + 1
2
k2

(
dzfc (φ)

)2
+ k3|σ||v |+ 1

2
k4v

2,

and the subsets

R := {x : v(φ− sign(v)fc) ≥ 0}
R̂ := R3\R. v

φ

σ

−fc
fc

R̂

For suitable k1, . . . , k4 > 0 in Ŵ , there exist positive c1, c2, ĉ1, ĉ2 such that
c1|x |2A ≤W (x) ≤ c2|x |2A, ∀x ∈ R,

ĉ1|x |2A ≤ Ŵ (x) ≤ ĉ2|x |2A, ∀x ∈ R̂,

Ŵ ◦(x) := max
v∈∂Ŵ (x),f∈F (x)

〈v, f〉 ≤ 0, ∀x ∈ R̂,

where ∂Ŵ (x) is the generalized gradient5 of Ŵ at x and F is the set-valued
mapping of the differential inclusion.

V̇ = 〈∇V , f 〉 ≤ 0 for ẋ = f (x)
5F. H. Clarke, Optimization and nonsmooth analysis. SIAM, 1990.
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Proof of stability

We wanted to prove stability by finding γ such that

|x(t)|A ≤ γ|x(0)|A, ∀t ≥ 0.

We prove

|x(t)|A ≤
√

c2 ĉ2
c1 ĉ1
|x(0)|A, ∀t ≥ 0

by splitting into two cases:
Case (i): x(t) /∈ R, ∀t ≥ 0.
Case (ii): ∃t1 ≥ 0 such that x(t1) ∈ R.
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Proof of stability, Case (i)
Case (i): x(t) /∈ R, ∀t ≥ 0. Then for all t ≥ 0:

• x(t) ∈ R̂

• Ŵ ◦(x(t)) ≤ 0⇒ Ŵ (x(t)) ≤ Ŵ (x(0)) from 6

• ĉ1|x(t)|2A ≤ Ŵ (x(t))
≤ Ŵ (x(0)) ≤ ĉ2|x(0)|2A

• |x(t)|2A ≤ ĉ2
ĉ1
|x(0)|2A

• 1 ≤
√

c2/c1

• |x(t)|A ≤
√

c2 ĉ2
c1 ĉ1
|x(0)|A (claim)

Properties of Ŵ

W (x) := min
f∈fc SGN(v)

[
σ
φ−f
v

]T
P
[

σ
φ−f
v

]
Ŵ (x) := 1

2
k1σ

2 + 1
2
k2

(
dzfc (φ)

)2

+k3|σ||v |+ 1
2
k4v

2

v

φ

σ

−fc
fc

R̂

For suitable k1, . . . , k4 > 0 in Ŵ , there exist
positive c1, c2, ĉ1, ĉ2 such that

c1|x |2A ≤W (x) ≤ c2|x |2A, ∀x ∈ R
ĉ1|x |2A ≤ Ŵ (x) ≤ ĉ2|x |2A, ∀x ∈ R̂

Ŵ ◦(x) := maxv∈∂Ŵ (x),f∈F (x)〈v, f〉 ≤ 0, ∀x ∈ R̂

6A. R. Teel, L. Praly On Assigning the Derivative of a Disturbance Attenuation
Control Lyapunov Function. Mathematics of Control, Signals, and Systems,
2000
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Proof of stability, Case (ii)
Case (ii): ∃t1 ≥ 0 such that x(t1) ∈ R.

• Consider the smallest t1 ≥ 0 such that
x(t1) ∈ R. By cont’ty of sol’s
|x(t)|2A ≤ ĉ2

ĉ1
|x(0)|2A∀t ∈ [0, t1]⇒

|x(t1)|2A ≤ ĉ2
ĉ1
|x(0)|2A

|x(t)|2A ≤ c2 ĉ2
c1 ĉ1
|x(0)|2A, ∀t ∈ [0, t1]•

• At t = t1

W (x(t1)) ≤ c2|x(t1)|2A ⇒
W (x(t1)) ≤ c2

(
ĉ2
ĉ1
|x(0)|2A

)
• ∀t ≥ t1

c1|x(t)|2A ≤W (x(t)) ≤W (x(t1)) ⇒
c1|x(t)|2A ≤ c2

ĉ2
ĉ1
|x(0)|2A, ∀t ≥ t1•

|x(t)|A ≤
√

c2 ĉ2
c1 ĉ1
|x(0)|A• (claim)

Properties of Ŵ

W (x) := min
f∈fc SGN(v)

[
σ
φ−f
v

]T
P
[

σ
φ−f
v

]
Ŵ (x) := 1

2
k1σ

2 + 1
2
k2

(
dzfc (φ)

)2

+k3|σ||v |+ 1
2
k4v

2

For suitable k1, . . . , k4 > 0 in Ŵ , there exist
positive c1, c2, ĉ1, ĉ2 such that

c1|x |2A ≤W (x) ≤ c2|x |2A, ∀x ∈ R
ĉ1|x |2A ≤ Ŵ (x) ≤ ĉ2|x |2A, ∀x ∈ R̂

Ŵ ◦(x) := maxv∈∂Ŵ (x),f∈F (x)〈v, f〉 ≤ 0, ∀x ∈ R̂

Properties of W

2 c1|x |2A ≤W (x)

3 ∀t2 ≥ t1 ≥ 0 W (x(t2))−W (x(t1)) ≤− c
∫ t2
t1

v(t)2dt
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Proof of stability, Case (ii)
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σ
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positive c1, c2, ĉ1, ĉ2 such that
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Properties of W

2 c1|x |2A ≤W (x)

3 ∀t2 ≥ t1 ≥ 0 W (x(t2))−W (x(t1)) ≤− c
∫ t2
t1

v(t)2dt
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Proof of stability, Case (ii)
Case (ii): ∃t1 ≥ 0 such that x(t1) ∈ R.
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ĉ1
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Stronger AS from A compact and regularity of F̃

• We have just proved:

Proposition

Under our Assump’n, A is 1) globally attractive and 2) Lyap’ stable for

ż ∈
[ s

v
−ki ei−kps−kv v

]
− fc

[
0
0
1

]
SGN(v) =: F̃ (z).

• A is compact and (mild) regularity assumptions are satisfied: F̃ has a
closed graph, is loc’ly bounded in R3, and F̃ (z) is convex for every z ∈ R3.

• Define:

Definition

The compact set A is glob’ly KL AS if there exist a function β ∈ KL
such that all solutions satisfy |x(t)|A ≤ β(|x(0)|A, t) ∀t ≥ 0.

• Because of A compact and regularity, A is glob’ly KL AS7.

7R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: mod-
eling, stability, and robustness. Princeton University Press, 2012.
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Robustness result for generic perturbation

Proposition

Under our Assump’n, A is GAS for ż ∈
[ s

v
−ki ei−kps−kv v

]
−fc

[
0
0
1

]
SGN(v) =: F̃ (z).

• Perturb the dynamics: take ρ : R3 → R≥0 satisfying z /∈ A ⇒ ρ(z) > 0

ż ∈ coF̃ (z + ρ(z)B) + ρ(z)B (P)

• Define:

Definition

The compact set A is robustly glob’ly KL AS if there exist a cont’ous
function ρ as above such that A is glob’ly KL AS for (P).

• Because of A compact and regularity8:

Theorem

Under our Assumption, A is robustly globally KL asymptotically stable for the
differential inclusion.

8R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: mod-
eling, stability, and robustness. Princeton University Press, 2012.
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Specific perturbation and Stribeck effect

• For constant ρv ∈ R, perturb as: ż ∈
[ s

v
−ki ei−kps−kv v

]
− fc

[
0
0
1

]
SGNρv (v)

v

Stribeck

fcSGNρv (v)

|ρv|fcSGN(v)
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0
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s

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

v

t

• This perturbation is of interest because it includes the Stribeck effect.

• We have:

Corollary about Stribeck effect

Under our Assumption, the attractor A is globally input-to-state stable for the
perturbed dynamics from input ρv .

• Then, the Stribeck effect (Ô persistent oscillations, hunting) produces
solutions that are (graceful) degradations in the ISS sense of the AS
unperturbed solutions.
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Conclusions

So far:

• We characterized the properties of a differential inclusion model of a the
feedback interconnection of a sliding mass with a PID controller under
Coulomb friction.

• We proved global asymptotic stability of the largest set of closed-loop
equilibria.

• Due to the regularity of the differential inclusion, global asymptotic
stability was intrinsically robust.

• We proved the ISS of a specific perturbation including the Stribeck effect.

Future work:

• Address the case of static friction larger than Coulomb.

• Propose for that setting hybrid compensation schemes.
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