Outline	Model		Lyap'-like function	Global attractivity		Conclusions
		000000	0000000000		00000	

Global asymptotic stability of a PID control system with Coulomb friction

Andrea Bisoffi

University of Trento Department of Industrial Engineering Doctoral School in Materials, Mechatronics and Systems Engineering

Joint work with Mauro Da Lio, Andrew R. Teel, Luca Zaccarian

Padova, November 25, 2016

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity 00	Stability 00000	Main result (2) 000	Conclusions O
Outl	ine						

- 2 Main result (1)
- Change of coordinate and Lyapunov-like function

Global attractivity

6 Main result (2)

Conclusions

Outline	Model	Main result (1) 000000	Lyap'-like function 0000000000	Global attractivity 00	Stability 00000	Main result (2) 000	Conclusions O
Outl	ine						

Problem description and model

- 2 Main result (1)
- 3 Change of coordinate and Lyapunov-like function
- Global attractivity

6 Main result (2)

7 Conclusions

Outline	Model ●○○	Main result (1) 000000	Lyap'-like function	Global attractivity OO	Stability 00000	Main result (2) 000	Conclusions O
Mod	lel des	scription					
fr fo	ve iction ff $\mathbf{s}^{o} = 0$ positio j	locity v action mass m u_{PID} f_f f_f f_f f_f f_f f_f f_f	$egin{aligned} & u_{ extsf{PID}}(t) := -ar{k}_{I} \ &= -ar{k}_{I} \ &= -ar{k}_{I} \ & u_{ extsf{PID}}, v) := egin{cases} egin{aligned} & ar{f}_{c} & ar{s} \ & ar{s} \ & ar{f}_{c} & ar{s} \ & ar{s} \ & ar{f}_{c} & ar{s} \ & ar{s} $	$ar{k}_{ ho} \mathbf{s}(t) - ar{k}_i \int_0^t \delta_0^{rs}(t) - ar{k}_i e_i(t)$ $ar{k}_i e_i(t) + lpha_v \mathbf{v},$ $ar{k}_i e_i(t) + \alpha_v \mathbf{v},$ $ar{k}_i e_i(t) + ar{k}_i e_i(t)$	$s(au)d au - \overline{k}_d v(t),$ if $v \neq 0$ if $v = 0, $ if $v = 0, $	$ar{k}_{d}rac{ds(t)}{dt}$ $u_{ ext{PID}} < ar{f}_{c}$ $u_{ ext{PID}} \geq ar{f}_{c}$	
			$m\dot{v} = u_{PID}$	$-f_f(u_{\text{PID}},v)$			
With	$u := \frac{u_{\rm F}}{2}$	$\frac{\alpha_{VV}}{m}$, (k_p, k_p)	$(k_v, k_i) := \left(\frac{\bar{k}_p}{m}, \frac{\bar{k}_d}{m}\right)$	$\left(\frac{+\alpha_v}{m}, \frac{\bar{k}_i}{m}\right), f_c :=$			
		$\dot{e}_i = s$					
		$\dot{s} = v$					
			($(1 \leq \epsilon)$		

$$\dot{v} = \begin{cases} u - f_c & \text{if } v > 0 \text{ or } (v = 0, u \ge f_c) \\ 0 & \text{if } (v = 0, |u| < f_c) \\ u + f_c & \text{if } v < 0 \text{ or } (v = 0, u \le -f_c) \end{cases}$$
$$u = -k_p s - k_v v - k_i e_i,$$

Physical parameters \bar{k}_p , \bar{k}_i , \bar{k}_d , \bar{f}_c vs **normalized** parameters k_p , k_i , k_d , f_c . 4/47

Outline	Model ●○○	Main result (1) 000000	Lyap'-like function	Global attractivity 00	Stability 00000	Main result (2) 000	Conclusions O
Mod	el des	scription					
fri foi	vent for the second se	locity v control action u_{PID} f_f f_f f_f v	$egin{aligned} & u_{ extsf{PID}}(t) := -ar{k} \ &= -ar{k} \ &= -ar{k} \ & u_{ extsf{PID}}, v) := egin{cases} egin{aligned} & ar{f}_c \ s \ & u_{ extsf{PID}} \ & ar{f}_c \ s \end{aligned}$	$ar{k}_{P}s(t) - ar{k}_i \int_0^t ar{k}_{P}s(t) - ar{k}_i e_i(t)$ $\operatorname{ign}(v) + lpha_v v,$ $\overline{k}_{P}v,$ $\overline{k}_i = (t)$	$s(\tau)d\tau - k_d v(t),$ $-\bar{k}_d v(t),$ if $v \neq 0$ if $v = 0, $ if $v = 0, $	$ar{k}_{d}rac{ds(t)}{dt}$ $ar{u}_{ ext{PID}} < ar{f}_{c}$ $ar{u}_{ ext{PID}} \geq ar{f}_{c}$	
			$m\dot{v}=u_{ m PIC}$	$-f_f(u_{\text{PID}},v)$			
With	$u := \frac{u_{\rm F}}{2}$	$\frac{1-\alpha_v v}{m}$, (k_p, k)	$(k_v, k_i) := \left(\frac{\bar{k}_p}{m}, \frac{\bar{k}_a}{m}\right)$	$\left(\frac{1+\alpha_v}{m}, \frac{\bar{k}_i}{m}\right)$, $f_c :=$	$\frac{\bar{f}_c}{m}$	$u_{\rm PID} = m u$ for v	v = 0
		$\dot{e}_i = s$	5				
		$\dot{s} = v$					
		$\dot{v} = \langle$	$\begin{cases} u - f_c & \text{if } v \\ 0 & \text{if } (v) \end{cases}$	> 0 or $(v = 0, u < f_c)$	$u \geq f_c$)		

$$u+f_c$$
 if $v < 0$ or $(v = 0, u \le -f_c)$

$$u=-k_ps-k_vv-k_ie_i,$$

Physical parameters \bar{k}_p , \bar{k}_i , \bar{k}_d , \bar{f}_c vs **normalized** parameters k_p , k_i , k_d , f_c .

¹R. I. Leine and N. van de Wouw, *Stability and convergence of mechanical systems with unilateral constraints.* Springer Science & Business Media, 2007.

¹R. I. Leine and N. van de Wouw, *Stability and convergence of mechanical systems with unilateral constraints.* Springer Science & Business Media, 2007.

- The physical model is intuitive, but its discontinuous right hand side makes it hard to prove existence of solutions for each initial conditions and stability properties, whereas the differential inclusion guarantees structurally existence of solutions and lets us adopt Lyapunov tools.
- O No artificial solutions are introduced by the differential inclusion, for which the next Lemma establishes uniqueness of solutions. The unique solution to the diff' incl' must be necessarily the unique sol' to the physical model because the diff' incl' allows more selections for v than the phys' model.

Lemma (solutions are unique and complete)

For any initial condition $z(0) \in \mathbb{R}^3$, the differential inclusion has a unique solution defined for all $t \ge 0$.

Outline	Outline	Model 000	Main result (1)	Lyap'-like function	Global attractivity OO	Stability 00000	Main result (2) 000	Conclusions O
	Out	ine						

2 Main result (1)

Change of coordinate and Lyapunov-like function

4 Global attractivity

6 Main result (2)

7 Conclusions

Outline	Model 000	Main result (1) ●○○○○○	Lyap'-like function	Global attractivity 00	Stability 00000	Main result (2) 000	Conclusions O
The	stanc	ling assu	mption				

System:

$$\dot{z} = \begin{bmatrix} \dot{e}_i \\ \dot{s} \\ \dot{v} \end{bmatrix} \in \begin{bmatrix} s \\ -k_i e_i - k_p s - k_v v - f_c SGN(v) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k_i & -k_p & -k_v \end{bmatrix} z - \begin{bmatrix} 0 \\ 0 \\ f_c \end{bmatrix} SGN(v)$$

Assumption

In the absence of friction ($f_c = 0$), the origin is globally asymptotically stable (GAS). Equivalently,

 $k_i > 0, \ k_p > 0, \ k_v k_p > k_i.$

• For $z = (e_i, s, v)$ and

$$\dot{e}_i = s$$

 $\dot{s} = v$
 $\dot{v} \in -k_i e_i - k_p s - k_v v - f_c SGN(v)$

the set of equilibria making $\dot{z} = 0$ are s = v = 0 and $|e_i| \le \frac{f_c}{k_i}$.

Denote the corresponding set

$$\mathcal{A} := \left\{ (e_i, s, v) : s = 0, v = 0, e_i \in \left[-\frac{f_c}{k_i}, \frac{f_c}{k_i} \right] \right\}.$$

• Our first main result:

Proposition

Under our Assumption, ${\cal A}$ is 1) globally attractive and 2) Lyapunov stable for the differential inclusion.

• $s^{o} = 0$ for simplicity, but the result is easily generalized to piecewise constant setpoints.

12 / 47

Disc	ussion	about	result and	literature			
	000	000000	0000000000	00	00000	000	
Outline	Model	Main result (1)	Lyap'-like function	Global attractivity	Stability	Main result (2)	Conclusions

The interest in the dynamical properties of friction had its peak in the 1990's.

- modeling direction
 - Dahl model:

P. R. Dahl, A solid friction model. Tech. Rep. of The Aerospace Corporation El Segundo CA, 1968.

models by Bliman and Sorine:

P.-A. Bliman and M. Sorine, *Easy-to-use realistic dry friction models for automatic control*. Proc. of 3rd European Control Conf., 1995.

LuGre model:

C. Canudas-de-Wit, H. Olsson, K. J. Åström, and P. Lischinsky, *A new model for control of systems with friction*. IEEE Trans. Autom. Control, 1995.

K. J. Åström and C. Canudas-de-Wit, *Revisiting the LuGre friction model*. Control Systems, IEEE, 2008.

N. Barahanov and R. Ortega, *Necessary and sufficient conditions for passivity of the LuGre friction model.* IEEE Trans. Autom. Control, 2000.

Leuven model:

J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, *An integrated friction model structure with improved presliding behavior for accurate friction compensation*. IEEE Trans. Autom. Control, 2000.

Outline Model Main result (1) Lyap-like function Global attractivity Stability Main result (2) Conclusions Obscussion about literature and result Obscussion Obscuscusion Obscussion <

- use of set-valued mapping for the friction force, and hence differential inclusions
 - uncontrolled multi-degree-of-freedom mechanical systems:
 N. van de Wouw and R. I. Leine, Attractivity of equilibrium sets of systems with dry friction. Nonlinear Dynamics, 2004.
 - PD controlled 1 d.o.f. system:
 - D. Putra, H. Nijmeijer, and N. van de Wouw, *Analysis of undercompensation and overcompensation of friction in 1 DOF mechanical systems*. Automatica, 2007.
 - combination of set-valued friction laws and Lyapunov tools:

R. I. Leine and N. van de Wouw, *Stability and convergence of mechanical systems with unilateral constraints.* Springer Science & Business Media, 2007.

Outline Model Main result (1) Lyap'-like function Global attractivity Stability Main result (2) Conclusions Discussion about literature and result

- for the same setting (point mass + PID controller + Coulomb and viscous friction) it was proven that no stick-slip limit cycle (so-called hunting) exist:
 - B. Armstrong-Hélouvry and B. Amin, PID control in the presence of static friction. Tech. Rep. of Dept. of Elec. Eng. and Computer Science, UW-Milwaukee, 1993.
 B. Armstrong-Hélouvry and B. Amin, PID control in the presence of static friction: exact and describing function analysis. Amer. Control Conf., 1994.
 B. Armstrong and B. Amin, PID control in the presence of static friction: A comparison of algebraic and describing function analysis. Automatica, 1996.
- the contributions of this work are
 - \blacktriangleright the proof of GAS of ${\cal A}$
 - ► GAS of A + model regularity \Rightarrow robustness of AS a perturbation of interest is an inflation of ρ_v of SGN; A is globally input-to-state stability (ISS) from ρ_v ; more gen' friction (Stribeck effect) cause gradual deterioration in ISS sense.

Main result (1)

Outline	000	000000000000000000000000000000000000000	00000	000	O
Outl	ine				

2 Main result (1)

Change of coordinate and Lyapunov-like function

Global attractivity

5 Stability

6 Main result (2)

7 Conclusions

000 000000 0000000 00 00000 000 0	Outline	Model		Lyap'-like function	Global attractivity			Conclusions
		000	000000	000000000	00	00000	000	0

In order to prove global attractivity and stability:

- we perform a change of coordinate
- 2 we define a Lyapunov-like function.

	000	000000		00	00000	000	O
Chan	ge of	coordina	tes				
	 Apply 	change of co	ordinates				
	σ	$:= -k_i s$					

$$\phi := -k_i e_i - k_p s \quad \text{to} \quad \dot{z} := \begin{bmatrix} \dot{e}_i \\ \dot{s} \\ \dot{v} \end{bmatrix} \in \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k_i & -k_p & -k_v \end{bmatrix} z - \begin{bmatrix} 0 \\ 0 \\ f_c \end{bmatrix} \text{SGN}(v)$$
$$v := v$$

• ... and get dynamics

$$\dot{x} := \begin{bmatrix} \dot{\sigma} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} \in \begin{bmatrix} -k_i v \\ \sigma - k_p v \\ \phi - k_v v - f_c \operatorname{SGN}(v) \end{bmatrix} = \begin{bmatrix} 0 & 0 & -k_i \\ 1 & 0 & -k_p \\ 0 & 1 & -k_v \end{bmatrix} \begin{bmatrix} \sigma \\ \phi \\ v \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ f_c \end{bmatrix} \operatorname{SGN}(v)$$
$$= Ax - b \operatorname{SGN}(v) =: F(x)$$

• Attractor

$$\mathcal{A} = \{(\sigma, \phi, \mathbf{v}) \colon |\phi| \leq f_c, \sigma = \mathbf{0}, \mathbf{v} = \mathbf{0}\}$$

• Distance from attractor

$$|x|_{\mathcal{A}}^2 := \left(\inf_{y \in \mathcal{A}} |x - y|\right)^2 = \sigma^2 + v^2 + \mathrm{dz}_{f_c}(\phi)^2$$

Outline	Model	Main result (1)	Lyap'-like function	Global attractivity	Stability	Main result (2)	Conclusions
			0000000000				
Lvar	NUDOV	like fund	tion				

$$W(x) := \begin{bmatrix} \sigma \\ v \end{bmatrix}^T \begin{bmatrix} \frac{k_v}{k_i} & -1 \\ -1 & k_p \end{bmatrix} \begin{bmatrix} \sigma \\ v \end{bmatrix} + \min_{f \in f_c \operatorname{SGN}(v)} |\phi - f|^2$$
$$= \min_{f \in f_c \operatorname{SGN}(v)} \begin{bmatrix} \sigma \\ \phi^{-f} \\ v \end{bmatrix}^T \begin{bmatrix} \frac{k_v}{k_i} & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & k_p \end{bmatrix} \begin{bmatrix} \sigma \\ \phi^{-f} \\ v \end{bmatrix} = \min_{f \in f_c \operatorname{SGN}(v)} \begin{bmatrix} \sigma \\ \phi^{-f} \\ v \end{bmatrix}^T P \begin{bmatrix} \sigma \\ \phi^{-f} \\ v \end{bmatrix}$$

complex conjugate roots

three distinct real roots

1/

Immediate to check: \triangleright W(x) = 0 for all $x \in A$ \triangleright W is not continuous for $\{(\sigma_i, \phi_i, v_i)\}_{i=0}^{+\infty} = \{(0, 0, (\frac{1}{2})^i\}_{i=0}^{+\infty}, W \text{ converges to } f_c^2 \text{ but } W(0) = 0$

The Lyapunov-like function W is:

- Iower semicontinuous (lsc)
- Over bounded:

$$\exists c_1 > 0: c_1 |x|_{\mathcal{A}}^2 \leq W(x) \quad \forall x \in \mathbb{R}^3$$

Output decreasing along trajectories:

 $\begin{aligned} \exists c > 0: \text{ for each sol' } x &= (\sigma, \phi, v) \text{ to the diff' incl'}, \\ \forall t_2 \geq t_1 \geq 0 \quad W(x(t_2)) - W(x(t_1)) \leq -c \int_{t_1}^{t_2} v(t)^2 dt. \end{aligned}$

The Lyapunov-like function W is:

• $W: \mathbb{R}^n \to \mathbb{R}$ is lower semicontinuous if

$$\liminf_{x\to x_0} W(x) \geq W(x_0)$$

and
$$\liminf_{x \to x_0} W(x) = \lim_{\epsilon \to 0} \left(\inf \left\{ W(x) \colon x \in \mathbb{B}(x_0, \epsilon) \setminus \{x_0\} \right\} \right)$$
$$= \sup_{\epsilon > 0} \left(\inf \left\{ W(x) \colon x \in \mathbb{B}(x_0, \epsilon) \setminus \{x_0\} \right\} \right)$$

• the proof is merely technical

for $\{(\sigma_i, \phi_i, v_i)\}_{i=0}^{+\infty} = \{(0, 0, (\frac{1}{2})^i\}_{i=0}^{+\infty}, W \text{ converges to } f_c^2 \text{ but } W(0) = 0$

Outline	Model	Main result (1)	Lyap'-like function	Global attractivity	Stability	Main result (2)	Conclusions
	000	000000	○○○○○●○○○○	00	00000	000	O
Lowe	er boi	undednes	s of W				

The Lyapunov-like function W is:

Iower bounded:

$$\exists c_1 > 0 \colon c_1 |x|^2_{\mathcal{A}} \leq W(x) \quad orall x \in \mathbb{R}^3$$

With $|x|^2_{\mathcal{A}} := \left(\inf_{y \in \mathcal{A}} |x - y|\right)^2 = \sigma^2 + v^2 + dz_{f_c}(\phi)^2$,

$$\frac{=:c_1}{\min\{\mathfrak{g},1\}} |\mathbf{x}|_{\mathcal{A}}^2 \leq \frac{=dz_{f_c}(\phi)^2}{\prod_{f\in[-f_c,f_c]} (\phi-f)^2 + \mathfrak{g}(\sigma^2 + v^2)} \leq \frac{\min_{f\in f_c} \operatorname{SGN}(v)}{\left|\phi-f\right|^2 + \left[\sigma \atop v\right]^T \left[\frac{k_v}{k_i} - 1 \atop -1 \quad k_p\right]} \left[\sigma \atop v\right] =: W(x)$$

Outline	Model	Main result (1)	Lyap'-like function	Global attractivity	Stability	Main result (2)	Conclusions
	000	000000	○○○○○●○○○	OO	00000	000	O
Decr	ease	of W					

The Lyapunov-like function W is: **3** decreasing along trajectories: $\exists c > 0$: for each sol' $x = (\sigma, \phi, v)$ to the diff' incl', $\forall t_2 \ge t_1 \ge 0 \quad W(x(t_2)) - W(x(t_1)) \le -c \int_{t_1}^{t_2} v(t)^2 dt.$

 $\mathsf{Claim} \to \mathsf{Fact} \to \texttt{3}$

Claim

There exists c > 0 such that, for each initial condition $(\bar{\sigma}, \bar{\phi}, \bar{\nu})$, one can select $k \in \{-1, 0, 1\}$ and T > 0 such that:

• the solution to $\dot{\xi} = f_k(\xi), \ \bar{\xi}_k = (\bar{\sigma}, \bar{\phi}, \bar{v})$ satisfies

$$\xi(t) = x(t) \quad \forall t \in [0, T]$$

2 the function W_k satisfies

 $W(\xi(t)) = W_k(\xi(t)) \text{ and } \frac{d}{dt} W_k(\xi(t)) \leq -c |\xi_v(t)|^2 \quad \forall t \in [0, T].$

- $D_+W(x(\cdot))$ coincides with right derivative
- right derivative upper bounded by $-cv^2$.

^{25 / 47}

- on nonzero closed interv
- x and ξ coincide
- W and W_k coincide
- $W(x(\cdot))$ differentiable from the right
- $D_+W(x(\cdot))$ coincides with right derivative
- right derivative upper bounded by $-cv^2$

 the solution to ξ = f_k(ξ), ξ_k = (σ̄, φ̄, v̄) satisfies ∀t ∈ [0, T] ξ(t) = x(t).
 W_k satisfies ∀t ∈ [0, T] W(ξ(t))= W_k(ξ(t)) = W_k(ξ(t)) ^d/_{dt} W_k(ξ(t))≤ -c|ξ_v(t)|²

²J. W. Hagood and B. S. Thomson, *Recovering a function from a Dini derivative*, The American Mathematical Monthly, 2006.

lower right Dini derivative of h: $D_+h(t) := \liminf_{\epsilon \to 0^+} \frac{h(t+\epsilon) - h(t)}{\epsilon}$

) \checkmark because the composition of a lsc and a continuous function is lsc

) \checkmark because solutions are absolutely continuous

- Ifrom the claim: for each (ō, ō, v̄) & on nonzero closed intervals
 - x and ξ coincide
 - W and W_k coincide
 - $W(x(\cdot))$ differentiable from the right
 - $D_+W(x(\cdot))$ coincides with right derivative
 - right derivative upper bounded by $-cv^2$.

Claim

• the solution to
$$\dot{\xi} = f_k(\xi)$$
,
 $\bar{\xi}_k = (\bar{\sigma}, \bar{\phi}, \bar{v})$ satisfies
 $\forall t \in [0, T] \ \xi(t) = x(t)$.

 $W(\xi(t)) = W_k(\xi(t))$

²J. W. Hagood and B. S. Thomson, *Recovering a function from a Dini derivative*, The American Mathematical Monthly, 2006.

The Lyapunov-like function W is: **o** decreasing along trajectories: $\exists c > 0$: $\forall \text{sol}' \ x = (\sigma, \phi, v)$ to the diff' incl', $\forall t_2 \ge t_1 \ge 0 \quad W(x(t_2)) - W(x(t_1)) \le -c \int_{t_1}^{t_2} v(t)^2 dt.$

In the discussion about literature, we mentioned:

 for the same setting (point mass + PID + Coulomb & viscous friction) it was proven that no stick-slip limit cycle (hunting) exist³ because |σ(t_{i+1})| < |σ(t_i)|

³B. Armstrong and B. Amin, *PID control in the presence of static friction: A comparison of algebraic and describing function analysis*, Automatica, 1996.

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity	Stability 00000	Main result (2) 000	Conclusions O
Outl	ine						

- Problem description and model
- 2 Main result (1)
 - 3 Change of coordinate and Lyapunov-like function

Global attractivity

6 Main result (2)

7 Conclusions

Fact: a generalized invariance principle⁴

For $x = (\sigma, \phi, v)$, let $\ell(x) = v^2$. If x is a complete and bounded solution satisfying $\int_0^{+\infty} \ell(x(t))dt < +\infty$, then x converges to the largest forward invariant subset \mathcal{M} of $\Sigma := \{x \in \mathbb{R}^3 : \ell(x) = 0\} = \{x : v = 0\}.$

/ all x's are complete from lemma uniqueness

- $\checkmark \text{ all } x\text{'s are bounded: } \forall t \ge 0 \quad \underbrace{W(x(t)) \le W(x(0))}_{c_1|x(t)|_{\mathcal{A}}^2} \le W(x(t)) \\ \Rightarrow c_1|x(t)|_{\mathcal{A}}^2 \le W(x(0))$
- \checkmark bounded integral from $c \int_0^t v^2(au) d au \leq W(x(0)) W(x(t)) \leq W(x(0))$ &

Properties of

② lower boundedness: $\exists c_1 > 0 \colon c_1 |x|^2_{\mathcal{A}} \leq W(x) \quad \forall x \in \mathbb{R}^3$

Output decrease along trajectories: $\exists c > 0$: for each sol' $x = (\sigma, \phi, v),$ $\forall t_2 \ge t_1 \ge 0$ $W(x(t_2)) - W(x(t_1)) \le -c \int_{t_1}^{t_2} v(t)^2 dt$

⁴E. P. Ryan, An integral invariance principle for differential inclusions with applications in adaptive control, SIAM Journal on Control and Optimization, 1998.

Fact: a generalized invariance principle⁴

For $x = (\sigma, \phi, v)$, let $\ell(x) = v^2$. If x is a complete and bounded solution satisfying $\int_0^{+\infty} \ell(x(t)) dt < +\infty$, then x converges to the largest forward invariant subset \mathcal{M} of $\Sigma := \{x \in \mathbb{R}^3 : \ell(x) = 0\} = \{x : v = 0\}.$

\checkmark all x's are complete from lemma uniqueness

- \checkmark all x's are bounded: $\forall t \ge 0 \quad \frac{W(x(t)) \le W(x(0))}{c_1 |x(t)|^2_{\mathcal{A}} \le W(x(t))} \Rightarrow c_1 |x(t)|^2_{\mathcal{A}} \le W(x(0))$
- \checkmark bounded integral from $c \int_0^t v^2(\tau) d\tau \le W(x(0)) W(x(t)) \le W(x(0))$ &

 $t \to +\infty$

Properties of W

2 lower boundedness: $\exists c_1 > 0 \colon c_1 |x|^2_{\mathcal{A}} \leq W(x) \quad \forall x \in \mathbb{R}^3$

3 decrease along trajectories: $\exists c > 0$: for each sol' $x = (\sigma, \phi, v),$ $\forall t_2 \ge t_1 \ge 0$ $W(x(t_2)) - W(x(t_1)) \le -c \int_{t_1}^{t_2} v(t)^2 dt.$

⁴E. P. Ryan, An integral invariance principle for differential inclusions with applications in adaptive control, SIAM Journal on Control and Optimization, 1998.

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity ○●	Stability 00000	Main result (2) 000	Conclusions O
Proc	of of g	global att	ractivity				

Fact: a generalized invariance principle

For $x = (\sigma, \phi, v)$, let $\ell(x) = v^2$. If x is a complete and bounded solution satisfying $\int_0^{+\infty} \ell(x(t))dt < +\infty$, then x converges to the largest forward invariant subset \mathcal{M} of $\Sigma := \{x \in \mathbb{R}^3 : \ell(x) = 0\} = \{x : v = 0\}.$

The largest forward invariant subset \mathcal{M} is \mathcal{A} .

- v = 0 in \mathcal{M}
- $\sigma = 0$ in \mathcal{M} : by contradiction each x starting from v = 0 and $\sigma \neq 0$ causes a ramp of ϕ that eventually reaches $|\phi| > f_c$ and drives v away from zero, hence out of Σ
- $|\phi| \leq f_c$: otherwise v would become nonzero again.

$$\begin{bmatrix} \dot{\sigma} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} \in \begin{bmatrix} -k_i v \\ \sigma - k_p v \\ \phi - k_v v - f_c \operatorname{SGN}(v) \end{bmatrix}$$

Outli	ne						
Outline	Model	Main result (1)	Lyap'-like function	Global attractivity	Stability	Main result (2)	Conclusions
	000	000000	0000000000	00	00000	000	O

- Problem description and model
- 2 Main result (1)
- 3 Change of coordinate and Lyapunov-like function
- Global attractivity

6 Main result (2)

7 Conclusions

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity 00	Stability •••••	Main result (2) 000	Conclusions O
Ingre	dient	s for stal	oility				

- Stability is proven by finding γ such that

$$|x(t)|_{\mathcal{A}} \leq \gamma |x(0)|_{\mathcal{A}}, \ \forall t \geq 0.$$

• The Lyapunov-like function ${\boldsymbol W}$ is not enough to prove stability because we missed an upper bound

$$c_1|x|^2_{\mathcal{A}} \leq W(x) \leq c_2|x|^2_{\mathcal{A}}.$$

If we had it, we could just write $\forall t > 0$ (using decrease along solutions)

$$|c_1|x(t)|^2_{\mathcal{A}} \leq W(x(t)) \leq W(x(0)) \leq c_2|x(0)|^2_{\mathcal{A}}.$$

• However, we can build the two bounds for W in a region R and for an auxiliary function \hat{W} in a \hat{R} .

 $V = \langle \nabla V, f \rangle \leq 0$ for $\dot{x} = f(x)$ ⁵F. H. Clarke, *Optimization and nonsmooth analysis.* SIAM, 1990.

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity 00	Stability 00000	Main result (2) 000	Conclusions O
Proo	ofofs	stability					

We wanted to prove stability by finding $\boldsymbol{\gamma}$ such that

$$|x(t)|_{\mathcal{A}} \leq \gamma |x(0)|_{\mathcal{A}}, \ \forall t \geq 0.$$

We prove

$$|x(t)|_{\mathcal{A}} \leq \sqrt{rac{c_2\hat{c}_2}{c_1\hat{c}_1}}|x(0)|_{\mathcal{A}}, \ \forall t \geq 0$$

by splitting into two cases: Case (i): $x(t) \notin R, \forall t \ge 0$. Case (ii): $\exists t_1 \ge 0$ such that $x(t_1) \in R$.

- $\hat{c}_1|x(t)|^2_{\mathcal{A}} \leq \hat{W}(x(t))$ $\leq \hat{W}(x(0)) \leq \hat{c}_2|x(0)|^2_{\mathcal{A}}$
- $|x(t)|^2_{\mathcal{A}} \leq \frac{\hat{c}_2}{\hat{c}_1} |x(0)|^2_{\mathcal{A}}$
- $1 \leq \sqrt{c_2/c_1}$
- $|x(t)|_{\mathcal{A}} \leq \sqrt{rac{c_2\hat{c}_2}{c_1\hat{c}_1}}|x(0)|_{\mathcal{A}}$ (claim)

$$W(x) := \min_{f \in f_c SGN(v)} \left[\phi_v^{\sigma}_{-f} \right]^T P \left[\phi_v^{\sigma}_{-f} \right]$$
$$\hat{W}(x) := \frac{1}{2} k_1 \sigma^2 + \frac{1}{2} k_2 (\operatorname{dz}_{f_c}(\phi))^2$$
$$+ k_3 |\sigma| |v| + \frac{1}{2} k_4 v^2$$
$$\overbrace{R}^{\phi}$$
For suitable $k_1, \dots, k_4 > 0$ in \hat{W} , there exist positive $c_1, c_2, \hat{c}_1, \hat{c}_2$ such that $c_1 |x|_{\mathcal{A}}^2 \le W(x) \le c_2 |x|_{\mathcal{A}}^2, \forall x \in \hat{R}$ $\hat{c}_1 |x|_{\mathcal{A}}^2 \le \hat{W}(x) \le \hat{c}_2 |x|_{\mathcal{A}}^2, \forall x \in \hat{R}$ $\hat{V}^\circ(x) := \max_{v \in \partial \hat{W}(x), f \in F(x)} \langle v, f \rangle \le 0, \forall x \in \hat{R}$

⁶A. R. Teel, L. Praly On Assigning the Derivative of a Disturbance Attenuation Control Lyapunov Function. Mathematics of Control, Signals, and Systems, 2000

Proo	of of s	stability.	Case (ii)				
Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity 00	Stability	Main result (2) 000	Conclusions O

Case (ii): $\exists t_1 \ge 0$ such that $x(t_1) \in R$.

- Consider the smallest $t_1 \ge 0$ such that $x(t_1) \in R$. By cont'ty of sol's $|x(t)|_{\mathcal{A}}^2 \le \frac{\hat{c}_2}{\hat{c}_1}|x(0)|_{\mathcal{A}}^2 \forall t \in [0, t_1] \Rightarrow$ $|x(t_1)|_{\mathcal{A}}^2 \le \frac{\hat{c}_2}{\hat{c}_1}|x(0)|_{\mathcal{A}}^2$ $|x(t)|_{\mathcal{A}}^2 \le \frac{o_2\hat{c}_2}{c_1\hat{c}_1}|x(0)|_{\mathcal{A}}^2, \ \forall t \in [0, t_1]$ •
- At $t = t_1$ $W(x(t_1)) \le c_2 |x(t_1)|_{\mathcal{A}}^2 \Rightarrow$ $W(x(t_1)) \le c_2 (\frac{\hat{c}_2}{\hat{c}_1} |x(0)|_{\mathcal{A}}^2)$

• $\forall t \geq t_1$ $c_1|x(t)|^2_{\mathcal{A}} \leq W(x(t)) \leq W(x(t_1)) \Rightarrow$ $c_1|x(t)|^2_{\mathcal{A}} \leq c_2 \frac{\hat{c}_2}{\hat{c}_1}|x(0)|^2_{\mathcal{A}}, \forall t \geq t_1 \bullet$

 $|x(t)|_{\mathcal{A}} \leq \sqrt{\frac{c_2 \hat{c}_2}{c_1 \hat{c}_1}} |x(0)|_{\mathcal{A}} \bullet \text{ (claim)}$

Properties of \hat{W}

$$\begin{split} W(\mathbf{x}) &:= \min_{f \in f_c \text{ SGN}(v)} \left[\begin{array}{c} \phi_{-f}^{\sigma} \\ v \end{array} \right]^T P \left[\begin{array}{c} \phi_{-f}^{\sigma} \\ \phi_{-f} \end{array} \right] \\ \hat{W}(\mathbf{x}) &:= \frac{1}{2} k_1 \sigma^2 + \frac{1}{2} k_2 (\text{dz}_{f_c}(\phi))^2 \\ + k_3 |\sigma| |v| + \frac{1}{2} k_4 v^2 \end{split}$$
For suitable $k_1, \dots, k_4 > 0$ in \hat{W} , there exist positive $c_1, c_2, \hat{c}_1, \hat{c}_2$ such that $c_1 |\mathbf{x}|_{\mathcal{A}}^2 \leq W(\mathbf{x}) \leq c_2 |\mathbf{x}|_{\mathcal{A}}^2, \forall \mathbf{x} \in R \\ \hat{c}_1 |\mathbf{x}|_{\mathcal{A}}^2 \leq \hat{W}(\mathbf{x}) \leq \hat{c}_2 |\mathbf{x}|_{\mathcal{A}}^2, \forall \mathbf{x} \in \hat{R} \\ \hat{c}_1 |\mathbf{x}|_{\mathcal{A}}^2 \leq \hat{W}(\mathbf{x}) \leq \hat{c}_2 |\mathbf{x}|_{\mathcal{A}}^2, \forall \mathbf{x} \in \hat{R} \\ \hat{W}^{\circ}(\mathbf{x}) &:= \max_{v \in \partial \hat{W}(\mathbf{x}), f \in F(\mathbf{x})} \langle v, f \rangle \leq 0, \forall \mathbf{x} \in \hat{R} \end{split}$

Properties of *W*

 $c_1 |x|^2_{\mathcal{A}} \leq W(x)$

3 $\forall t_2 \ge t_1 \ge 0$ $W(x(t_2)) - W(x(t_1)) \le - c \int_{t_1}^{t_2} v(t)^2 dt$

Case (ii): $\exists t_1 \geq 0$ such that $x(t_1) \in R$.

- Consider the smallest $t_1 \ge 0$ such that $x(t_1) \in R$. By cont'ty of sol's $|x(t)|_{\mathcal{A}}^2 \le \frac{\hat{c}_2}{\hat{c}_1} |x(0)|_{\mathcal{A}}^2 \forall t \in [0, t_1] \Rightarrow$ $|x(t_1)|_{\mathcal{A}}^2 \le \frac{\hat{c}_2}{\hat{c}_1} |x(0)|_{\mathcal{A}}^2$ $|x(t)|_{\mathcal{A}}^2 \le \frac{c_2\hat{c}_2}{c_1\hat{c}_1} |x(0)|_{\mathcal{A}}^2, \forall t \in [0, t_1]$ • • At $t = t_1$
 - $\begin{array}{l} \text{At } t = t_1 \\ W(x(t_1)) \leq c_2 |x(t_1)|^2_{\mathcal{A}} \Rightarrow \\ W(x(t_1)) \leq c_2 \left(\frac{\hat{c}_2}{\hat{c}_1} |x(0)|^2_{\mathcal{A}}\right) \end{array}$

• $\forall t \geq t_1$ $c_1|x(t)|^2_{\mathcal{A}} \leq W(x(t)) \leq W(x(t_1)) \Rightarrow$ $c_1|x(t)|^2_{\mathcal{A}} \leq c_2 \frac{\hat{c}_2}{\hat{c}_1}|x(0)|^2_{\mathcal{A}}, \forall t \geq t_1 \bullet$

 $|x(t)|_{\mathcal{A}} \leq \sqrt{\frac{c_2 \hat{c}_2}{c_1 \hat{c}_1}} |x(0)|_{\mathcal{A}} \bullet \text{ (claim)}$

Properties of W

 $c_1 |x|^2_{\mathcal{A}} \leq W(x)$

3 $\forall t_2 \ge t_1 \ge 0$ $W(x(t_2)) - W(x(t_1)) \le - c \int_{t_1}^{t_2} v(t)^2 dt$

Properties of \hat{W}

$$\begin{split} W(x) &:= \min_{f \in f_c \text{ SGN}(v)} \begin{bmatrix} \sigma \\ \phi^{-f} \\ v \end{bmatrix}^T P \begin{bmatrix} \sigma \\ \phi^{-f} \\ v \end{bmatrix} \\ \hat{W}(x) &:= \frac{1}{2}k_1\sigma^2 + \frac{1}{2}k_2(\text{dz}_{f_c}(\phi))^2 \\ + k_3|\sigma||v| + \frac{1}{2}k_4v^2 \end{split}$$

For suitable $k_1, \dots, k_4 > 0$ in \hat{W} , there exist positive $c_1, c_2, \hat{c}_1, \hat{c}_2$ such that $c_1|x|^2_{\mathcal{A}} \leq W(x) \leq c_2|x|^2_{\mathcal{A}}, \forall x \in R \\ \hat{c}_1|x|^2_{\mathcal{A}} \leq \hat{W}(x) \leq \hat{c}_2|x|^2_{\mathcal{A}}, \forall x \in \hat{R} \\ \hat{w}^{\circ}(x) &:= \max_{v \in \partial \hat{W}(x), f \in F(x)} \langle v, f \rangle \leq 0, \forall x \in \hat{R} \end{split}$

Case (ii): $\exists t_1 \ge 0$ such that $x(t_1) \in R$.

- Consider the smallest $t_1 \ge 0$ such that $x(t_1) \in R$. By cont'ty of sol's $|x(t)|_{\mathcal{A}}^2 \le \frac{\hat{c}_2}{\hat{c}_1} |x(0)|_{\mathcal{A}}^2 \forall t \in [0, t_1] \Rightarrow$ $|x(t_1)|_{\mathcal{A}}^2 \le \frac{\hat{c}_2}{\hat{c}_1} |x(0)|_{\mathcal{A}}^2$ $|x(t)|_{\mathcal{A}}^2 \le \frac{c_2\hat{c}_2}{c_1\hat{c}_1} |x(0)|_{\mathcal{A}}^2, \forall t \in [0, t_1]$ • • At $t = t_1$
 - $W(x(t_1)) \leq c_2 |x(t_1)|^2_{\mathcal{A}} \Rightarrow W(x(t_1)) \leq c_2 igl(rac{\hat{c}_2}{\hat{c}_1} |x(0)|^2_{\mathcal{A}}igr)$

• $\forall t \geq t_1$ $c_1 |x(t)|^2_{\mathcal{A}} \leq W(x(t)) \leq W(x(t_1)) \Rightarrow$ $c_1 |x(t)|^2_{\mathcal{A}} \leq c_2 \frac{\hat{c}_2}{\hat{c}_1} |x(0)|^2_{\mathcal{A}}, \forall t \geq t_1 \bullet$

 $|x(t)|_{\mathcal{A}} \leq \sqrt{\frac{c_2\hat{c}_2}{c_1\hat{c}_1}}|x(0)|_{\mathcal{A}} \bullet \text{ (claim)}$

Properties of \hat{W}

$$\begin{split} W(x) &:= \min_{f \in f_c \operatorname{SGN}(v)} \left[\stackrel{\sigma}{\phi}_{-}^{-} f \right]^T P \left[\stackrel{\sigma}{\phi}_{-}^{-} f \right] \\ \hat{W}(x) &:= \frac{1}{2} k_1 \sigma^2 + \frac{1}{2} k_2 \left(\operatorname{dz}_{f_c}(\phi) \right)^2 \\ &+ k_3 |\sigma| |v| + \frac{1}{2} k_4 v^2 \end{split}$$
For suitable $k_1, \dots, k_4 > 0$ in \hat{W} , there exist positive $c_1, c_2, \hat{c}_1, \hat{c}_2$ such that $c_1 |x|_{\mathcal{A}}^2 \leq W(x) \leq c_2 |x|_{\mathcal{A}}^2, \forall x \in R \\ \hat{c}_1 |x|_{\mathcal{A}}^2 \leq \hat{W}(x) \leq \hat{c}_2 |x|_{\mathcal{A}}^2, \forall x \in \hat{R} \\ \hat{c}_1 |x|_{\mathcal{A}}^2 \leq \hat{W}(x) \leq \hat{c}_2 |x|_{\mathcal{A}}^2, \forall x \in \hat{R} \\ \hat{W}^{\circ}(x) &:= \max_{v \in \partial \hat{W}(x), f \in F(x)} \langle v, f \rangle \leq 0, \forall x \in \hat{R} \end{split}$

Properties of W

 $c_1 |x|^2_{\mathcal{A}} \leq W(x)$

③ $\forall t_2 \ge t_1 \ge 0$ $W(x(t_2)) - W(x(t_1)) \le -c \int_{t_1}^{t_2} v(t)^2 dt$

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity 00	Stability 00000	Main result (2)	Conclusions O
Outl	ine						

- Problem description and model
- 2 Main result (1)
- 3 Change of coordinate and Lyapunov-like function
- Global attractivity

6 Main result (2)

7 Conclusions

• We have just proved:

Proposition

Under our Assump'n, \mathcal{A} is 1) globally attractive and 2) Lyap' stable for

$$\dot{z} \in \begin{bmatrix} s \\ v \\ -k_i e_i - k_p s - k_v v \end{bmatrix} - f_c \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \operatorname{SGN}(v) =: \widetilde{F}(z).$$

- A is compact and (mild) regularity assumptions are satisfied: F
 has a closed graph, is loc'ly bounded in ℝ³, and F
- Define:

Definition

The compact set \mathcal{A} is **glob'ly** \mathcal{KL} **AS** if there exist a function $\beta \in \mathcal{KL}$ such that all solutions satisfy $|x(t)|_{\mathcal{A}} \leq \beta(|x(0)|_{\mathcal{A}}, t) \quad \forall t \geq 0.$

• Because of A compact and regularity, A is glob'ly $\mathcal{KL} AS^7$.

⁷R. Goebel, R. G. Sanfelice, and A. R. Teel, *Hybrid Dynamical Systems: modeling, stability, and robustness.* Princeton University Press, 2012.

Outline Model Main result (1) Lyap'-like function Global attractivity Stability Main result (2) Conclusion Robustness result for generic perturbation

Proposition

Under our Assump'n,
$$\mathcal{A}$$
 is GAS for $\dot{z} \in \begin{bmatrix} v \\ -k_i e_i - k_p s - k_v v \end{bmatrix} - f_c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} SGN(v) =: \tilde{F}(z).$

• Perturb the dynamics: take $\rho \colon \mathbb{R}^3 \to \mathbb{R}_{\geq 0}$ satisfying $z \notin \mathcal{A} \Rightarrow \rho(z) > 0$ $\dot{z} \in \overline{\operatorname{co}} \tilde{F}(z + \rho(z)\mathbb{B}) + \rho(z)\mathbb{B}$ (P)

Define:

Definition

The compact set \mathcal{A} is **robustly glob'ly** \mathcal{KL} **AS** if there exist a cont'ous function ρ as above such that \mathcal{A} is glob'ly \mathcal{KL} AS for (P).

• Because of \mathcal{A} compact and regularity⁸:

Theorem

Under our Assumption, ${\cal A}$ is robustly globally ${\cal KL}$ asymptotically stable for the differential inclusion.

⁸R. Goebel, R. G. Sanfelice, and A. R. Teel, *Hybrid Dynamical Systems: modeling, stability, and robustness.* Princeton University Press, 2012.

- This perturbation is of interest because it includes the Stribeck effect.
- We have:

Corollary about Stribeck effect

Under our Assumption, the attractor A is globally input-to-state stable for the perturbed dynamics from input ρ_{v} .

 Then, the Stribeck effect (→ persistent oscillations, *hunting*) produces solutions that are (graceful) degradations in the ISS sense of the AS unperturbed solutions.

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity 00	Stability 00000	Main result (2) 000	Conclusions O
Outl	ine						

- Problem description and model
- 2 Main result (1)
- 3 Change of coordinate and Lyapunov-like function
- Global attractivity
- 5 Stability
- 6 Main result (2)

7 Conclusions

Outline	Model 000	Main result (1) 000000	Lyap'-like function	Global attractivity OO	Stability 00000	Main result (2) 000	Conclusions
Conc	lusio	ns					

So far:

- We characterized the properties of a differential inclusion model of a the feedback interconnection of a sliding mass with a PID controller under Coulomb friction.
- We proved global asymptotic stability of the largest set of closed-loop equilibria.
- Due to the regularity of the differential inclusion, global asymptotic stability was intrinsically robust.
- We proved the ISS of a specific perturbation including the Stribeck effect.

Future work:

- Address the case of static friction larger than Coulomb.
- Propose for that setting hybrid compensation schemes.