Derivation of fundamental quantities for the stability and convergence analysis Technical report of Discrete-time control of parallel kinematic systems

Enrica Rossi¹, Marco Tognon², Ruggero Carli¹, Luca Schenato¹, Juan Cortés², Antonio Franchi²

Abstract—This document is a technical attachment to [1] (to appear) and contains the derivation and analysis of some quantities which are related to the stability and rate of convergence of the system introduced in the main paper.

I. STABILITY AND CONVERGENCE ANALYSIS

In this section we give the definition of the stability time $\bar{\tau}_s(\mu)$, the optimal time $\bar{\tau}_o(\mu)$ and the convergence rate $\rho(\mu)$. In order to evaluate upper bounds for asymptotic stability and rate of convergence, we need to study the following function

$$g(\tau;\mu) := |1 - \tau| + \mu \tau^2 = \begin{cases} 1 - \tau + \mu \tau^2 =: g^{-}(\tau;\mu) & \tau < 1 \\ -1 + \tau + \mu \tau^2 =: g^{+}(\tau;\mu) & \tau \ge 1 \end{cases}$$

We will study the function $g(\tau; \mu)$ in three different scenarios: $\mu \in [0, \frac{1}{2})$, $\mu \in [\frac{1}{2}, 1)$ and $\mu \ge 1$. We start by observing that

$$g(0;\mu) = 1, \ g(1;\mu) = \mu, \ \frac{dg^+}{d\mu} = 1 + 2\mu\tau > 0$$

and by defining the minimum of $g^-(\tau;\mu)$ and its minimizer w.r.t. τ as

$$\tau_p(\mu) = \arg\min_{\tau} g^-(\tau;\mu) \Leftrightarrow \frac{dg^-(\tau;\mu)}{d\tau} = 0 \Longrightarrow \tau_p(\mu) = \frac{1}{2\mu}$$

We now note that in the first scenario $\mu \in [0, \frac{1}{2})$, $\tau_p(\mu) \ge 1$ which implies that the function $g(\tau; \mu)$ is monotonically decreasing for $\tau \in [0, 1]$ and monotonically increasing for $\tau > 1$.

In the second scenario $\mu \in [\frac{1}{2}, 1)$, $\tau_p(\mu) < 1$, therefore $g(\tau; \mu)$ is monotonically decreasing for $\tau \in [0, \tau_p(\mu)]$ and monotonically increasing for $\tau > \tau_p(\mu)$.

Finally note that for $\mu < 1$, $g(1;\tau) < 1$, therefore there exists a unique $\overline{\tau}_s(\mu)$ such that $g(\overline{\tau}_s(\mu);\mu) = g^+(\overline{\tau}_s(\mu);\mu) = 1$, while for $\mu > 1$, $g(1;\tau) > 1$, therefore there exists a unique $\overline{\tau}_s(\mu)$ such that $g(\overline{\tau}_s(\mu);\mu) = g^-(\overline{\tau}_s(\mu);\mu) = 1$. A pictorial representation of the three scenarios is shown in Fig. 1. We are now ready to compute the stability region and convergence rate.

Fig. 1: Representation of $g(\tau; \mu)$ in the three scenarios.

1) Stability $(g(\tau; \mu) < 1)$: According to the analysis above, the stability set is given by:

$$\mathscr{T} := \{\tau \mid g(\tau; \mu) < 1\} = (0, \overline{\tau}_s(\mu))$$

More specifically, we have two scenarios depending whether the parameter μ is smaller or grater than unity.

If $\mu < 1$ then $-1 + \tau + \mu \tau^2 = 1$. Hence:

$$\overline{\tau}_{s}(\mu) = \frac{-1 + \sqrt{1 + 8\mu}}{2\mu} = \frac{4}{1 + \sqrt{1 + 8\mu}}$$

¹Department of Information Engineering, University of Padova, Italy enrica.rossi.l@studenti.unipd.it, carlirug@dei.unipd.it, schenato@dei.unipd.it

²LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France, marco.tognon@laas.fr, juan.cortes@laas.fr, antonio.franchi@laas.fr

while

$$\mu > 1 \Longrightarrow 1 - \tau + \mu \tau^2 = 1 \Longrightarrow \overline{\tau}_s(\mu) = \frac{1}{\mu}$$

which can be summarized in

$$\overline{\tau}_{s}(\mu) \begin{cases} \frac{4}{1+\sqrt{1+8\mu}} & \mu < 1\\ \frac{1}{\mu} & \mu \ge 1 \end{cases}$$
(1)

2) Optimal gain and rate $(\min_{\tau} g(\tau; \mu))$: We now want to find the optimal stopping time $\overline{\tau}_o(\mu)$ in order to maximally decrease toward the origin, and the relative decrease rate $\rho(\mu)$, i.e.

$$\overline{\tau}_o(\mu) := \arg\min_{\tau} g(\tau;\mu), \ \ \rho(\mu) = g(\overline{\tau}_o(\mu);\mu)$$

Once again, we can distinguish two scenarios, depending whether the parameter μ is smaller or greater than $\frac{1}{2}$

More specifically, for $\mu < \frac{1}{2}$ the function $g^-(\tau;\mu)$ is monotonically decreasing for $\tau < 1$, and therefore $\tau_o(\mu) = 1$, while for $\mu > \frac{1}{2}$ then $\tau_o(\mu) = \tau_p(\mu) = \frac{1}{2\mu}$. This can be summarized as

$$\overline{\tau}_o(\mu) = \begin{cases} 1 & \mu < \frac{1}{2} \\ \frac{1}{2\mu} & \mu \ge \frac{1}{2} \end{cases}$$
(2)

1

By substitution is easy to verify that

$$\rho(\mu) = \begin{cases} \mu & \mu < \frac{1}{2} \\ 1 - \frac{1}{4\mu} & \mu \ge \frac{1}{2} \end{cases}$$
(3)

REFERENCES

 E. Rossi, M. Tognon, R. Carli, L. Schenato, J. Cortés, and A. Franchi, "Cooperative aerial load transportation via sampled communication," in *IEEE Control Systems Letters (L-CSS)*, 2019.