
Convergence of the Robust Block-Jacobi
Algorithm in Presence of Packet Losses

M. Todescato ∗ G. Cavraro ∗ R. Carli ∗ L. Schenato ∗

∗Department of Information Engineering, Padova, 35131, Italy.
(e-mail: todescat|cavraro|carlirug|schenato @ dei.unipd.it).

1. MATHEMATICAL PRELIMINARIES

In this technical note, G (V, E) denotes a directed graph
where V = {1, ..., N} is the set of vertices and E is the set
of directed edges, i.e., a subset of V × V. More precisely
the edge (i, j) is incident on node i and node j and is
assumed to be directed away from i and directed toward
j. The graph G is said to be bidirected if (i, j) ∈ E implies
(j, i) ∈ E . Given a directed graph G (V, E), a directed
path in G consists of a sequence of vertices (i1, i2, . . . , ir)
such that (ij , ij + 1) ∈ E for every j ∈ {1, . . . , r − 1}.
The directed graph G is said to be strongly connected
if for any pair of vertices (i, j) there exists a directed
path connecting i to j. Given the directed graph G, the
set of neighbors of node i, denoted by Ni, is given by
Ni = {j ∈ V | (i, j) ∈ E}. Moreover, N+

i = Ni ∪ i. Given
a directed graph G (V, E) with |E| = M let the incidence
matrix A ∈ RM×N of G be defined as A = [aei], where
aei = 1,−1, 0, if edge e is incident on node i and directed
away from it, is incident on node i and directed toward it,
or is not incident on node i, respectively. Given a vector v
with vT we denote its transpose. Moreover, we denote with
Ad the adjacency matrix or laplacian matrix of the graph
which is defined as Ad := ATA, which has the property
that [Ad]ij 6= 0 if and only if (i, j) ∈ E . If we associate to
each edge a weight different from one, then it is possible to
define the weighted laplacian matrix as L = ATWA where
W ∈ RM×M represents the diagonal matrix containing in
its `-th element the weight associated to the `-th edge.
Given a vector v with the symbols <(v) and =(v) we
denote its real and imaginary parts, respectively. Finally,
with the symbols E and P we denote, respectively, the
expectation operator and the probability of an event.

2. PROBLEM FORMULATION

Consider the set of N agents V = {1, . . . , N}, where
each agent i is described by its state vector xi ∈ Rni .
Assume the agents can communicate among themselves
through a bidirected strongly connected communication
graph G(V, E). Assume each agent collects a set of mea-
surements bi ∈ Rmi which are noisy linear combinations
of its own state and those of its neighboring agents, i.e.,

bi =
∑

j∈N+
i

Aijxj + wi = Aiixi +
∑
j∈Ni

Aijxj + wi

where Aij ∈ Rmi×nj and where wi is white noise of zero
mean and variance Ri independent of the other wj . We
consider the problem of estimating the entire state of the
network from the knowledge of the noisy measurements.

By collecting all the agents state and measurements in the
vectors x = [xT1 , . . . , x

T
N ]T ∈ Rn (where n =

∑
i ni) and

b := [bT1 , . . . , b
T
N ] ∈ Rm (where m =

∑
imi), respectively,

it is possible to formulate the problem as a classical
weighted least square problem. That is

min
x

J(x), (1)

where

J(x) =
1

2
(Ax− b)TR−1(Ax− b) . (2)

The matrix A ∈ Rm×n represents the measurements
matrix, whose ij-th block is simply defined as [A]ij = Aij ,
while R ∈ Rm×m is the block diagonal matrix defined as

R = blkdiag {R1, . . . , RN} ,
which represents the noise variance.
From now on, we assume that n ≤ m and that A is full
rank. Under these assumptions, it is well known that the
solution of (1) is unique and given by

x∗ = (ATR−1A)−1ATR−1b . (3)

To compute the value of x∗ directly as in (3), one needs
all the measurements, the matrix A and the noise variance
R, i.e., full knowledge of the network is required. On the
contrary, we aim at solving Problem (1) in a distributed
fashion. To this end, note that it is possible to rewrite
Problem (1) as

min
x1,...,xN

N∑
i=1

Ji(xi, {xj}j∈Ni
) , (4)

where

Ji(xi, {xj}j∈Ni) =

1

2
(Aiixi +

∑
j∈Ni

Aijxj − bi)TR−1i (Aiixi +
∑
j∈Ni

Aijxj − bi) .

The above equation highlights the local dependence of
each cost function Ji on information regarding only agent
i and its neighbors j ∈ Ni. In next section, we present
a distributed algorithm to solve optimization problems in
the separable quadratic form (4). Firstly, we review an im-
plementation which requires synchronous communications
among the agents and basically coincides with a Block-
Jacobi algorithm. Secondly, we present a modified version
which is amenable for a distributed implementation and is
robust to the presence of packet losses in the communica-
tion channel.



3. BLOCK JACOBI ALGORITHM

3.1 Distributed Block Jacobi Algorithm

Consider the generalized gradient descent strategy

x(t+ 1) = x(t)− εD−1∇J(x(t)) (5)

where ∇J(x(t)) is the gradient of J , i.e., ∇J(x(t)) =

[∂J(x(t))/∂x]
T

, D is a generic positive definite matrix and
ε a suitable positive constant, usually referred as step size.
The algorithm we propose is a particular case of (5), where
D is a block diagonal matrix whose i-th diagonal block is
defined as

Di =
∑

j∈N+
i

AT
jiR
−1
j Aji. (6)

With a little abuse of notation, let us denote the Hessian
of the cost function as ∇2J(x). From standard algebraic
computations, it follows that ∇2J(x) = ATR−1A. The
matrix ∇2J(x) can be partitioned as an N × N block
matrix, where the i, j-th block

[
∇2J(x)

]
ij

is given by
∂J(x)
∂xi∂xj

. One can see that the block [∇2J(x)]ij is different

from zero either if j ∈ N+
i or if i and j are two step

neighbors (i.e. there exists a agent k such that k is neighbor
of both i and j). Furthermore, it can be shown that
Di = [∇2J(x)]ii is the i-th diagonal block of the cost
function Hessian.
From (2), we can compute the gradient of the cost function

∇J(x(t)) = ATR−1(Ax(t)− b), (7)

whose component associated with the i-th agent is

[∇J(x(t))]i =
∑

j∈N+
i

AT
jiR
−1
j nj(t+ 1) (8)

where the variable nj(t+ 1) is defined as

nj(t+ 1) =
∑

k∈N+
j

Ajkxk(t)− bj . (9)

By plugging (6), (8) into (5), we can write the updating
step performed by agent i as

xi(t+ 1) = xi(t)− εD−1i

∑
j∈N+

i

AT
jiR
−1
j nj(t+ 1), (10)

which, in vector form, leads to

x(t+ 1) = (I − εD−1ATR−1A)x(t) + εD−1ATR−1b. (11)

Observe that agent i, in order to perform (10), needs
information coming from the neighbours of its neighbors,
i.e. the two-step neighbours. As so, to each iteration of the
algorithm it is necessary to perform two communications,
the first to compute the ni(t+1)’s and the second to com-
pute the xi(t+1)’s. The distributed Block Jacobi algorithm
(denoted hereafter as the BJ algorithm) for quadratic
functions is formally described as in Algorithm 1. Next, the
convergence properties of the BJ algorithm are established.

Lemma 1. Consider Problem (1) and the BJ algorithm.
Assume

ε ≤ 2

‖D− 1
2ATR−1AD−

1
2 ‖
. (12)

Then, for any x(0) ∈ Rn, the trajectory x(t), generated
by the BJ algorithm, converges exponentially fast to the
minimizer of Problem (1), i.e.,

‖x(t)− x∗‖ ≤ Cρt
for some constants C > 0 and 0 < ρ < 1.

Proof. Consider the change of variables x̃ = x− x∗. The
cost function becomes

f(x̃) = x̃T
ATR−1A

2
x̃+ c,

while the evolution of x̃ is given by

x̃(t+ 1) = (I − εD−1ATR−1A)x̃(t)

By imposing f(x̃(t+ 1))− f(x̃(t)) < 0, after some simple
computations, it turns out that if equation (12) holds, then
the algorithm reaches the minimizer of (1).

Algorithm 1 Distributed Block Jacobi algorithm.

Require: ∀i ∈ V, store Aij , Aji, Rj , j ∈ N+
i .

1: for t ∈ N each i ∈ V do
2: sends xi(t) to j ∈ Ni;
3: receives xj(t) from j ∈ Ni;
4: updates ni(t) by using (9)
5: sends ni(t) to j ∈ Ni;
6: receives nj(t) from j ∈ Ni;
7: updates xi(t) by using (10)
8: end for

3.2 Robust Block Jacobi Algorithm

Algorithm 1 has been designed for the ideal case with
no lossy communication. In the following, we generalize
Algorithm 1 for the case with lossy communication, e.g.
agent i could not receive information sent by some of its
neighbors, due to communication failures. The modifica-
tion of the algorithm is apparently naive, since we simple
perform the same algorithm by using the last received data
from its neighbours if a packet is not received.
To model the packet losses, it is convenient to introduce
the indicator function

γ
(i)
j (t) =

{
1 if i received the information sent by j
0 otherwise.

with the assumption that γ
(i)
i (t) = 1, since node i has

always access to its local variables ni(t) and xi(t). We
assume the following property.

Assumption 2. There exists a constant T such that, for all
t ≥ 0, for all i ∈ V and for all j ∈ Ni,

P
[
{γ(i)j (t), . . . , γ

(i)
j (t+ T )} = {0, . . . , 0}

]
= 0.

Roughly speaking, Assumption 2 states that agent i re-
ceives, at least once, information coming from agent j
within any window of T iterations of the algorithm. Ob-
serve that, if agent i does not receive some of the packets
transmitted by its neighbors, then it does not have the
necessary information to perform the updates (9) and (10).
To overcome this fact, we assume agent i stores in memory

the auxiliary variables x
(i)
j , n

(i)
j , j ∈ Ni, which are equal,

respectively, to the last packets xj and nj received by agent

i from agent j; specifically, the dynamics of x
(i)
j , n

(i)
j are

n
(i)
j (t+ 1) =

{
nj(t) if γ

(i)
j (t) = 1

n
(i)
j (t) if γ

(i)
j (t) = 0

(13)

x
(i)
j (t+ 1) =

{
xi(t) if γ

(i)
j (t) = 1

x
(i)
j (t) if γ

(i)
j (t) = 0

. (14)



Agent i

Agent j

xi, x
(i)
j

ni, n
(i)
j

xi, ni

xj, nj

Agent i

Agent j

x
(i)
i , x

(i)
j , x

(i←j)
i , x

(i←j)
j

G(i), F (i), B(i), X(i)

x
(i)
i , x

(i)
j

x
(j)
i , x

(j)
j

r-BJ algorithm naive pb-ADMM algorithm

Fig. 1. Communication scheme for the BJ algorithm (left) and for
the ADMM algorithm (right).

As mentioned in the previous section, Algorithm 1 requires
two communication rounds every iteration. In a lossy
environment, in order to reduce the communication burden
and the number of communication failures, we modify
Algorithm 1 by letting the agents to communicate just
once every iteration, transmitting together the xi’s and

the ni’s. Agents i exploit x
(i)
j (t) and n

(i)
j (t) to update ni

and xi as

ni(t+ 1) =
∑

j∈N+
i

Aijx
(i)
j (t)− bi (15)

xi(t+ 1) = xi(t)− εD−1i

∑
j∈N+

i

AT
jiR
−1
j n

(i)
j (t) (16)

As so, even in the scenario with no packet losses, this
new algorithm does not exactly coincide with Algorithm 1,
since a one-step delay is introduced in the computation
of the variables ni(t). The robust block Jacobi algorithm
(hereafter referred to as r-BJ algorithm) for quadratic
functions is formally described as in Algorithm 2. The

Algorithm 2 Robust block Jacobi algorithm.

Require: ∀i ∈ V, store Aij , Aji, Rj , j ∈ N+
i .

1: for t ∈ N each i ∈ V do
2: sends xi(t), ni(t) to j ∈ Ni;

3: if γ
(i)
j (t) = 1 then

4: receives xj(t) and nj(t) from j ∈ Ni

5: end if
6: updates ni(t) by using (15)

7: updates n
(i)
j (t) by using (13)

8: updates x
(i)
j (t) by using (14)

9: updates xi(t) by using (16)
10: end for

left panel of Figure 1 provides a pictorial representation
of the stored and communicated variables by each node.
The convergence properties of the r-BJ algorithm are next
established.

Theorem 3. Let Assumption 2 hold. Consider Problem
(1) and the r-BJ algorithm. There exists ε̄ such that, if
0 < ε < ε̄, then, for any x(0) ∈ Rn, the trajectory x(t),
generated by the BJ algorithm, converges exponentially
fast to the minimizer of Problem (1), i.e.,

‖x(t)− x∗‖ ≤ Cρt
for some constants C > 0 and 0 < ρ < 1.

The proof of Theorem 3 relies on the time scale separation
of the dynamic of the xi’s and of the auxiliary variables

x
(i)
j ’s, ni’s and n

(i)
j ’s, and fully exploits the following

Lemma 4. Consider the dynamical system[
x(t+ 1)
y(t+ 1)

]
=

[
I εB

C(t) F (t)

] [
x(t)
y(t)

]
(17)

Let the following assumptions hold

(1) ∀x, ∃!y : y = C(t)x+ F (t)y,∀t. As a consequence, we
can write y = Gx;

(2) the system

z(t+ 1) = F (t)z(t) (18)

is asymptotically stable;
(3) the system

ξ̇(t) = −BGx(t) (19)

is asymptotically stable.

Then, there exists ε̄, with 0 < ε < ε̄ such that the origin is
an asymptotically stable equilibrium for the system (17).

Proof. [Proof of Theorem 3] Let us define n∗ = Ax∗ − b,
n
(i)∗
j = n∗j and x

(i)∗
j = x∗j , and consider the change of

variables

x̃ = x− x∗
x̃
(i)
j = x

(i)
j − x∗j

ñ = n− n∗
ñ
(i)
j = n

(i)
j − n∗j

(20)

Let us collect all the auxiliary variables x̃
(i)
j ’s, ñ’s and

ñ
(i)
j ’s in the vector ỹ. Then, Algorithm 2 dynamic can be

expressed as [
x̃(t+ 1)
ỹ(t+ 1)

]
=

[
I εB

C(t) F (t)

] [
x̃(t)
ỹ(t)

]
(21)

The proof’s aim is to show that the system (21) satisfies
the hypotheses of Lemma 17. In (21), x̃ will be the variable
with a slow dynamic, while ỹ will be the variable with a
fast dynamic.

Now, fix the slow variable value x̃ = x̄. It can be shown

that the vector ỹ(x̄) that stacks the values x̃
(i)
j = x̄j ,

ñ = Ax̄, ñ
(i)
j = ñj , satisfies the condition ỹ(x̄) = C(t)x̄ +

D(t)ỹ(x̃), ∀t, x̄. Furthermore, it can be easily found a
matrix G such that ỹ(x̄) = Gx̄.

For what concerns the dynamic of the fast variables ỹ,
because of Assumption 2, we have that after a time lower
or equal to 2T + 1, ỹ will reach the value ỹ(x̄) = Gx̄.
In fact, exploiting (13), (14) and the change of variables
(20), in the worst case, T iteration are necessary to have

x̃
(i)
j = x̄j ,∀i. After that, one iteration is necessary to

compute ñ = Ax̄ and finally T iteration are necessary to

have ñ
(i)
j = ñj ,∀i. As a result, the fast variable dynamic

is exponentially stable, reaching the equilibrium in a finite
number of iteration. That is, fixed x̄, we have

ỹ(t) = Gx̄, ∀t ≥ 2T + 1 (22)

Furthermore, from (17) we have that



ỹ(t) =

t−1∏
k=0

F (k)y(0) +

t−1∏
k=1

F (k)C(0)x̄+ . . .

+

t−1∏
k=2

F (k)C(1)x̄+ . . . C(0)x̄

=

t−1∏
k=0

F (k)y(0) + Φx̄ (23)

Since equation (22) is satisfied for every initial condition
y(0), it turns out that

t−1∏
k=0

F (k)y(0) = 0

for every y(0) and for every sequence F (0), . . . , F (t−1). As
a consequence, the system (18) is asymptotically stable.

Now, consider the dynamical system

ξ̇(t) = −BGξ(t). (24)

It can be shown that

BG = D−1ATR−1A

and thus, choosing as a Lyapunov function

V (ξ) = ξT
ATR−1A

2
ξ,

we can see that system (24) is asymptotically stable.

As a result, system (21) satisfies the hypotheses of Lemma
17, and thus there exists ε̄, with 0 < ε < ε̄ such that, by
using the robust block Jacobi Algorithm 2,

lim
t→∞

x(t) = x∗.

Remark 5. We would like to emphasize that this general
model of packet losses includes as special cases asyn-
chronous updates. In fact, asynchronous updates where
only one node i updates its local variables based on the
information received form its neighbours can be recovered
by our algorithm assuming that all packets are lost except
those from the neighbours of node i to node i itself. Also,
our algorithm allows for multiple agents to communicate
and perform updates at the same time, thus requiring
no coordination. Finally, broadcast communication can be
used since nodes do not need to establish reliable bidirec-
tional communication as in gossip protocols.


