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Asynchronous Distributed Camera Network
Patrolling under Unreliable Communication

Nicoletta Bof, Ruggero Carli, Angelo Cenedese, and Luca Schenato

Abstract—In this paper we study the problem of real-time
optimal distributed partitioning for perimeter patrolling in the
context of multi-camera networks for surveillance, where each
camera has limited mobility range and speed, and the commu-
nication is unreliable. The objective is to coordinate the cameras
in order to minimize the time elapsed between two different
visits of each point of the perimeter. We address this problem
by casting it into a convex problem in which the perimeter is
partitioned into non-overlapping segments, each patrolled by a
camera that sweeps back and forth at the maximum speed.
We then propose an asynchronous distributed algorithm that
guarantees that these segments (1) cover the whole patrolling
perimeter at any time and (2) asymptotically converge to the
optimal centralized solution under reliable communication. We
finally modify the proposed algorithm in order to attain the same
convergence and covering properties even in the more challenging
scenario where communication is lossy and there is no channel
feedback, i.e. the transmitting camera is not aware whether a
packet has been received or not by its neighbours.

Index Terms—Patrolling, Camera Networks, Distributed Algo-
rithms

I. INTRODUCTION

V IDEO surveillance systems are nowadays increasingly
used for security and prevention purposes in a variety

of different situations. They can be used as a deterrent for
intruders or for the early detection of anomalous events.

Important tasks required to these systems are target acquisi-
tion, tracking, activity recognition [1], [2], [3] and patrolling.

In this work we concentrate on the patrolling problem
for networks of Pan-Tilt-Zoom (PTZ) cameras. This problem
corresponds to the repetitive monitoring of a perimeter or of
an area realized by a group of cameras, in order to be able to
detect intruders or to locate unexpected events. We suppose to
have a group of already deployed and fixed PTZ cameras that
have to patrol a given one-dimensional environment.

The patrolling problem on a one-dimensional environment
using a network of PTZ cameras is studied in [4], where it is
reduced to a partitioning problem. This approach is effective
in case the intruder is static. To deal with dynamic intruders,
the partitioning has to be combined with a given schedule
for the movements of the cameras, as shown in [5], [6]. For
the patrolling of two-dimensional areas, randomized strategies
have been proposed in [7], [8].

The patrolling problem for networks of PTZ cameras has
similarities to that for mobile-agents, which is studied in
many papers. With no intention of providing an exhaustive
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overview on the subject, some related literature is reported
in the following. The problem of patrolling different disjoint
areas using agents that can move from one area to the other
is studied for example in [9] and [10]: the first solves it as
a travelling salesman problem, while the latter uses a swarm
intelligence approach. Different solutions are provided in [11],
where reinforcement learning is adopted to deal with a similar
problem and in [12], where the patrolling of a one-dimensional
environment is addressed solving an optimal control problem.
More interestingly with respect to the proposed work, the
authors of [13] and [14] consider the patrolling of a one
or two-dimensional environment and reduce this problem to
a partitioning problem similar to that in [4]. The current
trend in large-scale smart camera networks, including many
of the articles just cited, is to devise distributed algorithms.
These have many advantages in large networks, since they
are scalable and require information only from neighbouring
agents, allowing for privacy. Moreover, it may be difficult to
collect all the information in a single unit if the communication
is not reliable. A distributed approach may also be safer in
presence of attackers, who would have to compromise each
single camera and not just a central unit. Finally a distributed
algorithm can adapt to dynamic scenarios in which cameras
switch from patrolling mode to tracking mode and vice-versa,
or in which some cameras may be malfunctioning.

All the previous algorithms assume reliable communications
that might not be very realistic in wireless camera networks,
which are becoming very popular thanks to their reduced
installation and configuration cost and increased bandwidth
performances. The major contribution of this work is to
propose an asynchronous distributed algorithm for camera
network patrolling that is guaranteed to converge to an optimal
solution while ensuring certain properties even if communi-
cation is not reliable and there is no channel feedback, i.e.
a transmitting camera is not aware whether a packet has
been received or not by its adjacent neighbours. Devising
coordinated cooperative algorithms under this scenario is
particularly challenging since it implies that the cooperating
cameras have no information on which action a neighbouring
camera is doing, but has the advantage of requiring simple and
fast communication protocols1. We incrementally tackle this
scenario by first formulating the optimal centralized solution,
then by providing a distributed algorithm that reaches the same
solution asymptotically and, finally, by modifying it to handle
the unreliable communication case.

1Just as an example, even the apparently simple problem of computing an
exact average over a network of smart agents with unreliable communication
has been shown to be particularly difficult [15].
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Fig. 1. Portion of the perimeter to be patrolled. The figure shows the physical
coverages {Di} and the patrolling areas {Ai} for the first three cameras of
the surveillance system.

II. PERIMETER PATROLLING: PROBLEM FORMULATION

In this section we review the problem of patrolling a one-
dimensional environment of finite length with a finite number
of cameras, a situation typical of outdoor camera networks
monitoring the boundary of an area of interest, such as urban
neighbourhoods or large facility perimeters. Let L = [0, L],
L > 0, denote the segment to be monitored and let N be
the cardinality of the camera set, with the cameras labelled 1
through N . For the sake of simplicity, let us assume that (a) the
cameras are 1-d.o.f., meaning that the field of view (f.o.v.) of
each camera is allowed to change due to pan movements only,
(b) the cameras have fixed coverage range, meaning that during
pan movements the camera coverage range is not altered by
the view perspective, (c) cameras have point f.o.v..

We define the patrolling range Di as the total allowed area
that the i-th camera can patrol due to the scenario topology, the
agent configuration and its physical constraints. More formally

Di =
[
di, di

]
⊂ L, di < di.

where di, di are the left and the right extremes of the interval
Di, respectively. We assume that the patrolling ranges Di,
i ∈ {1, . . . , N}, satisfy the following interlacing physical
coverage constraints,

di ≤ di+1 ≤ di ≤ di+1, i = 1, . . . , N − 1. (1)

Moreover we impose d1 = 0 and dN = L. These conditions
guarantee ∪Ni=1Di = L, i.e, the segment L can be fully
patrolled. See also [16] for a further discussion on these issues.

The max speed vi ∈ R+ is the maximum speed of the i-th
camera during pan movements, i.e., |vi(t)| ≤ vi.

The camera position zi(t) is the position of the f.o.v. of the
i-th camera as a function of the time variable t.

The patrolling area Ai = [`i, ri], with `i ≤ ri, respectively
the left and right extremes of Ai, denotes the area that is
actively patrolled by the i-th camera and, differently from Di,
can be updated in time t, namely Ai = Ai(t). The physical
constraints Ai ⊆ Di must hold for all cameras at any time.

Note that the patrolling areas {Ai}Ni=1 can be equivalently
described by the pair of vectors r = [r1 . . . rn] and ` =
[`1 . . . `N ] ∈ RN , or by vector ξ = [r> `>]> ∈ R2N .

Figure 1 depicts a portion of the surveillance scenario.
To properly define the patrolling problem we need to

introduce a suitable cost function and, accordingly, state an
optimality criterion. After introducing the original problem in
its exact form, we will modify it in order to have a different

but much simpler one, whose solutions are suboptimal with
respect to the former problem. For x ∈ L and j ∈ N, let
τ̄j = [tj(x), t̄j(x)] be the time interval during which the point
x is visited for the j−th time (counting times starting from
time t = 0) by at least a camera i ∈ {1, . . . , N}, that is, for all
t ∈ τ̄j there exists a camera i such that zi(t) = x. If point x
is visited at time t only by a passing camera i, i.e, zi(t) = x
and żi(t) 6= 0, it holds tj(x) = t̄j(x). Now, for each point
x ∈ L, we can introduce the following cost function

γ(x) :=

{
sup
j∈N

(
tj+1(x)− t̄j(x)

)
if ∀ j ∃ tj+1(x) <∞

+∞ otherwise.

The global cost function is given by the following time lag

Tlag = sup
x∈L

γ(x)

and the problem we would like to solve is the minimization
of Tlag , that is the minimization of the elapsed time between
two consecutive visits of the same location of L. To have
Tlag < ∞ it is necessary that each point x ∈ L belongs
to at least one patrolling area Ai, namely, that the covering
constraint

⋃
i∈{1,...,N}Ai = L is satisfied. Observe that, if

the following interlacing constraints

`i < `i+1 ≤ ri < ri+1, ∀i = 1, . . . , N (2)

are satisfied, then also the covering constraint is satisfied2.
The minimization of Tlag in case there are no physical

constraints for the cameras is a tricky problem. As a matter
of fact, one could reasonably think of using a partitioning
approach to solve the problem as done in [17], where the
following conjecture is given:

Conjecture II.1 Assume Di = L for all i. Then the optimal
minimum value for Tlag is attained by partitioning L into non-
overlapping intervals of lengths proportional to the cameras
speeds, specifically

`1 = 0, rN = L, ri = `i+1 = `i +
v̄i∑N
i=1 v̄i

L,

and letting each camera i sweeping back and forth Ai at its
maximum pan speed v̄i. This strategy obtains

Tlag =
2L∑N
i=1 v̄i

. (3)

The above conjecture has been shown to be true in the
following two scenarios [18]:

(i) when N = 1, 2, 3;
(ii) for any N > 3 in case v̄1, . . . v̄N are all equal to each

other (i.e, there exist v̄ such that v̄1 = · · · = v̄N = v̄).
Remarkably, in case the maximum pan speeds are not all equal
to each other, the authors in [18] have showed the existence of
some particular N -uplas (v̄1, . . . , v̄N ) (N > 3), for which it
is possible to design cameras’ trajectories attaining a value of
Tlag smaller than that in (3), thus invalidating Conjecture II.1.

2To be precise, to satisfy the covering constraint also the boundary
constraints `1 = 0 and rN = L needs to be satisfied. The standing
assumption in this paper is that they are always satisfied.
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Despite the presence of these counterexamples, in [18] it is
however argued that the solution illustrated in [17] attains a
value of Tlag that is very close to the optimal one, that is, it
can be regarded as a significant sub-optimal solution.

Therefore, since the very simple “partitioning and sweeping
back and forth at maximum speed” strategy described in
Conjecture II.1 is likely to be an almost optimal solution of
the patrolling problem, we change the set of possible cameras’
trajectories: instead of minimizing the patrolling time lag
among all possible trajectories, we restrict them. In particular
we force a partition of the environment and we have each
camera sweep its own part of the perimeter at maximum
speed. Our problem is then to find the partition that minimizes
Tlag under this restriction of the trajectories. Therefore, the
problem we want to tackle is a partitioning one. Apart from
its semplicity and suboptimality, the choice of partitioning
acquires even more significance in our scenario, since we
include also the presence of physical constraints, which might
impose severe limitations to the areas to be patrolled by the
cameras (and therefore lead to more complex trajectories).

To formally state the optimization problem we are interested
in, we preliminarily observe that, by sweeping back and forth
at speed v̄i a given interval Ai = [`i, ri], it holds that the time
lag for camera i, i = 1, . . . , N , is Tlag(Ai) = 2|Ai|

v̄i
, where

|Ai| := ri − `i. Then, the problem we aim at solving can be
cast as

P1 : T ∗P1
= minA1,...,AN

maxi{Tlag(Ai)}

s.t.

{
Ai ⊆ Di, i = 1, . . . , N
∪Ni=1Ai = L

where the objective is the minimization of the largest patrolling
time lag among all areas Ai, and the constraints represent the
physical limitations of the cameras and the requirement that all
points in L are eventually visited, respectively. The previous
problem can be re-cast as a linear program (LP) as follows
(the proof can be found in [4]):

Proposition II.2 [4] The optimization problem P1 is equiva-
lent to the following LP problem:

P ′1 : T ∗P1
= minξ,τ 2τ

s.t.


ri−`i
vi
≤ τ i = 1, . . . , N

di ≤ `i ≤ di, di ≤ ri ≤ di i = 1, . . . , N
ri ≥ `i+1 i = 1, . . . , N

d1 = `1 = 0, dN = rN = L

Analysing the previous problem, we can introduce the follow-
ing cost functional

J∞(ξ) = max
i

2(ri − `i)
v̄i

,

for which it holds that the minimum value J∗∞ achievable
for J∞(ξ), with ξ respecting the physical and interlacing
constraints, is equal to the optimal solution T ∗P1

of problem
P ′1. We denote by E∗P1

the set of minimizers of J∞(ξ) or,
equivalently, of P ′1.

The previous proposition provides a centralized solution to
the patrolling problem, but cannot be easily computed in a

distributed fashion. Although distributed algorithms exist for
the solution of LP problems [19], these involve the solution
of the entire problem at each node, which is a futile compu-
tational effort. Moreover, the previous optimization problem
might have multiple minimizers. Again, we can formulate a
new optimization problem P2, whose minimizer is unique and
is also a minimizer for the original problem P1. Introducing
the following cost functional

J2(ξ) =

N∑
i=1

1

v̄i
(ri − `i)2, (4)

we can state the following proposition (its proof is in [4])

Proposition II.3 [4] Consider the optimization problem

P2 : J∗2 = minξ∈R2N J2(ξ)

s.t.

 di ≤ `i ≤ di, di ≤ ri ≤ di i = 1, . . . , N
ri ≥ `i+1 i = 1, . . . , N − 1

d1 = `1 = 0, dN = rN = L

The corresponding set of minimizers E∗P2
is a singleton and

E∗P2
⊆ E∗P1

.

The benefits of the optimization problem P2 as compared
to the optimization problem P1 are mainly two, namely: (i)
using specific communication strategies P2 can be solved
with distributed, scalable and parallelizable algorithms; (ii) the
uniqueness of the minimizer in P2 guarantees the practical
convergence of iterative numerical algorithms.

Remark II.4 Note that, intuitively speaking, the solution of
problem P2 shares the patrolling burden as evenly as possible
among all the cameras. The unique partition that solves P2

is such that each camera has a time lag that is as similar as
possible to the time lag of its neighbours3.

Remark II.5 As pointed out in [5], having the cameras sweep
the assigned portions of the perimeter at the maximum speed is
efficient for static intruders, while for smart dynamic intruders
a more sophisticated law is needed. However, this control law,
which only involves the synchronization of the movements
of the cameras, can be applied to any partitioning of the
environment to be patrolled. Therefore, for smart intruders we
can apply the equal-waiting trajectory algorithm suggested in
[5] on the partitioning of L given by the optimal solution
EP2

of problem P2. In this work we focus on the optimal
partitioning of the environment, and, by applying the equal-
waiting trajectory to our optimal partitioning, we can combine
good performance both for static and dynamic intruders.

Remark II.6 Problems P ′1 and P2 can be rapidly solved
using a centralized algorithm. However, a distributed approach
may be more advisable due to the advantages already high-
lighted in the introduction, and in particular those regarding the

3In some way, it is similar to what happens with the problem of finding
x such that Ax = b, with A ∈ Rn×n singular and b ∈ Rn a given vector.
The problem has many solutions, but the one obtained by using the pseudo
inverse of A is the one that minimizes the norm of vector x.
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capability to adapt to dynamic changes like intruders tracking
or the presence of faulty cameras [5]. Note that these events
are usually only local, and in a centralized approach, each
time a new intruder appears or each time a camera fails the
algorithm has to be reset for the whole network.

III. A COORDINATED BROADCAST PARTITIONING
ALGORITHM (CB ALGORITHM)

Our goal is to design an iterative partitioning algorithm
that allows the cameras to update their patrolling areas using
only information coming from neighbouring cameras (camera
i, i ∈ {2, . . . , N − 1}, exchanges information with camera
i − 1 and camera i + 1; if i = 1 (resp. i = N ) the only
neighbour of camera 1 (resp. N ) is camera 2 (resp. N − 1)).
The update of the patrolling area has to be such that (i) the
physical constraints and the covering constraint are satisfied
at each iteration, and (ii) the set of patrolling areas converges
to the optimal partition.

We assume that the information flow is regulated by some
asynchronous communication protocol, namely, that there is
not a common reference time that keeps all the updating and
transmitting actions synchronized among all the cameras. It is
well known that synchronous communications are less robust
to delays, packet losses and interference phenomena. In par-
ticular, the communication protocol we adopt is a coordinated
broadcast (ideally, the transmitting camera communicates with
both its neighbours at the same time, and these reply back
immediately after).

The strategy we propose is next described and reported as
Algorithm 1. Suppose the patrolling areas are initialized in
such a way that the physical and interlacing constraints are
satisfied and let the iterations of the algorithm be indexed by
the discrete time variable t ∈ N. Then, at iteration t, one
camera4, say i, is activated, that is it performs one iteration
of the algorithm. Camera i transmits the values of `i(t) and
ri(t) to its neighbouring cameras i − 1, i + 1. Based on the
information received, cameras i − 1 and i + 1 update the
extremes of their patrolling areas that are “closer” to camera
i, namely, ri−1 and `i+1, respectively. For simplicity, we
consider only the update performed by camera i− 1.

Let mi−1(t) and mi(t) be the middle points of Ai−1(t) and
Ai(t), respectively, i.e,

mi−1(t) =
`i−1(t) + ri−1(t)

2
, mi(t) =

`i(t) + ri(t)

2
. (5)

Camera i− 1 computes the point c∗` which splits the segment
[mi−1(t),mi(t)] into two parts that require the same time to
be swept by the respective cameras; the formal expression for
c∗` is given in line 3 of Algorithm 1.

Camera i−1 sets ri−1(t+1) = c∗` , provided that this update
does not violate the physical constraints, i.e, it must holds
c∗` ∈

[
di, di−1

]
; otherwise ri−1(t+1) is set equal to the closest

point to c∗` that satisfies the physical constraint (see lines 4
through 10). Finally camera i− 1 sends the value ri−1(t+ 1)
to camera i which updates its left extreme accordingly, that is,

4In the description of the algorithms, we suppose that the selected camera
at time t is i = 2, . . . , N − 1; if i = 1 (i = N ) an ad hoc adjustment has
to be done, i.e. only the update of camera i+1 (resp. i−1) has to be done.

Algorithm 1 CB algorithm (time t, camera i activated)
1: Broadcast forward communication: camera i transmits
ri(t) and `i(t) to cameras i+ 1 and i− 1.

2: {% Update of the right extreme of camera i− 1}
3: c∗` = v̄i(`i−1(t)+ri−1(t))+v̄i−1(ri(t)+`i(t))

2(v̄i+v̄i−1) ;
4: if c∗` < di then
5: ri−1(t+ 1) = di;
6: else if c∗` > di−1 then
7: ri−1(t+ 1) = di−1;
8: else
9: ri−1(t+ 1) = c∗` ;

10: end if
11: {% Update of the left extreme of camera i+ 1}
12: c∗r = v̄i+1(`i(t)+ri(t))+v̄i(`i+1(t)+ri+1(t))

v̄i+v̄i+1
;

13: if cr∗ > di then
14: `i+1(t+ 1) = di;
15: else if c∗r < di+1 then
16: `i+1(t+ 1) = di+1;
17: else
18: `i+1(t+ 1) = c∗r ;
19: end if
20: {% Update of the extremes of camera i}
21: Peer to peer backward communication: camera i receives

from its neighbours `i+1(t+ 1) and ri−1(t+ 1).
22: `i(t+ 1) = ri−1(t+ 1);
23: ri(t+ 1) = `i+1(t+ 1);

time

t

A3(t) A5(t)A4(t)

`4(t), r4(t)`4(t), r4(t)
Forward comm.

m3(t)
m4(t)

m5(t)
c∗rc∗`

A3(t+ 1) A5(t+ 1)

`5(t+ 1)r3(t+ 1) Backward comm.
time

t+ 1 A3(t+ 1) A5(t+ 1)A4(t+ 1)

Fig. 2. Execution of one step of the algorithm in a simplified set-up with
Di = L and equal v̄i for all i. The camera activated at time t is camera 4.

`i(t+ 1) = ri−1(t+ 1) (see line 22). Camera i+ 1 carries out
an analogous update: in this case `i+1(t+1) and ri(t+1) are
the extremes involved (see lines 12 through 19 and line 23).

Figure 2 shows one step of the execution of the algorithm.
Observe that each iteration of the CB algorithm involves two
communication rounds; the first one from camera i to cameras
i−1 and i+1, referred to as the forward communication, and
the second one from cameras i − 1 and i + 1 to camera i,
referred to as backward communication.

To characterize the convergence of the CB algorithm we
need some condition on how often each camera is activated to
perform the broadcast forward communication. Therefore we
introduce the following property
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Assumption III.1 (Persistent camera activation) For all
t ∈ N, there exists a unique positive integer number τ such
that within the interval [t, t + τ) each camera performs a
broadcast forward communication at least once.

We have the following result characterizing the convergence
properties of the CB algorithm.

Theorem III.2 Let ξ(0) describe the initial patrolling areas,
satisfying the physical and interlacing constraints. Assume
Assumption III.1 holds true. Then the trajectory t → {ξ(t)}
generated by the CB algorithm satisfies that

(i) the physical, interlacing and covering constraints are
verified for all t ∈ N;

(ii) the cost functional J2 is not increasing and satisfies

J2(ξ(t+ 1)) < J2(ξ(t)), if ξ(t+ 1) 6= ξ(t).

(iii) the cost functional J∞ is not increasing and satisfies

J∞(ξ(t+ τ̄)) < J∞(ξ(t)), if ξ(t) /∈ E∗P1
,

where τ̄ = (N − 1)(τ + 1);
(iv) the cost functionals J2 and J∞ converges, respectively,

to J∗2 and J∗∞.

The proof is provided in Appendix A. The following result
follows directly from item (iv) of the previous Theorem.

Corollary III.3 Under the same hypotheses of Theorem III.2,
the trajectory t→ {ξ(t)} generated by the CB algorithm con-
verges to the optimal solution of Problem P2, i.e, ξ(t)→ ξ∗2 ,
and, in turn, to an optimal solution of P1.

IV. r-CB: ROBUSTIFICATION OF THE CB ALGORITHM TO
PACKET LOSSES

In the previous section we have introduced the CB algorithm
assuming that the communication channels are reliable and, in
particular, that no packet losses occur. In this section we relax
this assumption and we allow for transmission failures in the
communication between neighbouring cameras. In presence
of unreliable communications, the CB algorithm presents a
major shortcoming, as explained in the following. Observe
that, during each iteration of the CB algorithm, there are two
possible “sources” of packet loss: (i) the packet broadcast by
camera i during the forward communication is not received by
camera i−1 (or analogously by camera i+1); in this case, the
respective extremes remain unchanged and nothing happens;
(ii) the packet sent by camera i−1 (or analogously by i+1) to
camera i during the backward communication is not received,
and, in turn, camera i does not update the respective extreme;
it might result that ri−1(t+ 1) 6= `i(t+ 1) and the interlacing
and covering constraints might be violated (see Figure 3).

Observe that the latter failure is the most critical one; indeed
it might cause the presence of parts of the perimeter that are
not assigned to any of the cameras. To deal with such presence
of uncovered areas, we provide a modification of the CB
algorithm. Specifically, consider iteration t and assume that the
interlacing constraints (2) among all the cameras are satisfied.
Moreover assume that camera i is the camera performing the

time

t

Ai−1(t) Ai+1(t)Ai(t)

time

t+ 1 Ai−1(t+ 1) Ai+1(t+ 1)
Ai(t+ 1)

Overlap Uncovered

Fig. 3. Consequences of the failure of the backward communication:
generation of an overlap between the patrolling areas and of an uncovered
part of the environment. The situation at time t is corresponding to that
presented in Figure 2.

Algorithm 2 r-CB algorithm (time t, camera i activated)
1: Broadcast forward communication: camera i transmits
ri(t) and `i(t) to cameras i+ 1 and i− 1.

2: {% Update if camera i− 1 receives information}
3: c∗` = v̄i(`i−1(t)+ri−1(t))+v̄i−1(ri(t)+`i(t))

2(v̄i+v̄i−1) ;
4: if c∗` < `i(t) then
5: ri−1(t+ 1) = `i(t);
6: else
7: ri−1(t+ 1) = min

{
c∗` , d̄i−1

}
;

8: end if
9: {% Update if camera i+ 1 receives information}

10: c∗r = v̄i+1(`i(t)+ri(t))+v̄i(`i+1(t)+ri+1(t))
v̄i+v̄i+1

;
11: if cr∗ > ri(t) then
12: `i+1(t+ 1) = ri(t);
13: else
14: `i+1(t+ 1) = max {c∗r , ri(t)};
15: end if
16: The algorithm performs steps 20 ÷ 23 of Algorithm 1,

provided the backward communications are successful.

forward communication round. If camera i − 1 receives the
information related to `i(t) and ri(t), then it computes c∗` as
done for the CB algorithm, and it updates ri−1 as follows

ri−1(t+ 1) =

{
`i(t) if c∗` ≤ `i(t)

min
{
c∗` , di−1

}
if c∗` > `i(t)

(6)

Then camera i−1 sends the value ri−1(t+1) to camera i; if the
packet is received, then camera i sets `i(t+ 1) = ri−1(t+ 1),
otherwise `i remains unchanged, i.e., `i(t+1) = `i(t). Observe
that, according to the update proposed in (6), it holds that
`i(t+ 1) ≤ ri−1(t+ 1), and, hence, the interlacing constraint
between cameras i − 1 and i is still satisfied. This new
algorithm, that is robust to packet losses, is denoted hereafter
as r-CB (see the algorithmic description in Algorithm 2).

To characterize the convergence properties of r-CB, we need
an Assumption on the frequencies of transmission failures.

Assumption IV.1 (Persistent communication) Given any
camera i, there exists a positive integer number h such
that the number of consecutive failures in the forward
communication from node i to node i− 1 (or i+ 1) is smaller
than h.

We have the following result.
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Theorem IV.2 Let ξ(0) describe the initial patrolling areas,
satisfying the physical and interlacing constraints, and let
Assumptions III.1 and IV.1 hold true. Then, the evolution
t→ ξ(t) generated by the r-CB algorithm satisfies that

(i) the physical, interlacing and covering constraints are
verified for all t ∈ N;

(ii) the cost functional J∞(t) is not increasing and satisfies

J∞(ξ(t+ τmax)) < J∞ (ξ(t)) if ξ(t) /∈ E∗∞.

where τmax := 2hτ(N − 1) + 1.
(iii) J∞(ξ(t)) converges to J∗∞.

The proof is reported in Appendix B. The following result
follows directly from the previous Theorem.

Corollary IV.3 Under the same assumptions of Theorem IV.2,
the trajectory t→ ξ(t) converges to the set of optimal solution
of problem P1, i.e., ξ(t)→ E∗∞.

Remark IV.4 The algorithm presented in this work is similar
to the one presented in [4], [6]. However, the mathematical
machinery used here is substantially different from the one
employed in [4], [6], which considers only the lossless sce-
nario and which strongly relies on the monotonicity of J2(ξ)
and on its minimum being unique. In fact, when packet loss is
considered neither J2(ξ) nor J∞(ξ) satisfy the hypotheses of
the theorems in [6]. Moreover, Theorem IV.2 is rather general
and might be applicable to other relevant applications such as
2D/3D partitioning in cooperative robotics with asynchronous
and lossy communication.

We carried out some simulations to further show the ef-
fectiveness of the algorithm. The setting is the following:
the number N of cameras takes different values, the length
of the environment is L = 10N and the maximum speed
is v̄i = 2 for all cameras. The patrolling range of cameras
i = 2, . . . , N − 1 is [10(i − 1) − 2, 10i + 2], for camera
1 is [0, 12] and for camera N is [10(N − 1) − 2, 10N ].
Concerning the communication reliability, a communication
works with a probability of 70% and the value for threshold
h is 10 (in the implementation we assure that Assumption
IV.1 is satisfied); also, every N iterations all the cameras are
activated, implying a value for parameter τ in Assumption
III.1 equal to 2N − 1. The initialization for the algorithm is
li(0) = di, ri(0) = di(0) for all the cameras. Figure 4 shows
the normalized cost functions for a realization of the r-CB
algorithm. Given a cost function J(t) with optimal value J∗,
its normalized form J̃ is given by

J̃(t) =
J(t)− J∗

J(0)− J∗
. (7)

The figure confirms that, as demonstrated in Theorem IV.2,
J̃∞ does not increase as the number of iterations increases
and converges to the optimal value, while for J̃2 the non-
increasing property does not hold. This clearly shows that
J2(t) cannot be used as a Lyapunov function. Nevertheless,
J2(t) still converges to its optimal value. Note that the speed
of convergence of the algorithm is similar for all the sizes of

Fig. 4. Logarithm of the normalized cost functions J̃∞ and J̃2 (see Equation
(7)) for one realization of the r-CB algorithm and different values of N . The
time scale is divided by N , which implies that at each integer value of t/N
all the cameras have been activated once.

the network considered, which implies that the algorithm is
very scalable. Together with scalability, we also underline the
the algorithm has a really moderate computational burden.

V. CONCLUSION

In this paper we studied the patrolling problem, showing
that, at least for static intruders, the partitioning of the envi-
ronment is a very effective and simple strategy to solve the
problem. We developed a distributed algorithm to allow each
camera to compute its optimal patrolling area and we show
that under reliable communication it converges to the optimal
solution. In case of unreliable communication we propose
another algorithm which, always respecting the (essential)
coverage constraint, solves the partitioning problem. The latter
is a particularly interesting analysis, which is not present in
previous papers on the same subject.

APPENDIX A

Proof of Theorem III.2: Point (i) can be easily verified
by analysing the steps of the algorithm. For point (ii) and
(iii) we prove only the part concerning J2 (the part of point
(ii) related to J∞ follows from Theorem IV.2). We start by
observing that after τ iterations of the BC algorithm, we have
that ri(t) = `i+1(t) for all i = 1, . . . , N . For t ≥ τ , we can
introduce the auxiliary variables xi(t) = ri(t) = `i+1(t), i =
1, . . . , N − 1, and let x(t) be the vector collecting all xi(t).
The vector x(t) represents the state of our system. The goal
is to apply Theorem 4.3 of [20]. To do so, we will verify that
all the hypotheses of this Theorem are satisfied in our context.

First of all, observe that, according to the physical con-
straints, we have that di+1 ≤ xi(t) ≤ di and so x(t) can take
values only in W =

∏N−1
i=1

[
di+1, di

]
. Since W is given by

the Cartesian product of N−1 closed intervals, it follows that
W is compact. Next, for i ∈ {1, . . . , N}, let Ti : W →W be
the map describing the updating iteration of CB algorithm in
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case camera i is the camera performing the forward communi-
cation round. Observe that, for i ∈ {1, . . . , N}, the map Ti is
continuous with respect to the standard Euclidean metric. Now,
for x = [x1, . . . , xN−1] ∈ W , let us introduce the function
U : W → R such that

U(x(t)) =
1

2

N∑
i=1

Li(t)
2

v̄i
, (8)

where Li(t) = ri(t)−`i(t) = xi(t)−xi−1(t). We need to show
that U is a Lyapunov function for the update of the algorithm,
i.e, that U(x(t + 1)) < U(x(t)) whenever x(t + 1) 6= x(t).
We start stating the following
FACT. Let L, α, β be three positive real numbers. Then the
minimizer of the function g(x) = x2

α + (L−x)2

β within the
interval [0, L] is given by x = αL

α+β .
Suppose that at time t the i−th camera is activated, i 6= 1

and i 6= N , and consider the following sum of terms:

Γ=
1

2

Li−1(t)2

vi−1
+

1

2

Li(t)
2

vi
+

1

2

Li+1(t)2

vi+1
=

=
1

vi−1

(
Li−1(t)

2

)2

+
1

vi−1

(
Li−1(t)

2

)2

+
1

vi

(
Li(t)

2

)2

︸ ︷︷ ︸
γ1

+

+
1

vi

(
Li(t)

2

)2

+
1

vi+1

(
Li+1(t)

2

)2

︸ ︷︷ ︸
γ2

+
1

vi+1

(
Li+1(t)

2

)2

.

Recalling the quantities in Formulas (5) and the value of c∗` (t),
if we consider L̃i−1(t) = Li−1(t)

2 + Li(t)
2 = mi(t)−mi−1(t),

the point c∗` (t) − mi−1(t) is the minimizer of function g(z)
of parameters L = L̃i−1(t), α = vi−1 and β = vi, as can be
verified by calculation.
Introduce now L′i−1(t) = ri−1(t+ 1)−mi−1(t) and L′i(t) =

mi(t)− ri−1(t+ 1) = L̃i−1(t)− L′i−1(t).
Since we have that ri−1(t) ≤ ri−1(t + 1) ≤ c∗` or ri−1(t) ≥
ri−1(t+ 1) ≥ c∗` , the update implies that

γ1 = g

(
Li−1(t)

2

)
≥ g(L′i−1(t)).

A similar reasoning holds considering the update of camera
i+ 1. According to the latter, defining L′′i+1(t) = mi+1(t)−
`i+1(t+ 1) and L′′i (t) = `i+1(t+ 1)−mi(t), it holds

γ2 ≥
1

vi
(L′′i (t))2 +

1

vi+1
(L′′i+1(t))2.

As a consequence, we have

Γ≥ 1

vi−1

(
Li−1(t)

2

)2

+
1

vi−1
(L′i−1(t))2︸ ︷︷ ︸

δ1

+

+
1

vi
(L′i(t))

2+
1

vi
(L′′i (t))2︸ ︷︷ ︸

δ2

+
1

vi+1
(L′′i+1(t))2+

1

vi+1

(
Li+1(t)

2

)2

︸ ︷︷ ︸
δ1

.

Now define Li−1(t+ 1) = Li−1(t)
2 +L′i−1(t), Li+1(t+ 1) =

Li+1(t)
2 + L′′i+1(t) and Li(t + 1) = L′i(t) + L′′i (t). Analysing

δ1, we have that

δ1 =
1

vi−1
g

(
Li−1(t)

2

)
≥ 1

vi−1
g

(
Li−1(t+ 1)

2

)

where in this case the parameters of function g are L =
Li−1(t+1), α = β = 1. A similar reasoning holds for δ2 and
δ3. All the previous considerations lead to the following

U(x(t)) ≥
N∑
j=1

j 6=i,i−1,i+1

Lj(t)
2

2
+ 2

1

vi−1

(
Li−1(t+ 1)

2

)2

+

+ 2
1

vi

(
Li(t+ 1)

2

)2

+2
1

vi+1

(
Li+1(t+ 1)

2

)2

=U(x(t+ 1).

When the camera that is activated at time t is the 1-st or the
N−th a similar reasoning shows that U(x(t)) ≥ U(x(t+ 1)).
Therefore we have U(x(t)) ≥ U(x(t+ 1)), and the inequality
is strict as long as at least one of the following holds, li+1(t+
1) 6= li+1(t), ri−1(t+ 1) 6= ri−1(t).
We are now in the position of applying Theorem 4.3 of [20]
and to conclude that x(t) converges to the set F1 ∩ · · · ∩FN ,
where Fi = {x ∈ W | Ti(x) = x} is the set of fixed points
of Ti. Clearly F1 ∩ · · · ∩FN is a singleton that coincides with
the optimum of problem P3. Since J2(t) converges to J∗2 ,
necessarily also J∞(t) converges to J∗∞.

APPENDIX B

The following Theorem is a refinement of Theorem 4.3 in
[20], valid for a specific class of dynamical switching systems.

Theorem B.1 Let W ⊂ Rn be a compact set. Let m be a
positive integer and let {Ti : W →W, i = 1, . . . ,m} be a set
of m continuous functions. Let J : W → R>0 be a continuous
function5, and let W∗ and J∗ be, respectively, the set of the
minimizers and the minimum value attained by J overW . For
i ∈ {1, . . . ,m}, assume the following two properties hold true

J (Ti(x)) ≤ J(x), ∀x ∈W, (9)
J(Ti(x)) < J(x), ∀x /∈ W∗. (10)

Consider the trajectory generated by

x(t+ 1) = Tσ(t)(x(t)), x(0) ∈W,

where σ : Z≥0 → {1, . . . ,m}6 is a process determining which
map within the set {T1, . . . , Tm} is selected at iteration t. Then
we have

lim
t→∞

J (x(t)) = J∗

and x(t) converges to the set W ∗.

Proof: The proof follows using the same continuity
arguments adopted in the proof of Theorem 4.3 in [20].

Proof of Theorem IV.2: Point (i) is an immediate
consequence of the steps of the algorithm. Concerning Point
(ii), let us denote Tlag(Ai(t)) as Ti(t), and let us denote
Tmax(t) := maxi {Ti(t)}. We can state two preliminary facts.

FACT I. If camera i successfully transmits to camera i+ 1 at
time t, and if Ti(t) > Ti+1(t), then Ti+1(t+ 1) < Ti(t). As a
consequence Ti+1(t′) < Tmax(t), ∀t′ > t.

5R>0 denotes the set of positive real numbers.
6Z≥0 denotes the set of non-negative integer numbers.
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To confirm the validity of the above fact we observe that, due
to the algorithm step, it holds

Ti+1(t+ 1) ≤ 2

(
3

8
Ti+1(t) +

Ti(t)

8

)
< Ti(t).

Since Ti(t) ≤ Tmax(t), the last sentence follows by induction.

FACT II. If camera i + 1 successfully transmits to camera i
at time t, and if Ti(t) > Ti+1(t) and `i+1(t) < ri(t), then
Ti(t+ 1) < Ti(t).

Since Ti(t) > Ti+1(t), the algorithm tries to diminish Ti(t).
The fact that `i+1(t) < ri(t) allows to argue that ri(t+ 1) <
ri(t). The statement easily follows.

Now, observe that from Fact I it follows that J∞(t) is
non increasing. To prove that J∞(t + τmax) < J∞(t) if
ξ(t) /∈ E∗P1

, we first suppose that only camera i is such
that Ti(t) = Tmax(t). Since ξ(t) /∈ E∗P1

, it holds that
Ti(t) = Tmax(t) > T ∗P1

. As a consequence it is not possible to
have that both, ri−1(t) = d̄i−1 and `i+1(t) = di+1. Suppose
also that `i+1(t) = ri(t) and `i+1 > di+1 (all the other starting
situations lead to the same conclusion). Due to the assump-
tions, defining τ̃ = hτ , there exists a t̃, t ≤ t̃ ≤ t+ τ̃ such that
camera i successfully communicates with camera i+ 1. As a
consequence, `i+1(t̃+1) < ri(t) due to Fact I. If the backward
communication works, Ti(t̃ + 1) < Ti(t) = Tmax(t) and we
are done. Otherwise in [t̃+1, t̃+ τ̃ ] there is a working forward
communication between cameras i+ 1 and i, for which (due
to Fact I) the hypothesis of Fact II hold. As a consequence,
we have that for sure Ti(t+ 2τ̃ + 1) < Ti(t) = Tmax(t).

If there is more than one camera i such that Ti(t) =
Tmax(t), it is possible to show using the previous reasoning
that J∞(t+2τ̃(N−1)+1) < J∞(t). This is the time interval
required for the two worst possible cases: one of these is when
at time t cameras 1, . . . , N−1 have time lag Tmax(t), are such
that ri(t) = `i+1(t), i = 1 . . . , N−1, and only the last camera
has a time lag smaller than Tmax(t) (the other case is the one
with cameras 2, . . . , N that have time lag Tmax(t)). Defining
τmax := 2τ̃(N − 1) + 1 we are done.

Finally we prove point (iii): consider vector ξ(t) ∈ R2N

associated to {Ai(t)}Ni=1, and its reduced version ξ′(t) ∈
R2N−2 corresponding to ξ(t) without its first and last elements
(that are always 0 and L respectively). Consider the sequence
{xk}∞k=1 that represents the evolution of the patrolling areas
given by the algorithm every τmax instants, i.e. xk = ξ′(t)
for some t ≥ 0 and xk+1 = ξ′(t + τmax). Due to the
physical bounds of the cameras, xk belongs to a compact set
W obtained as the cartesian product of intervals.

Now we can define maps T1, . . . , TM , with M a finite
integer, in the following way: there exists a map Tj : W →
W for every possible camera activation sequence of length
τmax − 1 and the related communications that work for each
activation, respecting both Assumptions III.1 and IV.1. In this
way, it is always possible to find a j ∈ {1, . . . ,M} such that
xk+1 = Tj(xk). Since each possible step of the algorithm is
a continuous function, also every Ti is a continuous function.

Note now that J∞ is a continuous function such that
J∞(Tj(xk)) ≤ J∞(xk), ∀xk ∈ W, j ∈ {1, . . . ,M}, and
J∞(Tj(xk)) < J∞(xk), ∀xk /∈ A∗P1

, j ∈ {1, . . . ,M} due to

point (ii). Using Theorem B.1 we have that J∞(xk) converges
to J∗∞. Since at each iteration of the r-CB algorithm the cost
function is smaller or equal to the previous step, we also have
that J∞(t) converges to J∗∞.
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