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Abstract: State Estimation (SE) is one of the essential tasks to monitor and control the smart power
grid. This paper presents a method to estimate the state variables combining the measurement
of power demand at each bus with the data collected from a limited number of Phasor
Measurement Units (PMUs). Although PMU data are usually assumed to be perfectly synchronized
with the Coordinated Universal Time (UTC), this work explicitly considers the presence of
time-synchronization errors due, for instance, to the actual performance of GPS receivers and the
limited stability of the internal oscillator. The proposed algorithm is a recursive Kalman filter which
not only estimates the state variables of the power system, but also the frequency deviations causing
clock offsets which eventually affect the timestamps of the measures returned by different PMUs.
The proposed solution was tested and compared with alternative approaches using both synthetic
data applied to the IEEE 123 bus distribution feeder and real-field data collected from a small-size
medium-voltage (MV) distribution system located inside the EPFL campus in Lausanne. Results show
the validity of the proposed method in terms of state estimation accuracy. In particular, when some
synchronization errors are present, the proposed algorithm can estimate and compensate for them.

Keywords: state estimation; phasor measurement units; Kalman filter; time synchronization;
smart grids

1. Introduction

Presently, the worldwide ambient and climate targets could be achieved only through the
so-called energy transition where renewable energies will play a central role to reduce the CO2

emissions [1]. The current electrical grid should become more flexible and robust to host not only
variable Renewable Energy Sources (RES)—such as solar and wind generators—but also an increasing
number of time-variable and non-linear loads such as electric vehicles and heat pumps. This context
requires advanced monitoring and control techniques to assure proper and effective behavior to both
transmission and distribution grids. Among the different tasks, the State Estimation (SE) is one of
the most important tools which allows knowledge of the state variable in each point of the grid
to properly adopt necessary control actions [2]. The classic method for SE solution is based on a
weighted least-square (WLS) algorithm and has been mainly formulated and used in transmission
networks due to their stable topology and numerous measurement points [3] which guarantee the
observability requirement. However, recently, SE gained interest also at the distribution level where
the physical structure and the lack of measurement points with respect to the number of nodes make
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observability sometimes challenging [4]. Also, due to the development of smart grid framework
system-level solutions for SE that can be applied to both transmission and distribution grids can be
of great interest [5], so different state estimators have been proposed in the recent literature for both
transmission as well as distribution grids [6,7]. Complementary to this aspect, a new measurement
device called Phasor Measurement Unit (PMU) is becoming central to improve the SE accuracy.
Initially, thanks to their capability to provide a grid snapshot through either the voltage or current
phasors synchronized with the Universal Coordinated Time (UTC), PMUs have been proposed for
applications on the wide-area monitoring systems (WAMS) in transmission networks. According to
their accuracy, PMUs can operate in two different classes (i.e., M or P) for measurement or protection
scopes with different reporting rates depending on the use and the grid frequency (e.g., 60 Hz in the
USA or 50 Hz in Europe) [8]. These characteristics allow the collection of numerous synchrophasors
per second which can be used to track the distribution grid dynamics caused by time-varying loads or
generators (as for example PV generators, EV-charger or storage charging and discharging ) [9], or for
power quality evaluation [10], or for protection and stability assessment [11] or for State estimation
process [12–14]. In the recent literature, different works analyze the impact of measurement uncertainty
on SE accuracy [15,16] highlighting that a low number of PMU can significantly increase the state
variable estimation even in the presence of distributed generation [17]. For this purpose several SE
methods have been proposed only based on synchrophasors as in [12] or combining the measurements
provided by the traditional power devices with them [18–20].

It is important to highlight that despite their high accuracy with respect to the classical power
meters, the PMUs are affected by three different sources of uncertainty, i.e., synchrophasor estimation
algorithms, analog-to-digital converter (ADC), or synchronization process [21]. In this paper, we
only focus on the time-synchronization process and its impact on state estimation. As reported
in [22] the synchronization module is responsible for the time dissemination over the system and the
synchronization of the internal clocks for acquisition and the time-tag of the performed measurements.
Internally to PMU the clocks, can be disciplined by the time-synchronization source and widespread
all over the architecture. To discipline the acquisition with the clock, the most typical technique is
based on phase-locked-loop (PLL). This operation can cause frequency deviations producing not
negligible time-skews. This phenomenon has been considered in the literature related to the SE
problem. In particular in [23] the impact of the synchronization uncertainty using a static estimation
algorithm has been studied. A possible solution based on a bilinear measurement model considering
the grid state variable and synchronization parameters is presented in [24]. The algorithm consists of
two parallel Kalman filters which solve at the same time the state and the synchronization inaccuracy.
Based on similar model, results are also reported in [25]. The synchronization source can rely directly
or indirectly from GPS receiver. When the source is external the information about the reference
time can be distributed using network time methods such as net time protocol (NTP), precise time
protocol (PTP) [26], white rabbit [27] or IRIG-B. This type of synchronization is particularly adopted in
substation to synchronize PMU from different points respecting the accuracy of ±1 µs required by the
Power Profile Standard IEEE C37.238–2011 [28]. However also the GPS or the other timing system can
be affected by errors, because the signals can be not reachable or corrupted at the source at the time
signal receiver or within the PMU [29] and this represent a further synchronization inaccuracy.

Since the accuracy of the PMU affects considerably the accuracy of the SE, the aim of this work
is to consider PMU measurement uncertainties coming from time synchronization and to propose a
technique to simultaneously estimate the state variables and the synchronization parameters in order
to possibly compensate the errors. With respect to this context, this paper aims to extend the work
done in [30] and to present a real-time algorithm based on Kalman filter. The algorithm is based on the
linear model proposed in [31], where the power flow manifold is approximated around any feasible
working point and explicitly computed offline. Based on the work published in [18], the state estimator
will use two sources of information: the power profiles of active and reactive power (coming from
forecasted values or pseudo-measurements) and the PMUs. Also, as a byproduct of the model choice,
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our methodology seamlessly applies to transmission as well as distribution grids. The benefits of the
present method is evaluated through simulations over two different grids and the results show that
in the presence of synchronization error, the presented method is able to compensate the inaccuracy
and perform better than other algorithms that do not consider synchronization error parameters in the
model. Moreover, a test over a small real grid only monitored by PMUs highlights the capability for
the algorithm to compensate the frequency deviation within the nodes.

The remainder of this paper is structured as follows. The end of this section is devoted to symbols
and abbreviations. Section 2 presents the power grid modeling and the power flow linearization.
Section 3 formalizes the model the two type of measurements used (i.e., power data and PMUs).
Section 4 describes the state estimation and Section 5 a two-node example theoretical solution.
In Section 6 simulation and results are reported and finally the conclusions are presented in Section 7.

2. Grid Model and Linearized Power Flow

As aforementioned, the electric grid is evolving toward the smart grid concept due to the deep
deployment of instrumentation devices and the use of ICT for monitoring and control. With this
respect the power grid can be considered to be a cyber-physical system consisting of three layers
which from top to bottom are given by (i) the cybernetic layer, (ii) the metering layer and (iii) the
physical layer. See Figure 1 for a graphical representation of a smart grid as a cyber-physical system.
The cybernetic layer consists of two main actors: the data aggregator (DA) and the central processing
unit (CPU). The DA gathers the measurements coming from the metering layer and sends it to the
CPU which performs all the computations.

Among the different tasks performed by the CPU, in this paper we focus on the estimation of
the power grid state at a certain time. To estimate the state of a grid, it is necessary that the grid is
observable, and this is assured by the second layer through the metering infrastructure. In this specific
case, we assume that at each bus we can reconstruct the power profile based on low-accurate power
meters. Moreover, we consider that a small subset of buses is equipped with Phasor Measurement
Units (PMUs) which can provide the bus voltage and current phasors synchronized with the UTC. For
all the details about the measurements model we refer the reader to Section 3.

physical layer

DA CPU

cyber layer

W

power meter

W

power meter

V

PMU

W

power meter

W

power meter

W

power meter

V

PMU

metering layer

Figure 1. Smart grid envisioned as a cyber-physical system consisting of three layers. From top to
bottom, (i) cybernetic layer, in charge of data aggregation and computational burden, (ii) metering
layer, in charge of measurement collection, and (iii) physical layer, consisting of the actual electrical
buses and branches of the network.
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Finally, regarding the physical layer, under the hypothesis of sinusoidal steady-state condition,
if we denote with V = {1, . . . , n} the electrical buses and E the lines between connected buses, the grid
can be modeled as a graph G(V , E). For each node h ∈ V , it is assumed that:

• uh = vhejθh ∈ C is the complex voltage at the bus h where vh, θh ∈ R are the modulus and phase
of the complex phasor, respectively;

• ih ∈ C is the complex current injected at the bus h;
• sh = ph + jqh is the apparent power absorbed by the bus where ph, qh ∈ R are the active and the

reactive power, respectively.

In addition, if we consider two nodes, h and k, the element yhk is the admittance of the electric line
(h, k), while ysh

h is the shunt admittance (admittance to ground) at bus h. Because of that, the admittance
matrix can then be written as:

[Y]hk =

{
ysh

h + ∑` 6=h yh` , if k = h ;

−yhk , otherwise ;
(1)

Defining the voltage, current and apparent power vectors as u = [u1, . . . , un]T , i = [i1, . . . , in]T ,
s = [s1, . . . , sn]T , respectively, we have the Kirchhoff’s law and the nodal power balance as

i = Yu , s = diag(u)i (2)

where (·) denotes the complex conjugate operator and diag(·) denotes the diagonal matrix with ii-th
diagonal element equal to the i-th element of its vector argument. From the previous equations one gets

s = diag(u)Yu , (3)

that equals the power flow equations to be solved. At this point, based on the main result of [31] it is
possible to linearize the non-linear power flow Equations (3) around any feasible point in the power
flow manifold.

The grid state vector can be defined as ξ := [vT , θT , pT , qT ]T , being v, θ, p, q ∈ Rn the bus
values of voltage magnitude and phase (v, θ) and active and reactive power (p, q), respectively.
Then, by expressing the complex Equations (3) in rectangular coordinates, it is possible to rewrite
them in implicit form as F(ξ) = 0, F : R4n 7→ R2n, and, in turn, implicitly define (Lemma 1 of [31]) the
power flow manifold

M := {ξ | F(ξ) = 0} . (4)

[Proposition 1 of [31]] Let define ξ∗ ∈ M, i.e., ξ∗ = {[(v∗)T , (θ∗)T , (p∗)T , (q∗)T ]T | F(ξ∗) = 0 }.
Then, the linear manifold tangent toM in x∗ is given by

Aξ∗(ξ − ξ∗) = 0 , (5)

where
Aξ∗ =

[(
〈diag Yu∗〉+ 〈diag u∗〉N〈Y〉

)
R(u∗)︸ ︷︷ ︸

Au∗

− I
]

,

u∗ :=v∗ejθ∗ , I is the identity matrix of suitable size and

N :=

[
I 0
0 −I

]
, 〈A〉 =

[
Re A −Im A
Im A Re A

]
,

R(u) :=

[
diag(cos θ) −diag(v)diag(sin θ)

diag(sin θ) diag(v)diag(cos θ)

]
.
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The best linear approximation corresponding to the plane tangent to M at ξ∗, of the power
manifoldM at the feasible point ξ∗ is stated by Proposition 2. It is relevant to note that assuming Au∗

invertible (this is not restrictive due to the presence of node shunt admittance), the voltage deviations
in polar coordinates δv := v− v∗ and δθ := θ− θ∗ can be expressed as a linear function in rectangular
coordinates of the power deviations δp := p− p∗ and δq := q− q∗[

δv
δθ

]
= A−1

u∗

[
δp
δq

]
. (6)

It is worth noting that Equation (4) holds for the electrical quantities (i.e., voltages and
power injection) independently from the considered grid model buses (e.g., PQ, PV or slack bus).
Indeed, the linear formulation in [31] works for any working point ξ∗ ∈ M and, as shown in [31],
generalizes over previously proposed linear approximation presented in the literature (such as the
Linear Coupled power flow model [32], the DC power flow model [33] and the rectangular DC power flow
model [34]). All the mathematical details are reported in [31].

3. Measurement Models

This section presents the measurement models used as input for the proposed state estimator.
Since the grid observability is a requirement to find a possible solution in the state estimation problem,
the first source of information is given by the active and reactive power at every bus, that will be used
in a prior stage of the Kalman filter. Since these data are not everywhere available, at least as direct
measurements, they are usually replaced by historical or forecasted data coming from aggregated
values while considering a not negligible uncertainty contribution. As commonly indicated in the
literature, we will also refer to this information as pseudo-measurements. This prior estimate will be
refined in the update stage of the Kalman filter by exploiting high-accurate information coming from
PMUs placed in (possibly only few) strategic points of the grid [18].

3.1. Power Demand

Currently, the electrical grid (mainly at distribution level) lacks measurement points to guarantee
the necessary observability requirement for monitoring and control actions. For this reason, it is
common to use information based on historical time-series or forecasted data of active and reactive
power demands at each bus extrapolated from the aggregation of smart meters data [35]. By assuming
node h ∈ V and time t ∈ Z+ it is possible to write[

p̃h(t)
q̃h(t)

]
=

[
ph
qh

]
+

[
wp

h(t)
wq

h(t)

]
,

[
wp

h(t)
wq

h(t)

]
∼ N (0, Σw) (7)

where

Σw =

[
σ2

p |ph|2 ησpσq|ph||qh|
ησpσq|ph||qh| σ2

q |qh|2

]
being ph, qh the nominal values of the active and reactive power respectively, σp = σq ≈ 30–50%
based on the results in [35] and η ∈ [0, 1]. Also, we assume E[wp

k (t)w
p
h(t)] = E[wq

k(t)w
q
h(t)] =

E[wp
k (t)w

q
h(t)] = 0 according to [18,35].

3.2. Phasor Measurement Units

The second source of information is given by synchrophasor measurements provided by PMUs
deployed in a limited set of nodes of the grid. As aforementioned, these devices are commonly
considered able to perfectly synchronize the voltage or current phasor, with a negligible uncertainty
synchronization contribution, by means of a GPS module for example. However, despite this,
PMUs can be affected by poor synchronization due for example to temporary occlusion of satellites [36]
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or cyber-attacks [37]. In addition to this, within successive synchronization instants with the
GPS module, usually providing 1pps (pulse-per-second) synchronization signal, PMUs exploit
an internal oscillator as a reference clock which, in turn, might cause additional synchronization
error. Hence, depending on the type of GPS module and oscillator, different synchronization error,
directly proportional to the cost of these devices, can be achieved.

Ultimately, the measurements at bus h at time t ∈ Z+ can be denoted as

ṽh(t)=vh(t)+wv
h(t), wv

h(t) ∼ N (0, σ2
pmu,v|vh|2),

θ̃h(t)= θh(t)+wθ
h(t)+dh(t), wθ

h(t) ∼ N (0, σ2
pmu,θ),

(8)

where we set σpmu,v = 0.1%, σpmu,θ = 10−3 [rad], and assume uncorrelated measurement noise within
the same node and across different nodes, i.e., E[wv

k(t)w
θ
k(t)] = E[wv

k(t)w
v
h(t)] = E[wθ

k(t)w
θ
h(t)] = 0.

Indeed, wθ is mainly due to sampling jitter and synchronization error while wv to the instrumentation
amplitude noise. Differently from standard Gaussian additive models, the additional term dh(t) in (8)
indicates the uncertainty contribution with respect to the UTC reference. It is known from [21] that this
component mainly affects the voltage phase angle measurements, so we assume the synchronization
error is limited to the voltage state variable. At this point, it is worth noting how the linear model (6)
conveniently expresses the voltage state variables in polar coordinates as functions of the power
state variables in rectangular coordinates. This differs from for previously proposed linear models
usually expressing both voltages and powers (or, more often, currents) in rectangular coordinates.
Because of this, the synchronization error should be projected from polar to rectangular coordinates
thus introducing a coupling term between the real and imaginary part as well as an additional source
of uncertainty (due to the approximate projection). Conversely, Equation (6) lets us avoid this.

The model of clock delay within successive synchronization instants (kT, (k + 1)T), can be
expressed as:

dh(t) = βh + αh
T

M− 1
t , t ∈ {0, . . . , M− 1} , (9)

where T is the GPS synchronization period and M is the number of PMU measurements collected
within two successive synchronization instants. The parameters βh, αh ∈ R are an offset term due
to GPS inaccuracy, and the clock skew due to the fact that the internal clock of the PMU, in general,
does not oscillate at the reference frequency, respectively.

Observe that the measurements are characterized by three different time-scales.
First, power demand information coming from pseudo-measurements are usually available
from historical data or in the form of 1-day a-head predictions. Second, the PMU measurements live
on a faster time-scale, t, t + 1, . . ., depending on the PMU reporting rate. Finally, as GPS provides
a sync signal every T[s], the PMU internal clock re-synchronize with the universal reference at
kT, (k + 1)T, . . .. To distinguish the behavior when PMU measurements are collected with respect to
instants when the GPS re-synchronizes, it is possible to re-define discrete-time instants in a unique
time reference given by:

τ(k, t) = kT +
T

M− 1
t , k ∈ Z+ , t ∈ {0, . . . , M− 1} , (10)

referring to the k-th resync instant and to the t-th measurements within [kT, (k + 1)T), see Figure 2.
For simplification in the following x(k, t) will be used instead x(τ(k, t))
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time
(k − 1)T
GPS sync

kT
GPS sync

(k + 1)T
GPS sync

M − 1 M − 1

SASE reset SASE resetτ(k − 1, 2)

Figure 2. Discrete time-line representation in a universal time frame, where it is illustrated how using
Algorithm 1, the filter reinitialize the initial condition every T[s] [30].

4. State Estimation

Literature presents different methods to solve the state estimation problem, which can be classified
as static or dynamic. The static algorithms, mainly based on WLS algorithm, are only based on data
measured at a given time. Conversely, the dynamic state estimators rely on a system model describing
state evolution and estimate the state in an iterative way by applying a prediction and an update step.
Depending on how the system model is defined, many different kinds of dynamic state estimators have
been proposed for power systems, e.g., linear Kalman filters (KFs) [12,38], Extended Kalman Filters
(EKFs) [39], or robust Unscented Kalman filters (UKF) [40]. In our case, by taking advantage of the
dynamic linear model (6), the measurements and their statistical information, we present a real-time
Kalman-based state estimator which, conversely to standard procedures, explicitly considers the effect
of the synchronization error in the phasor measurement units. The proposed method is regarded as a
Bayesian inference process, where active and reactive power measurements are used to establish a
prior for the Bayesian model while the estimation improvement relies on PMUs information.

4.1. State-Space Model

Since the proposed estimator is based on a Kalman filter [41], a suitable state-space model is
required. Conventionally, in the power system literature, since the grid state are the voltage phasors
in rectangular coordinates, those are also chosen as filter state. Conversely, in this work, the state
variables are the power demand deviations ( δp, δq ∈ Rn) and the synchronization error parameters
(α, β ∈ Rm). This choice is not restrictive and comes naturally from (6) and (8). It is relevant to
remember that the synchronization error parameters equal the number 0 ≤ m ≤ n of PMUs deployed
in the grid. Now, since the incremental linear model (6) is defined regarding a predefined operating
point, we assume p∗ and q∗ are nominal demands to which correspond u∗ = (v∗, θ∗). Then, state and
output equations of the Kalman filter at τ(k, t), k ∈ Z+, t ∈ {0, . . . , M− 1}, are defined by:

x(k, t + 1) = x(k, t) + wx(k, t) (11)

y(k, t) = Hx(k, t) + wy(k, t) (12)
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where

x(k, t) = [δp(k, t)T δq(k, t)T α(k, t)T β(k, t)T ]T ,

x(k, 0) ∼ N (0, Σ0),

Σ0 =


σ2

pdiag(|p∗|)2 Σpq
0 0 0

Σqp
0 σ2

q diag(|q∗|)2 0 0
0 0 σ2

α I 0
0 0 0 σ2

β I

 ,

Σpq
0 = Σqp

0 = σpσqdiag(|p∗|)diag(|q∗|),
wx(k, t) ∼ N (0, W),

y(k, t) =

[
δṽ(k, t)
δθ̃(k, t)

]
:=

[
ṽ(k, t)
θ̃(k, t)

]
−
[

v∗

θ∗

]
,

ṽ(k, t) = [ṽ1(k, t) . . . ṽm(k, t)]T ,

θ̃(k, t) = [θ̃1(k, t) . . . θ̃m(k, t)]T ,

H =

[
A−1

u∗
0 0

t T
M−1 I I

]
,

wy(k, t) := [wv(k, t)T wθ(k, t)T ]T ∼ N (0, R),

R =

[
σ2

pmu,vdiag(|v∗|)2 0
0 σ2

pmu,θ I

]
.

The estimated process noise covariance information (e.g., from data) can be embedded in the
W matrix. In the following, given the small re-synchronization period, we usually consider W = 0
and outline an interesting closed-form analysis in Section 5. Since the above model is incremental
with respect to the nominal value ξ∗ and since the synchronization error parameters can assume
both positive and negative values, the state is reasonably initialized as a zero mean Gaussian
random variable.

As aforementioned, it is worth observing that due to the linear relation (6) between buses
power p, q expressed in rectangular coordinates and voltage v, θ expressed in polar coordinates,
the synchronization error enters linearly in the output model (12) without any further approximation.
This is opposed to standard approaches in the literature where, to deal with linear models, the grid
state is expressed in rectangular coordinates, i.e., real and imaginary parts of the voltages. In this case,
to resort to linear output models, the synchronization error must either be assumed or approximated
as purely imaginary [18,23], under the additional assumption of small voltage angles differences
(which is particularly true in distribution grids [42]). Also, even in the case when no synchronization
error is considered, i.e., d(t) = 0, observe that phasorial measurements are practically collected in
polar coordinates. Hence, by formulating the output model with the same representation, we do not
introduce any further manipulation of the data, i.e., projection from polar to rectangular coordinates,
which, in turn, requires re-computation of the measurements correlation.

4.2. Synchronization-Aware State Estimator

Based on Equations (11) and (12) the model is linear and it is possible to build a Kalman filter [41]
to simultaneously estimate grid state and synchronization error parameters. Algorithm 1 describes the
proposed Synchronization-aware State Estimator, also referred to as SASE (code available at [43]).
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Algorithm 1 SASE
Require: Σ0, R, H. Initialize Σ(0) = Σ0.

1: for t ∈ {0, . . . , M− 1} do {//Offline}

2: Compute and store

L(t + 1) = (Σ(t) + W)HT(H(Σ(t) + W)HT + R)−1

Σ(t + 1) = (I − L(t + 1)H)(Σ(t) + W)

3: end for
4: for k ∈ Z+ do {//Online}

5: Initialize x̂(k, 0) = 0
6: for t ∈ {0, . . . , M− 1} do

7: x̂(k, t + 1) = x̂(k, t) + L(t + 1)(y(k, t + 1)− Hx̂(k, t))

8: end for
9: end for

Observe that to run Algorithm 1 values for p∗, q∗, v∗ and θ∗ are required to compute y and H
according to Equations (11) and (12). Also, it requires Σ0 and R. By leveraging the information coming
from the available power demand time-series, p∗ and q∗ are computed as one-day a-head predictions.
Then, by means of a single full AC power flow computation it is possible to compute the corresponding
values for v∗ and θ∗. Please note that since Σ(t) does not depend on the measurements, its evolution
can be computed offline and stored for t ∈ {0, . . . , M− 1} (line 2) thus alleviating the computational
burden. Then, at each time instant, standard Kalman equations can be applied (lines 6÷8) Finally,
thanks to Equation (6), the estimated voltages are equal to[

v̂
θ̂

]
=

[
v∗

θ∗

]
+ A−1

u∗

[
δp̂
δq̂

]
, (13)

where, by partitioning Σ as Σ0, the covariance is given by

Σu :=

[
Σv Σvθ

Σθv Σθ

]
= A−1

u∗

[
Σp Σpq

Σqp Σq

]
A−T

u∗ .

As a side note, observe that both the model (11)–(12) and Algorithm 1 are outlined for t ∈
{0, . . . , M− 1} for a given k ∈ Z+. As suggested by Figure 2, since at τ(k, 0) the PMUs re-synchronizes
with the GPS, the filter is re-initialized to reset α and β and allows the computation of a new estimate
(line 5 in Algorithm 1). Similarly, newly available p∗, q∗ and new data can be used to recompute the
model and W, respectively. However, it is not mandatory to reinitialize the filter at every time window.
For instance, in Section 6.2 we test the proposed SASE against the SoA algorithm proposed in [12] on
measurements data collected from a 5-node distribution feeder located inside the EPFL campus in
Lousanne. Equations (19)–(21) outline the state matrices used in that specific use case.

5. Two-Nodes Case: A Closed-Form Solution

Consider a two-nodes network consisting of one load connected to one generator (the PCC,
vpcc = 1, θpcc = 0) through a purely inductive line with susceptance b = −1 [p.u.], in the absence of
shunt admittance. For the sake of the analysis, we assume the load is absorbing only active power p
while q = 0. In this case, the flat profile is a particular solution which can be chosen as linearization
point. Thus, by leveraging the linear model (5) one has p = θ and v = 1 being v and θ the voltage
magnitude and the phase at the load, respectively. Notice that since it is assumed q = 0, the voltage
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magnitude is fixed and equal to 1 thus only p = θ is of interest. Now, assume to collect, within two
successive GPS synchronization instants, M phase measurements of the form (8) which, as in (12),
can be expressed as

y =

 y1
...

yM−1

=


1 1 0
1 1 T

M−1
...

...
1 1 T


θ

β

α

+
 w1

...
wM−1

=Cx+wy , (14)

with wy ∼ N (0, R), R = σ2
pmu,θ I, x0 ∼ N (0, Σ0), Σ0 = diag(σ2

θ , σ2
β, σ2

α). Furthermore, for the sake
of the analysis, let us assume absence of process noise, i.e., wx = 0, W = 0 which, in the case of
reasonably stable power demands within T[s], represents an acceptable first order approximation.
Then, the posterior variance matrix in information form reads as

Σ =
(

Σ−1
0 + CT R−1C

)−1
(15)

and, thanks to (14), after some tedious but straightforward algebraic manipulations, it is possible
to compute Σ = Σ(σpmu,θ , σθ , σβ, σα, M, T) in closed form (reported in [44] for space reasons).
Interestingly, it can be seen that, in the limit of the product MT, it holds that

lim
MT→∞

Σ =


σ2

θ σ2
β

σ2
θ +σ2

β

− σ2
θ σ2

β

σ2
θ +σ2

β

0

− σ2
θ σ2

β

σ2
θ +σ2

β

σ2
θ σ2

β

σ2
θ +σ2

β

0

0 0 0

 .

and, in particular, as shown in [44], that

[Σ]22 = σ22(σθσβ) , [Σ]33 = σ33

(
1

MT2

)
. (16)

Hence, while for growing M or T, σ33 → 0 meaning that the uncertainty on the skew parameter
goes to zero and, consequently, the parameter is perfectly estimated, residual uncertainty remains on
both θ and β for which σ11, σ22 6→ 0. As can be seen from the output matrix C, this is because θ and β

are linearly dependent. Nonetheless, similarly to σ22, even σ11 and σ12 are functions of the product
σθσβ. Thus, σ11, σ12, σ22 → 0 for σθσβ → 0, meaning that if σβ = 0 then θ is perfectly estimated and
vice versa. As highlighted later in the simulation section, this suggests that the different performance
between the proposed SASE and what will be referred to as Ground Truth (GT) is majorly due to this
linear dependence.

6. Simulation and Results

This section presents the test for the proposed SASE algorithm on two different data sets:
(i) synthetic data generated from the standard IEEE 123 nodes test-bed [45]; (ii) field data collected
from the smart grid located inside the EPFL campus, Switzerland [46]. For power flow computations,
the Matlab Matpower package [47] has been used. Finally, if not differently specified,
Table 1 summarizes the value for the different considered parameters. Some observations are in
order. First, regarding the PMU reporting rate, since it depends on the grid frequency, a set of values
for M is considered. Second, given the relatively small sync period T = 1 [s], synchronization error
parameters β, α are assumed constant within the interval [kT, (k + 1)T). Third, for σα it has been
assumed that PMUs are equipped with quartz-crystal oscillator characterized by a clock stability
≈10÷ 30 ppm [48]. also, for σβ a 50 Hz frequency signal with synchronization ≈0.5÷ 1 µs accurate
has been assumed [49]. This is also in compliance with the accuracy required for the network time
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distribution in power system [28]. Finally, given the small re-synchronization period of 1[s], reasonable
also according to the last research in PMUs synchronization methods [27], no process noise, W = 0,
has been considered.

Table 1. Parameters used in the simulations.

Parameter Value [Units] Ref.

T 1 [s]–1 pps gps resync signal [24,50]
M {20, 25, 30, 50, 60} [samples] [8]

σp, σq 50% [35]
σpmu,v, σpmu,θ 0.1%, 10−3 [rad] [8]

σα 10−2 [rad] [48]
σβ 2× 10−4 [rad] [49]

v∗, θ∗, p∗, q∗ power flow nominal solution

6.1. Synthetic Data Set—IEEE 123 Nodes Grid

The proposed SASE algorithm has been tested on synthetic data generated from the standard
IEEE 123 nodes test-bed [45] whose topology is reported in Figure 3 and compared with:

• an online iterative version of the Bayesian Linear State Estimation algorithm presented in [18]
(denoted as BLSE) assuming no synchronization error in the measurements;

• a Ground Truth (denoted as GT) strategy assuming perfect knowledge and compensation of the
synchronization error.

Figure 3. Topology of the 4.16 kV IEEE 123 node test feeder [45].

The estimation performance is evaluated in terms of Average of Root Mean Square Error, defined as

ÂRMSE(a, â, t) =

√√√√ 1
N

N

∑
i=1

1
n

n

∑
h=1
|ai

h(t)− âi
h(t)|2 (17)

where h = 1, . . . , n indicates the h-th node and i = 1, . . . , N the i-th Monte Carlo run, and (ai
h, âi

h)
the true and estimated values, respectively. The matrix Σ(t) can be used to compute the theoretical
ARMSE as

ARMSE(t) =

√
1
n

Tr(Σ(t)) . (18)
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and we expect ÂRMSE(t) ≈ ARMSE(t) for large N. After N = 500 Monte Carlo runs the behaviors
of ARMSE (both empirical (17) and theoretical (18)) for the voltage phasor vectors (u, û) and the
synchronization error parameters, as functions of the number of PMUs deployed in the grid, are shown
in Figure 4a,b, respectively. For PMU deployment the greedy approach presented in [18] has been
used. The PMU measurements have been processed with M = 30, right before a new synchronization
instant occurs.
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Figure 4. Empirical ÂRMSE (17) and theoretical ARMSE (18) for the voltage (a) and delay parameters
(b) as function of the number of the installed PMUs for M = 30. All values are in logarithmic scale.

Figure 4a shows that SASE performs quite well with respect to the ground truth (GT) while
in the case of BLSE, where the measurement model does not consider any synchronization error,
the performance deteriorates and the improvement with respect to the increasing number of PMU is
about 30%. On the other hand, in the case of the proposed estimator, the performance is improved
of about 60% with only one PMU deployed. Looking at Figure 4b, it is possible to note that the
performance of the synchronization error parameters are almost insensitive to the number of PMUs
since PMUs are not correlated. Moreover, in both Figure 4a,b the theoretical and empirical curves have
same values suggesting the validity of the adopted linear approximation.

This leads to the conclusions that the adopted linearized model could be also effectively used for
other optimization problems, e.g., optimal PMU placement or parameter sensitivity analysis also for
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large power grids with a relevant benefit in terms of computational burden with respect to the Monte
Carlo simulations. It is worth highlighting that these results hold for the values in Table 1.

To emphasize the analysis of Section 5, in Figure 5 the performance for a fixed number of PMUs
as a function of the number of collected PMU measurements M are shown. Also, in this case, Figure 5a
reports the valuable performance of the proposed SASE where the behavior decreases when the
collected measurement increase. Conversely, the BLSE results almost constant because does not
consider the effect of the delay. These considerations are also confirmed by Figure 5b. Observe that the
SASE can compensate the estimated skew, which improves for increasing M.
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Figure 5. In (a) the empirical ÂRMSE (17) and theoretical ARMSE (18) for the complex voltage,
as function of the collected measurements M, for a fixed number of PMUs (equal to 8). In (b) are
reported the variations of the offset and skew parameters for the empirical, theoretical and two-nodes
case, respectively. All the values are reported in logarithmic scale .

As stressed in Section 5, this is an intrinsic modeling problem due to the fact that offset and
power demand happens to be linearly dependent. In addition, Figure 5b reports the values σ22, σ33

in (16) as a function of M computed for the two-nodes network using the parameters value of Table 1.
Observe how the theoretical values corresponding to the two-nodes case turn out to be extremely close
to those obtained from the real network. This fact is interesting mainly for two reasons: (i) it supports
the claim that in the limit for M (or T), the proposed estimator perfectly reconstructs the skews while
residual error remains in the offsets; (ii) from the closed-form expressions for σ22 and σ33, it is possible
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to retrieve, at least approximately, the value of the parameters needed to obtain a desired level of
estimation accuracy.

6.2. Real-World Data Set—EPFL Smartgrid

In this section, we present the result on the test performed using the real data, available for research
purpose here [51] and collected from the 20 kV 3-phase 6 nodes smart grid installed in Lausanne within
the framework of the NanoTera S3-Grid project and located inside the EPFL campus [12,46]. Figure 6
shows a graphical representation of the grid topology, where from bus 2 to 5 are connected after the
transformers loads and PV systems, while bus 6 has zero-injection. For a complete overview of the
network parameters we refer to the original publications [13] and [46].

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5

Bus 6
Voltage measurements

Current measurements

Figure 6. Simplified schema of the medium-voltage network inside the EPFL campus where there are
indicated the loads, PV generators and PMU measurements [13].

We recall that the grid is characterized by a line topology with nodes 1 to 5 monitored with
PMUs (measuring current and voltage at 50Hz) and node 6 (the last along the line) is not monitored.
Also, to estimate the measurements characteristics and noise variance values, we resort to the
description reported in Section 4.2.1 of [13] where the variances are computed from the datasheets of
the PMU devices. Before analyzing the simulation results and to comment the conclusions coming
from the application of SASE to real-monitored data, we would like to stress our choice (already
introduced in Section 4.2) regarding the state model during synchronization instants τ(k, 0), k ∈ Z.
Assume the state is x = [δpT , δqT , αT , βT ]T with evolution

x(k, t + 1) = Fτ(k,t)x(k, t) + w(k, t) . (19)

To address the drift in the measurements, the state matrix is

Fτ(k,t) = I , k ∈ Z , t ∈ {1, . . . , M− 1} ;

Fτ(k,0) =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 I · T I

 , k ∈ Z .
(20)

The last row-block of F acts as an integrator for β and is used to set their mean values at τ(k, 0) to

β(k, 0) = β(k− 1, M− 1) + α(k− 1, M− 1)T. (21)

We now turn to the test where a small subset of data consisting of a time window of 6 s collected
on 17 November 2014, starting at 10:03:20 A.M. To better characterize the test, we compare, in terms of
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estimation and prediction, the proposed SASE with the Kalman-based estimator in [12] which use PMU
measurements only. We assume to have at disposal measurements from nodes 1, 2 and 3 to perform the
estimation while we use nodes 4 and 5 for validation, i.e., we do not use their measurements during
estimation. The zero-injection node 6 is considered to be a virtual measurement for the algorithm
in [12] and it is eliminated for the SASE.

Figures 7 and 8 show the evolution of estimates and predictions at node 3 and 5, respectively, in the
time interval [2, 6] s. The first two seconds of simulation have been cut out in order to let the
estimator in [12] to properly compute the covariance matrix Q and converge to its steady state.
From Figure 7 it is possible to see that the estimator in [12] nicely follows the measurements.
The SASE, in harmony with its static state-space model (since we assumed W = 0), captures the
average demand. However, the confidence interval returned by the estimator is in perfect accordance
with the measurement values. Conversely, Figure 8 highlights the first difference between the two
algorithms. Indeed, due to lack of (prior) information, in the prediction task, the algorithm in [12]
does not provide any useful value (not even reported due to the high difference in the scaling factor).
This analysis is supported by Table 2 reporting the values of TVE of estimates and prediction regarding
the corresponding measurements.

2 2.5 3 3.5 4 4.5 5 5.5 6
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#10-4

-2.1

-2.05

-2
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-1.9

Confidence
Measurements
Alg. [12]
SASE

Time[s]
2 2.5 3 3.5 4 4.5 5 5.5 6

Q

#10-5

-1

-0.5

0

0.5

1

1.5

Figure 7. Evolution of the estimates at node 3 (used for estimation) using three PMUs for estimation
and two for validation.
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Figure 8. Detail: Evolution of the estimates (excluding [12]) at node 5 (used for validation) using three
PMUs for estimation and two for validation.

Table 2. Total vector error (TVE) for estimation and prediction of SASE and the algorithm [12] in the
time interval [2, 6] s, using 3 PMUs for estimation.

Alg. [12]—Est. SASE—Est. Alg. [12]—Pred. SASE—Pred.

2.1× 10−3 1.4× 10−2 6× 105 8.5× 10−3

Taking into account the formulation of two algorithms and the results we can make the following
comments. The SASE estimator using the state vector based on power demand results more adaptable
even in the case of pre-existent infrastructure or in the case of unknown or very noise measurements
(like using forecasting or historical data) because use the power demand. On the contrary, the algorithm
in [12] is based on the assumption that every node is instrumented with PMUs so the grid is
observable. However, this condition is more possible in a future scenario than at present grid.
No information regarding the posterior covariance characterizing the estimates is presented in [12].
Conversely, we show how the SASE nicely provides accurate estimates characterized by meaningful
confidence intervals. Finally, considering the phase angle rotation due to the deviation between the
actual grid frequency and the nominal one, SASE automatically accounts for any linear trend existing in
the phase angle measurements. So, in conclusion, even if the SASE algorithm was originally motivated
to compensate synchronization errors, it can be effectively used also to compensate linear frequency
deviations at different nodes.

7. Conclusions and Future Directions

This paper presents a real-time state estimator based on Kalman filter which uses information
from historical/forecasted power measurements and a limited number of PMUs. Despite their high
accuracy, also PMUs can suffer from inaccuracy given by internal or external synchronization errors.
By testing the proposed algorithm on both synthetic and real-field grids, a comparison with two
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state-of-the-art SE methods shows how the presence of synchronization errors can easily mislead
the estimator if the measurement model does not properly account for it. In particular, in the case
of IEEE 123-bus grid the accuracy of the estimated node voltages increases of about 30% using the
proposed SASE with respect to the BLSE algorithm and with only one PMU the SASE algorithm
improves its performance of about 60%. Moreover, the theoretical and empirical curves are overlapped
to indicate the validity of the used linear approximation. The validity of the proposed approach is also
evaluated in a small real grid, where SASE is compared with the algorithm proposed in [12] where
the benefit of SASE in total vector error (TVE) computation differ with one order of magnitude in
estimation stage. As future directions we foresee the extension of this methodology to the detection
and mitigation of GPS spoofing attacks and time-synchronization attacks as well as more dynamic
scenarios by considering fast changing loads.
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Abbreviations

To avoid confusion, symbols and mathematical operators (and their specific meaning) encountered throughout
the manuscript are conveniently defined in place the first time they are used. The following abbreviations are
used in this manuscript:

ADC analog-to-digital converter
CPU central processing unit
DA data aggregator
GPS global positioning system
HV/MV high/medium voltage
ICT information and communication technologies
KF Kalman Filter
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
NTP network time (communication) protocol
PLL phase-locked-loop
PMU phasor measurement unit
PV photovoltaic
RES renewable energy sources
SASE synchronization-aware state estimator
SE state estimation
UTC coordinated universal time
WLS weighted least squares
TVE Total Vector Error
ARMSE Average of Root Mean Square
BLSE Bayesian Linear State Estimator
GT Ground Truth
EPFL Ecole polytechnic de Lausanne
WAMS Wide-area monitoring system
PCC Point of Common Coupling
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