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Abstract— In this work we address the problem of optimal
estimating the position of each agent in a network from
relative noisy vectorial distances with its neighbors. Although
the problem can be cast as a standard least-squares problem,
the main challenge is to devise scalable algorithms that allow
each agent to estimate its own position by means of only local
communication and bounded complexity, independently of the
network size and topology. We first propose a synchronous
consensus-based algorithm that is guaranteed to have expo-
nentially convergence rate to the optimal centralized least-
squares solution. We then extend this algorithm to more realistic
asynchronous implementations via the use of local memory vari-
ables. We show that exponential convergence is still guaranteed
under both uniform persistent communication and randomized
persistent communication protocols. We finally complement the
analytical results with some numerical simulations.

I. INTRODUCTION

The proliferation of relatively inexpensive devices capa-
ble of communicating, computing, sensing, interacting with
the environment and storing information is promising an
unprecedented number of novel applications throughout the
cooperation of these devices toward a common goal. These
applications include swarm robotics, wireless sensor net-
works, smart energy grids, smart traffic networks, smart cam-
era networks. These applications also pose new challenges,
of which scalability is one of the major ones. Scalability
is intended as the ability for an application to continue
functioning without any dramatic performance degradation
even if the number of devices involved keep increasing. In
particular, an application is scalable if it is not necessary
to increase HW resources or to adopt a more complex SW
algorithms in each device even if the total number of devices
increases.

In this work we address the problem of designing algo-
rithms that are capable to reconstruct the optimal estimate
of the location of a device from noisy relative measurements
from its neighbors in a connected network. In particular,
we want to design distributed algorithms that allows each
device to reconstruct its own position only from exchanging
information with its neighbors, regardless of the size of
the network. Moreover, these algorithms must be scalable,
i.e. their computational complexity, bandwidth and memory
requirements should be independent of the network size.
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These algorithms will be obtained as the solution of an
optimization problem.

Distributed optimization has being attracting ever growing
attention in the past years since many problems in large scale
network have been cast as convex optimization problem. In
particular, a large class of problem can be cast as the solution
of the following optimization problem

x∗ = argminx1,...,xN

∑N
i=1 fi(xi)

s.t. xi = xj ,∀i, j
(1)

where N is the number of nodes, xi ∈ Rm, and fi are convex
functions. The function fi represents local cost of each agent
i, but each agent must compute the minimizer x∗ of the sum
all local costs. The local cost functions are separable but
the additional contraint that all local variables xi must be
the same, makes the optimization problem coupled. Many
problems can be cast in this terms such as distributed least
squares [1], [2], map building [3], network utility maximiza-
tion [4], distributed learning and support vector machines
[5]. In these context several approaches have been proposed
such as the distributed subgradient methods (SDMs) [6], the
alternating direction method of multipliers (ADMM)[5], the
Newton-Raphson consensus [7], the control-based methods
[8], and the Fast-Lipshitz [9], and the distributed LP [10].

The problem at hand in this work is of a different type
and can be cast as the following unconstrained optimization
problem:

min
x1,...,xN

|E|∑
(i,j)∈E

fij(xi − xj) (2)

where xi ∈ R`, E represents all the pair of nodes for which
are available relative measurements and fij are convex func-
tions. Differently from the previous optimization problem,
the local variables are unconstrained, but the cost functions
are now not separable, and therefore the problem is once
again coupled. Many problems can be cast in this framework
such as sensor localization [11], [12], sensor calibration [2],
clock synchronization [13] and camera localization [14],
[15]. For example, in the context of localization from vec-
torial relative distance in a plane, the cost function fij are
given by:

fij(xi − xj) = ||xi − xj − zij ||2

where zij ∈ R` is the noisy measurement of the relative
(vector) distance of node i from node j. As a consequence,
the optimization problem in Eqn. (2) becomes a distributed
least-square problem that in principle could be cast as the



optimization problem in Eqn. (2). However, in this case, each
node will need to compute the location of all other nodes,
i.e. the size of the local variable becomes of size m = N`,
which according to our objective is not scalable. There
exist alternative approaches that try to exploit the special
structure of the problem, but they either show oscillatory
behavior as in consensus-based with constant weights [2],
or the convergence rate decreases only as 1/k as in the
Randomized Kaczmarz with Under-Relaxation [16]. This
slow convergence rate is mainly due to the fact that these
algorithms adopt asynchronous gradient-based algorithms
whose step-size decreases to zero as progress.

The contribution of this work is to provide both syn-
chronous and asynchronous algorithms which are scalable
and have proven exponential rate of convergence under mild
assumptions. The main idea is to cast the problem as a con-
sensus problem under some suitable change of coordinates,
and then solve the problem by applying synchronous broad-
cast consensus iterations. In a more realistic asynchronous
broadcast communication, the problem is solved similarly
by adding some extra memory variables at each node which
keep track of the estimated location of their neighbors, i.e.
the nodes from which they collected the relative distance
measurements. Estimates of these local variables eventually
converge to the estimates of the neighbors, thus guaranteeing
the convergence of the whole algorithm, at the price of some
delay.

II. PROBLEM FORMULATION

The problem we deal with is that of estimating N variables
x1, . . . , xN from noisy measurements of the form

zij := xi − xj + nij , i, j ∈ {1, . . . , N}, (3)

where nij is zero-mean measurement noise. Though the
variables are often vector-valued, for simplicity, in this paper
we assume that xi ∈ R, i ∈ {1, . . . , N}.

This estimation problem can be naturally associated with
a measurement graph G = (V ; E). The vertex set V of
the measurement graph consists of the set of nodes V =
{1, . . . , N} where N is the number of nodes, while its edge
set E consists of all of the ordered pairs of nodes (i, j)
such that a noisy measurement of the form (3) between i
and j is available to node i. The measurement errors on
distinct edges are assumed uncorrelated. The measurement
graph G is a directed graph since (i, j) ∈ E implies the
measurement zij is available to node i, while (j, i) ∈ E
implies the measurement zji is available to node j, and these
two are in general distinct.

To formally state the problem we aim at solving we need
some preliminary definitions.

Assume |E| = M and let us introduce the incidence
matrix A ∈ RM×N of G defined as A = [aei], where
aei = 1,−1, 0, if edge e is incident on node i and directed
away from i, is incident on node i and directed toward it,
or is not incident on node i, respectively.

Now, let x ∈ RN be the vector obtained stacking together
all the variables x1, . . . , xN , i.e., x = [x1, . . . , xN ]T , where
given a vector v with vT we denote its transpose, and let z ∈
RM and n ∈ RM be the vectors obtained stacking together
all the measurements zij and the noises nij , respectively.
Additionally, let Rij > 0 denote the covariance of the zero
mean error nij , i..e, Rij = E[n2ij ], where E denotes the
expectation operator, and let R ∈ RM×M be the diagonal
matrix collecting in its diagonal the covariances of the noises
nij , (i, j) ∈ E , i.e., R = E[nnT]. Finally let 1 be the column
vector with all components equal to one.

Observe that equation (3) can be rewritten in a vector form
as

z = Ax + n

Define the set

χ := argmin
x∈RN

(z−Ax)TR−1(z−Ax).

The goal is to construct an optimal estimate x∗ of x in a
least square sense, namely, to compute

x∗ ∈ χ (4)

Assume the measurement graph G to be weakly connected1,
then it is well known (see [12]) that

χ =
{(
ATR−1A

)†
ATR−1z + α1

}
.

Moreover let

x∗opt =
(
ATR−1A

)†
ATR−1z,

then x∗opt is the minimum norm solution of (4), i.e.,

x∗opt = min
x∗∈χ

‖ x∗ ‖

The matrix ATR−1A is called in literature the Weighted
Generalized Grounded Laplacian ([12]).

Remark II.1 Observe that, just with relative measurements,
determining the x′is is only possible up to an additive
constant. This ambiguity might be avoided by assuming that
a node (say node 1) is used as reference node, i.e., x1 = 0.

III. A SYNCHRONOUS DISTRIBUTED CONSENSUS BASED
SOLUTION

To compute an optimal estimate x∗ directly, one needs
all the measurements and their covariances (z, R), and the
topology of the measurement graph G. In this section the
goal is to compute the optimal solution in a distributed
fashion, employing only local communication. In particular
we assume that a node i and another node j can communicate
with each other if either (i, j) ∈ E or (j, i) ∈ E . Accordingly
a node i is said to be a neighbor of another node j (and
vicecersa) if either (i, j) ∈ E or (j, i) ∈ E . For i ∈

1Given a directed graph, a path from a node to another node that does not
respect the orientation of the edges is called an undirected path. A directed
graph is said to be weakly connected if there is a undirected path form any
node to any other node.



{1, . . . , N}, by Ni we denote the set of neighbors of node
i, namely

Ni = {j ∈ V such that either (i, j) ∈ E or (j, i) ∈ E} .

In what follows we introduce a distributed solution which
is based on standard linear consensus algorithm. A discussion
of the linear consensus algorithm can be found in the review
paper [17], hence we refrain from describing it here. Instead
we make the presentation of the algorithm self-contained. At
first we assume that the communications among the nodes are
synchronous, namely the nodes perform their transmissions’
actions at the same instant times, and design the algorithm for
that scenario. We refer to this algorithm as the synchronous
consensus-based localization algorithm (denoted hereafter as
s-CL algorithm). In section IV we modify the s-CL algorithm
to make it suitable to asynchronous communications.

We assume that before running the s-CL algorithm, the
nodes exchange with their neighbors their relative measure-
ments as well as the associated covariances. So every node
has access to the measurements on the edges that are incident
to it, whether the edge is directed to or away from it. Each
node uses the measurements obtained initially for all future
computations.

The s-CL algorithm is formally described as follows.
Processor states: For i ∈ {1, . . . , N}, node i stores

in memory the measurements {zij , (i, j) ∈ E},
{zji, (j, i) ∈ E}, and the associated covariances
{Rij , (i, j) ∈ E}, {Rji, (j, i) ∈ E}. Moreover node i
stores in memory also an estimate x̂i of xi.

Initialization: Every nodes initializes its estimate to an
arbitrary value.

Transmission iteration: For k ∈ N, at the start of the
(k + 1)-th iteration of the algorithm, node i transmits
its estimate x̂i(k) to all its neighbors. It also gathers the
k-th estimates of its neighbors, x̂j(k), j ∈ Ni.

Update iteration: For k ∈ N, node i, i ∈ {1, . . . , N}, based
on the information received from its neighbors, updates
its estimate as follows

x̂i(k + 1) := pii x̂i(k) +
∑
j∈Ni

pij x̂j(k) + bi

where

bi = ε
∑

(i,j)∈E

R−1ij zij − ε
∑

(j,i)∈E

R−1ji zji

and where

pij =


ε(R−1ij +R−1ji ) if (i, j) ∈ E and (j, i) ∈ E

εR−1ij if (i, j) ∈ E and (j, i) /∈ E
εR−1ji if (j, i) ∈ E and (i, j) /∈ E

and
pii = 1−

∑
j∈Ni

pij

being ε a positive constant a-priori assigned to the
nodes.

Now, let P ∈ RN×N be the matrix defined by the weights
pij above introduced. One can see that such matrix P is
equal to

P = I − εATR−1A

Moreover let
b = εATR−1z

Then the s-CL algorithm can be written in a compact form
as

x̂(k + 1) = Px̂(k) + b

To characterize the convergence properties of the s-CL
algorithm, we introduce some definitions. Firstly, for i ∈
{1, . . . , N}, let dmax = max {|Ni|, i ∈ {1, . . . , N}}. Sec-
ondly let Rmin = min {Rij , (i, j) ∈ E}. Observe that if
0 < ε < 1/(2dmaxR

−1
min) then the matrix P is stochastic.

Moreover if the graph G is weakly connected then the matrix
P is primitive, i.e., it satisfies the following two properties

(i) P has only one eigenvalue equal to 1, P1 = 1 and
1TP = 1T , since P is double stochastic;

(ii) all the other eigenvalues of P are all strictly inside the
unitary circle.

We recall that, based on standard results on nonnegative
matrices and linear consensus algorithms, the above two
properties imply limk→∞ P k = 11T

N . Moreover let ρess
denote the essential spectral radius of P , namely, the second
largest in absolute value eigenvalue of P (see [18]). Clearly
0 ≤ ρess < 1. We have the following Proposition.

Proposition III.1 Let ε be such that 0 < ε <
1/(2dmaxR

−1
min). Moreover let x̂i, i ∈ {1, . . . , N}, be ini-

tialized to any real number. Let G be weakly connected.
Consider the s-CL algorithm running over G. Then the
following two facts hold true

(i) the evolution k → x̂(k) asymptotically converges to an
optimal estimate x∗ ∈ χ, i.e., there exists α ∈ R, such
that

lim
k→∞

x̂(k) = x∗opt + α1;

where α linearly depends on x(0).
(ii) the convergence is exponential, namely, there exists

C > 0 such that

‖x̂(k)−
(
x∗opt + α1

)
‖ ≤ Cρkess‖x̂(0)−

(
x∗opt + α1

)
‖.

Proof: We start by proving item (i). Let us define the
change of variable ξ = x̂− x∗opt. Since

x∗opt = Px∗opt + b

it is possible to write

x̂(k + 1)− x∗opt = Px̂(k) + b− x∗opt

= Px̂(k) + b− (Px∗opt + b)

= P (x̂(k)− x∗opt)

and, in turn,
ξ(k + 1) = Pξ(k).



The above equation describes the iteration of the classical
consensus algorithm. Since P is a primitive doubly stochastic
matric, we have that

ξ(k)→ 11T

N
ξ(0)

where ξ(0) = x(0)− x∗opt. This implies that

x(k)→ x∗opt +
11T

N
x(0)− 11T

N
x∗opt

Being 11T

N x∗opt = 0 this prove the result.
Concerning item (ii) it is well known ([18]) that the con-

vergence rate of a consensus algorithm ruled by a primitive
matrix P , is exponential and is upper bounded by the essetial
spectral radius ρess.

Remark III.2 The s-CL algorithm is similar to the algo-
rithm proposed in [19]. However in [19], the measurement
graph is assumed to be undirected, namely, both measure-
ments zij and zji are available to node i and j under the
additional assumption that zij = −zji.

Remark III.3 The authors in [20] solved the problem for-
mulated in (4) proposing a synchronous algorithm that imple-
ments the Jacobi iterative method. The performance of this
algorithm, in terms of rate of convergence to the optimal so-
lution, is similar, for many families of measurement graphs,
to the one of the synchronous consensus-based algorithm
introduced in this section. However, to the best of our
knowledge, there is no an asynchronous implementation of
the Jacobi-based algorithm proposed in [20], which has been
shown to be provably convergent to the optimal solution.

IV. AN ASYNCHRONOUS IMPLEMENTATION OF
DISTRIBUTED CONSENSUS BASED SOLUTION

The distributed algorithm illustrated in the previous sec-
tion, has an important limitation: it is applicable only to
sensors’ networks with synchronized and reliable communi-
cation. Indeed, the s-CL algorithm requires that there exists
a predetermined common communication schedule for all
nodes and, at each communication round, each node must
simultaneously and reliably communicates its information.
The aim of this section is to reduce the communication
requirements of the s-CL algorithm, in particular in terms
of synchronization. To do so, we next introduce the asyn-
chronous Consensus-based Localization algorithm (denoted
as a-CL hereafter). This algorithm is based on an asymmetric
broadcast communication protocol. Differently from the s-
CL, at each iteration of the a-CL there is only one node
transmitting information to all its neighbors.

Since the actual value of neighboring estimates are not
available at each iteration, we assume that each node stores in
its local memory a copy of the neighbors’ variables recorded
from the last communication they performed. For j ∈ Ni,
we denote by x̂

(i)
j (k) the estimate of xj kept in i’s local

memory at the end of the k-th iteration. If node j performed

its last transmission to node i during h-th iteration, h ≤ k,
then x̂(i)j (k) = x̂j(h).

The a-CL algorithm is formally described as follows.

Processor states: For i ∈ {1, . . . , N}, node i stores in
memory the measurements zij , zji and the covariances
Rij , Rji for all j ∈ Ni. Moreover node i stores in
memory also the estimate x̂i of xi and, for j ∈ Ni an
estimate x̂(i)j of x̂j ,

Initialization: Every node i initializes its estimate x̂i and
the variables x̂(i)j , j ∈ Ni, to arbitrary values.

Transmission iteration: For k ∈ N, at the start of the (k+
1)-th iteration of the algorithm, there is only one node,
say i, which transmits information to its neighbors;
precisely, node i sends the value of its estimate x̂i(k)
to node j, j ∈ Ni.

Update iteration: For j ∈ Ni, node j performs the follow-
ing actions in order

(i) it sets x̂(j)i (k+1) = x̂i(k), while for s ∈ Nj \{i},
x̂
(j)
s is left unchanged, i.e., x̂(j)s (k+ 1) = x̂

(j)
s (k);

(ii) it updates x̂j as

x̂j(k+1) := pjj x̂j(k)+
∑
h∈Nj

pjhx̂
(j)
h (k+1)+ bj .

(5)
Clearly for s /∈ Ni, x̂s is left unchanged during the
(k + 1)-th iteration of the algorithm, i.e, x̂s(k + 1) =
x̂s(k).

We characterize now the convergence properties of the a-
CL. We consider two different scenarios which we introduce
in the following definition.

Definition IV.1 A network of N nodes is said to be a
uniformly persistent communicating network if there exists
a positive integer number τ such that, for all k ∈ N, each
node transmits the value of its estimate to its neighbors at
least once within the time interval [k, k + τ).

A network of N nodes is said to be a randomly persistent
communicating network if there exists a N -upla of probabil-
ities (β1, . . . , βN ) such that βi > 0, for all i ∈ {1, . . . , N},
and

∑N
i=1 βi = 1, and such that, for all k ∈ N,

P [the transmitting node at iteration k is node i] = βi.

A. Convergence of the a-CL algorithm under uniform per-
sistent communications

The following result characterizes the convergence prop-
erties of the a-CL when the network is uniformly persistent
communicating.

Proposition IV.2 Consider a uniformly persistent commu-
nicating network of N nodes with associated a weakly con-
nected measurement graph G running the a-CL algorithm.
Let ε be such that 0 < ε < 1/(2dmaxR

−1
min). Moreover let

x̂i, i ∈ {1, . . . , N}, x̂(i)j , j ∈ Ni, be initialized to any real
number. Then the following facts hold true



(i) the evolution k → x̂(k) asymptotically converges to an
optimal estimate x∗ ∈ χ, i.e., there exists α ∈ R such
that

lim
k→∞

x̂(k) = x∗opt + α1;

(ii) the convergence is exponential, namely, there exists
C > 0 and 0 ≤ ρ < 1 such that

‖x̂(k)−
(
x∗opt + α1

)
‖ ≤ Cρk‖x̂(0)−

(
x∗opt + α1

)
‖.

Proof: Observe that, for i ∈ {1, . . . , N} and j ∈ Ni,
we have x̂

(j)
i (k) = x̂i(τi(k)), where τi(k) < k denotes

the iteration during which node i has perfomed its last
transmission up to iteration k. Hence Equation (5) can be
rewritten as

x̂j(k + 1) := pjj x̂j(k) +
∑
h∈Nj

pjhx̂h(τh(k)) + bj . (6)

Observe that
x∗opt = Px∗opt + b

and, in particular,[
x∗opt

]
j

=
[
Px∗opt

]
j
+bj = pjj

[
x∗opt

]
j
+
∑
h∈Nj

pjh
[
x∗opt

]
h

+bj .

By subtracting
[
x∗opt

]
j

to both the left-hand side and the right-
hand side of (6) one gets

x̂j(k + 1)−
[
x∗opt

]
j

= pjj x̂j(k) +
∑
h∈Nj

pjhx̂h(τh(k))+

+ bj −

pjj [x∗opt

]
j

+
∑
h∈Nj

pjh
[
x∗opt

]
h

+ bj


= pjj(x̂j(k)−

[
x∗opt

]
j
)+

+
∑
h∈Nj

pjh

(
x̂h(τh(k))−

[
x∗opt

]
h

)
.

Let us introduce the auxiliary variable ξ(k) = x̂(k) − x∗opt.
From the above equation we can write

ξj(k + 1) = pjjξj(k) +
∑
h∈Nj

pjhξh(τh(k)) (7)

Observe that (7) describes the evolution of a consensus
algorithm in presence of uniformly bounded delays. Hence,
by invoking Proposition 1 in [21], we can conclude that ξ(k)
converges exponentially to consensus, and, in turn, that x̂(k)
converges exponentially to an optimal solution x∗.

B. Convergence of the a-CL algorithm under randomly per-
sistent communications

The following result characterizes the convergence prop-
erties of the a-CL when the network is randomly persistent
communicating.

Proposition IV.3 Consider a randomly persistent commu-
nicating network of N nodes with associated a weakly con-
nected measurement graph G running the a-CL algorithm.

Let ε be such that 0 < ε < 1/(2dmaxR
−1
min). Moreover let

x̂i, i ∈ {1, . . . , N}, x̂(i)j , j ∈ Ni, be initialized to any real
number. Then the following facts hold true

(i) the evolution k → x̂(k) converges almost surely to an
optimal solution x∗ ∈ χ, i.e., there exists α ∈ R such
that

P
[

lim
k→∞

x̂(k) = x∗opt + α1

]
= 1.

(ii) the evolution k → x̂(k) is exponentially convengent in
mean-square sense, i.e., there exist C > 0 and 0 ≤
ρ < 1 such that

lim
k→∞

E
[
‖x̂(k)− (x∗opt + α1)‖2

]
≤ CρkE

[
‖x̂(0)− (x∗opt + α1)‖2

]
.

Proof: We start by rewriting the updating step of the
a-CL in a more convenient way. Observe preliminarily that,
under the assumption of reliable communications over the
network, the broadcast protocol lets only two information
about the estimate of xi, ∀i ∈ V , to flow through the
network. Specifically, x̂i(k), that is the current value of the
estimate x̂i at iteration k, and x̂i(t′i(k)), being t′i(k) the itera-
tion during which node i has performed its last transmission
up to iteration k of a-CL (that is, the value of x̂(i)i at its
last communication round). Indeed notice that, for j ∈ Ni,
x̂
(j)
i (t′′) = x̂i(t

′
i(k)) for all t′′ such that t′i(k) < t′′ ≤ k.

Let us define x′i(k) = x̂i(k) and x′′i (k) = x̂i(t
′
i(k)) and,

accordingly, let x′(k) = [x′1(k), . . . , x′N (k)]
T and x′′(k) =

[x′′1(k), . . . , x′′N (k)]
T . Morever let Qi ∈ R2N×2N be defined

as

Qi =

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
(8)

where

Q
(i)
11 =

∑
h/∈Ni

ehe
T
h +

∑
j∈Ni

(
pjjeje

T
j + pjieje

T
i

)
Q

(i)
12 =

∑
j∈Ni

ej

 ∑
h∈Nj/i

pjhe
T
h


Q

(i)
21 = eie

T
i

Q
(i)
22 = I − eieTi

Observe that, for i ∈ {1, . . . , N}, Qi is a 2N -dimensional
stochastic matrix. Finally let

Bi =

[ ∑
j∈Ni

eTj b

0N

]
Assume, without loss of generality, that node i is the node

performing the transmission during the k + 1-th iteration of
the a-CL. Hence the udpating step of the a-CL can be written
in compact form as[

x′(k + 1)
x′′(k + 1)

]
= Qi

[
x′(k)
x′′(k)

]
+Bi. (9)



Now let us introduce the auxiliary variable

ξ(k) =

[
x′(k)
x′′(k)

]
−
[
x∗opt
x∗opt

]
By exploiting the fact that, for i ∈ {1, . . . , N},[

x∗opt
x∗opt

]
= Qi

[
x∗opt
x∗opt

]
+Bi (10)

we have that the variable ξ satisfies the following 2N -
dimensional recursive equation

ξ(t+ 1) = Qiξ(t). (11)

Observe that x̂(k) → x∗opt + α1 if and only if ξ(k) →
α1. Moreover, since Qi is a stochastic matrix for any
i ∈ {1, . . . , N}, we have that (11) describes the evolution
of a randomized consensus algorithm whose convergence
properties can be analyzed following the treatment in [22].

Now let σ be the random process such that σ(k) denotes
the node performing the transmission action at the beginning
of the k+ 1-th iteration. Clearly, in the randomized scenario
we are considering, we have that, for i ∈ {1, . . . , N},
P[σ(k) = i] = βi for all k. Let

S(k) =

k∏
h=0

Qσ(h).

Observe that S(k) inherits the same block structure of the
matrices {Qi}Ni=1, namely we can write

S(k) =

[
S11(k) S12(k)
S21(k) S22(k)

]
As consequence of Theorem 3.1 in [22] the a-CL reaches

almost surely consensus if and only if, for every i and j in
V

P [Eij ] = 1, (12)

where
Eij = {∃`,∃k |Si`(k)Sj`(k) > 0} .

Now observe that, since the measurement graph is weakly
connected, then the communication graph is a connected
undirected graph. This fact together with the fact the diagonal
elements of Q(i)

11 are all positive for any i ∈ {1, . . . , N}
implies that there exists almost surely k̄ such that, for all
k′ ≥ k̄, all the elements of the matrix S11(k′) are strictly
greater than 0. Assume now, without loss of generality, that
σ(k′) = i, for k′ ≥ k. Then, since the i-th row of S21(k′+1)
is equal to eie

T
i S11(k′), it turns out that, all the elements

of the i-th row of S21(k′ + 1) are strictly greater than 0.
Moreover, it is easy to see that they will remain stricty greater
than 0 also for any k′′ ≥ k′. Hence we can argue that, there
exists almost surely, also a k̄′ such that for all k′ ≥ k̄′, all
the elements of the matrix S21(k′) are strictly greater than
0. It follows that the property stated in (12) is satisfied for
any k ≥ k̄′ and for any ` ∈ {1, . . . , N}. This concludes the
proof of item (i).

Concerning item (ii), we again resort to the results in [22].
Let Ω = I − 1/2N11T where in this expression we assume

that I is the 2N -dimensional identity matrix and the vector
1 is 2N -dimensional. From the results in [22], it follows
that to study the rate of convergence of E

[
‖ξ(k)− α1‖2

]
is

equivalent to study the convergence rate of E‖Ωξ(k)‖2 and
in particular of the linear recursive system

∆(t+ 1) = E
[
QTσ(0)∆(t)Qσ(0)

]
where ∆(0) = Ω. Observe that ∆(t) is the evolution of a
linear dynamical system which can be written in the form

∆(t+ 1) = L(∆(t))

where L : R2N×2N → R2N×2N is given by

L(M) = E
[
QTσ(0)MQσ(0)

]
.

As highlighted in [22], the linear operator L can be rep-
resented by the matrix L = E[Qσ(0) ⊗ Qσ(0)]

T where
⊗ denotes the Kronecker product of matrices. Following
the proof of Proposition 4.3 of [22], one can see that
LT is a primitive stochastic matrix which, therefore, has
the eigenvalue 1 with algebraic multiplicity 1. Moreover,
LT(1⊗ 1) = (1⊗ 1) and (1⊗ 1)(Ω⊗Ω) = 0, from which
it follows that E‖Ωξ(k)‖2 ≤ Cρess(L

T)E‖Ωξ(0)‖2 where
ρess(L

T) denotes the essential spectral radius of LT.

Thanks to a result obtained in [22], the quantities
E
[
‖ξ − α1‖2

]
and E

[
‖Ωξ‖2

]
have the same exponential

convergence rate to zero, or, in other words, for any initial
condition ξ(0),

lim sup
k→∞

E
[
‖ξ(k)− α1‖2

]1/k
= lim sup

k→∞
E
[
‖Ωξ(k)‖2

]1/k
.

For this reason, in what follows we study the right-hand
expression, which turns out to be simpler to analyze. In order
to have a single figure not dependent on the initial condition,
we focus on this worst case exponential rate of convergence

R = sup
ξ(0)

lim sup
k→∞

E
[
‖Ωξ(k)‖2

]1/k
It has been proved in Proposition 4.4 of [22] that

esr(Q̄)2 ≤ R ≤ sr(E(QTi ΩQi)). (13)

where Q̄ denotes E[Qi] =
∑N
i=1 βiQi and where

sr(E(QTi ΩQi)) denotes the spectral radius of semidefinite
positive matrix E(QTi ΩQi), i.e., its largest eigenvalue.

Unfortunately, it turns out from a numerical inspection
over significant families of graphs, like Cayley graphs
(see [18]), random geometric graphs, that the upper bound
sr(E(QTi ΩQi)) is greater than 1, that is, it is not informative
for our analysis.

However we have run a number of MonteCarlo simulations
randomized over graphs of different topology and size and
over different initial conditions, and it always resulted that
lim supk→∞E

[
‖Ωξ(k)‖2

]1/k ≤ esr(Q̄). Based on this ex-
perimental evidence we formulate the following conjecture.



Conjecture IV.4 The quantity esr(Q̄) is an upper bound for
the exponential convergence rate R, i.e.,

R ≤ esr(Q̄)

The above conjecture and the fact that esr(Q̄)2 ≤ R
motivates to study esr(Q̄).

V. CONVERGENCE RATE ANALYSIS OF A-CL
ALGORITHM FOR REGULAR GRAPHS

In this section we assume that the measurements graph
G = (V, E) is a connected undirected regular graph2 such
that, for i ∈ {1, . . . , N}, |Ni| = ν. In other words ν
represents the degree of the graph. Moreover we assume the
following properties.

Assumption V.1 We have that
(i) the error measurements covariances are all identical,

i.e., Rij = R for all (i, j) ∈ E;
(ii) ε = R/(2(ν + 1));

(iii) the probabilities {β1, . . . , βN} are uniform, i.e., β1 =
. . . = βN = 1/N .

Observe that, from properties (i) and (ii) of the above
assumption, it turns out that the matrix P = I − εATR−1A,
associated to the s-CL algorithm, is a symmetric matrix
such that Pij = 1/(ν + 1) for all j ∈ Ni ∪ {i}.

Let λ1(P ) = 1 > λ2(P ) ≥ . . . ≥ λN (P ) the eigenvalues
of P . Note that esr(P ) = max {|λ2(p)|, |λN (P )|}. The goal
is to show how the 2N eigenvalues of Q̄ are related to those
of P .

Lemma V.2 Consider the a-CL algorithm running over an
undirected regular graph G = (V, E) such that, for i ∈
{1, . . . , N}, |Ni| = ν. Assume Assumption V.1 holds true.
Then the 2N eigenvalues of Q̄ are the solutions of the
following N second-order equations

f(s, λi, N, ν) = s2 + (a+ b)s+ (ab+ c) (14)

where

a = −
[
N − ν
N

+
λi
N

+
ν − 1

N(ν + 1)

]
b = −N − 1

N

c = −ν − 1

N2
(λi −

1

ν + 1
)

The proof is provided in appendix A. Now let s(i)1 and s(i)2

denote the two solutions of f(s, λi, N, ν). It easy to see that
s
(1)
1 = 1 and s(1)2 = 1− ν2+1

N(ν+1) . The following result restricts

the search of esr(Q̄) among the values |s(2)1 | and |s(2)2 | and
1− ν2+1

N(ν+1) .

2An undirected graph is said to be regular if all the nodes have the same
number of neighbors

Theorem V.3 . Consider the a-CL algorithm running on
an undirected regular graph G = (V, E) such that, for
i ∈ {1, . . . , N}, |Ni| = ν. Assume Assumption V.1 holds
true. Moreover let
γ∗ =

ν−1+N(ν+1)−
√
N2(ν+1)2−2N(ν3+ν+2)+(ν−1)2+(ν2+1)2

ν+1
then

(i) if 1− esr(P ) ≤ γ∗ =⇒ esr(Q̄) = max(|s(2)1 |, |s
(2)
2 |);

(ii) if 1− esr(P ) > γ∗ =⇒ esr(Q̄) = s
(1)
2 = 1− ν2+1

N(ν+1) .

The proof is reported in appendix B.

A. Asymptotic Behavior

Consider now a sequence of connected undirected regular
graphs GN of increasing size N , and fixed degree ν.
Assume Assumption V.1 holds true for any GN . Then to
any GN we can associate a stochastic matrix PN describing
a s-CL algorithm, such that (PN )ij = 1/(ν + 1) for all
j ∈ Ni ∪ {i}. In the following we analyze three different
scenarios concerning three different spectral properties.

1) Cayley graphs: The following assumption holds true
for family of graphs like the Cayley graphs and d-
dimensional toruses. Moreover, it well describes the spectral
behavior of Random Geometric graphs which is a family of
graphs frequently used in practice.

Assumption V.4 Consider the sequence of matrices PN
associated to the sequence of graphs GN above described.
Then we have

esr (PN ) = 1− ε(N) + o(ε(N)) (15)

where ε : N → R is a positive function such that ε(N) →
0 as N → ∞. Let the matrix Q̄N represent the average
matrix associated to the a-CL algorithm running over GN .
The following result characterizes the asymptotic behavior
of esr

(
Q̄N
)
, with the respect to esr (PN ).

Theorem V.5 Consider the sequence of graphs GN above
described. Consider the a-CL algorithm running over GN .
Assume Assumption V.1 and Assumption V.4 hold true. Then

esr
(
Q̄N
)

= 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
The proof can be found in appendix C.

2) Ramanujan graphs: A similar analysis can be provided
also for other relevant families of regular graphs like the
Ramanujan graphs [23]. Let us recall the asymptotic lower
bound proved by Alon and Boppana for doubly stochastic
matrices built over ν-regular bidirected graphs. Specifically,
if A denotes the adjacency matrix of a ν-regular bidirected
graph, let P be the doubly stochastic matrix defined as P =
ν−1A, then

lim inf
N→∞

ρess(P ) ≥ 2
√
ν − 1

ν

where the lim inf is taken along the family of all ν-regular
bidirected graphs having N vertices. Ramanujan graphs



are those ν-regular bidirected graphs which achieves the
previous bound, i.e., such that ρess(P ) = 2

√
ν−1
ν . Hence

through the Ramanujan graphs it is possible to keep the
essential spectral radius bounded away from 1, while keeping
the degree fixed.

Theorem V.6 Consider a sequence of Ramanujan graphs
GN of increasing size N and fixed degree ν. Consider the
a-CL algorithm running over GN . Assume assumption V.1
holds true. Then, it holds

ρess(Q̄N ) = 1− α(ν)/N

where, respectively
α(ν) =

[
(ν2+1)+(1−ε)(ν+1)

2(ν+1)

(
1−

√
1− 4ν(1−ε)(ν+1)2

((ν2+1)+(1−ε)(ν+1))2

)]
ε = 2

ν

√
ν − 1

The proof can be found in Appendix D.

3) Complete graphs: Concerning the family of complete
graphs we have that ρess(P ) = 0 and ν = N − 1 so, we can
state the following

Corollary V.7 Consider a sequence of Complete graphs GN
of increasing size N . Consider the a-CL algorithm running
over GN . Assume assumption V.1 holds true. Then, it holds

ρess(Q̄N ) =
2(N − 1)

N

The proof can be found in Appendix E.

VI. NUMERICAL RESULTS

In this section we firstly provide some simulations sup-
porting the exponential rate of convergence of the different
algorithms implemented. Secondly some simulations to sup-
port conjecture IV.4.

Example VI.1 In this example we consider a random ge-
ometric graph generated by choosing N = 100 points
randomly placed in the interval [0, 10], and pairs of nodes
that are within a range of 3 took measurements of each
others’ relative positions, namely, both measurements zij
and zji are available provided that |xi − xj | ≤ 3. Every
measurement was corrupted by Gaussian noise with unitary
covariance. In this example we show the performance of a-
CL with both the uniform persistent, assuming that each node
transmitted at least once within each time interval [k, k+ τ)
where τ = 200, and the random persistent communicating
network.

In Figure 1 we plotted the behavior of the error

J(k) = log (‖A(x̂(k)− x∗)‖)

The plot reported is the result of the average over 1000 Monte
Carlo runs, randomized with respect to both the measurement
graph3 and the initial conditions. Observe that the trajectories
converge to 0 exponentially.

3In perfoming our average we kept only the random geometric graphs
which resulted to be connected.
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Fig. 1: Behavior of J for a uniformly persistent (red
solid line) and a randomly persistent (blue dashed line)
communicating network.
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Fig. 2: Comparison between the a-CL algorithm and the
randomized algorithm (a-GL) proposed in [24].

Example VI.2 In this example we provide a numerical
comparison with the randomized algorithm proposed in [24],
later on called a-GL, which, for the sake of the completeness,
we shortly review next. Similarly to the a-CL algorithm,
also during the k-th iteration in the randomized algorithm
in [24], there is only one node, say node i, which transmits
its variable x̂i to all its neighbors. For j ∈ Ni, node j,
based on the information received from node i, performs the
following update

x̂j(k + 1) = 1/2 (x̂j(k) + x̂i(k) + 1/2(zji − zij)) (16)
= x̂j(k) + 1/2 (x̂j(k)− x̂i(k) + 1/2(zji − zij))

while for h /∈ Ni, x̂h(k + 1) = x̂h(k). In this example we
consider random geometric measurement graphs G built as
in the previous example. For both strategies the transmitting
node at each iteration is chosen with a uniform probability.
In Figure 2 we plotted the behavior of J for both the a-CL
algorithm (blue dashed line) and the a-GL proposed in [24]
(red solid line).

As stressed in [24] the trajectory x̂(k) generated by the
updating rule in (16) does not converge to x∗ but oscillates
within a neighborhood of x∗. This fact appears to be evident
also in Figure 2. However, of note is the fact that the strategy
in [24] seems to have a faster transient than the randomized
a-CL algorithm.

Remark VI.3 The authors in [16] proposed an algorithm
(denoted as Randomized Kaczmarz Smoothing) similar to



the one introduced in [24]. However also the Randomized
Kaczmarz Smoothing algorithm does not converge to the
optimal estimate x∗ but oscillates within a neighborhood of
it.

Remark VI.4 The convergence properties of the random-
ized algorithm in (16) might be improved by using the
following modified updating rule

x̂j(k + 1) = x̂j(k) + γ(k) (x̂j(k)− x̂i(k) + 1/2(zji − zij))

where {γ(k)} is a sequence of receding step-sizes with
γ(k) ∈ (0, 1) and limk→∞ γ(k) = 0. A similar idea has been
proposed in [16] introducing the Randomized Kaczmarz al-
gorithm with Under-Relaxation. However, in this case, since
limk→∞ γ(k) = 0 and, in turn, the applied control action
becomes smaller and smaller, the speed of convergence is
not exponential but just sub-linear.

Example VI.5 In this example we consider a set of Cayley
graphs G of increasing size N . What we show is a com-
parison between the empirical rate of convergence of the
algorithm, its lower bound, represented by esr(Q̄)2, and the
esr(Q̄). As a matter of fact, figure 3 shows that the rate is
upper bounded by esr(Q̄).
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Fig. 3: Trend of the rate of convergence, of the esr(Q̄)2 and
of the esr(Q̄) for Cayley graphs of increasing size N .

Example VI.6 In this final example we consider the family
of random geometric graphs generated by choosing N nodes
in the interval [0,1] and connecting those whose relative
euclidean distance is less than 0.3. This meaning that node i
and j perform the measurement zij and zji if |xi−xj | ≤ 0.3.
Figure 4 shows that, for random geometric graphs as well as
for Cayley, the rate is upper bounded by esrQ̄.

Remark VI.7 Note that, in both example presented, and
in all the several simulations performed, the lower bound,
esr(Q̄)2, better approximates the behavior of the empirical
rate of convergence.

VII. CONCLUSION

In this paper we considered the problem of optimal
estimating the position of each agent in a network from
relative noisy vectorial distances with its neighbors. We
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Fig. 4: Trend of the rate of convergence, of the esr(Q̄)2 and
of the esr(Q̄) for random geometric graphs of increasing
size N .

formulated the problem as a classical weighted least-squares
problem and we reviewed its optimal centralized solution.
The contribution we proposed is twofold. We first introduced
a synchronous consensus-based algorithm that is guaranteed
to have exponentially convergence rate to the optimal so-
lution. We then extended this algorithm to more realistic
asynchronous implementations via the use of local memory
variables. We showed that exponential convergence is still
guaranteed under both uniform persistent communication and
randomized persistent communication protocols.

Moreover we studied the rate of convergence of the
proposed randomized broadcast asynchronous algorithm. We
provided closed form expressions for the rate in terms
of convergence in expectation for regular graphs. We also
conjectured based on extensive simulations that this provides
also lower and upper bounds for the rate of convergence
in mean square. We finally showed that asymptotically in
the number of nodes N , this rate of convergence scales as
standard memoryless consensus algorithms, thus implying a
fast convergence rate.

Future work is directed in proving the conjecture that the
rate of convergence in expectation can provide upper and
lower bounds for the rate of convergence in expectation, and
in providing extensive comparisons with the most popular
alternative algorithms available in the literature to solve the
same problem.

APPENDIX

A. Proof of Lemma V.2

Recalling equation (8), it is possible to write the average
matrix Q̄ = E[Qi] as

Q̄ =

[
Q̄11 Q̄12

Q̄21 Q̄22

]



where

Q̄11 =


N−|N1|

N
. . .

N−|NN |
N

 I +
1

N
P

+


|N1|−1
N

. . .
|NN |−1
N

 diag(P )

Q̄12 =


|N1|−1
N

. . .
|NN |−1
N

 (P − diag(P ))

Q̄21 =
1

N
I

Q̄22 =
N − 1

N
I

Thanks to assumption (i) we have that

Ni = ν ∀i ∈ {1, . . . , N}

therefore we can write Q̄ in a more compact form, where

Q̄11 =
N − ν
N

I +
1

N
P +

ν − 1

N(ν + 1)
I

Q̄12 =
ν − 1

N
(P − 1

ν + 1
I)

Q̄21 =
1

N
I

Q̄22 =
N − 1

N
I

Since P and I are simultaneously diagonalizable, with an
appropriate permutation is possible to obtain a block diagonal
matrix where every block, of dimension two, is equal to[N−ν

N + λi

N + ν−1
N(ν+1)

ν−1
N (λi − 1

ν+1 )
1
N

N−1
N

]
where λi represents the generic eigenvalue of P . Thanks
to [25] the matrix entire determinant can be obtain as
the multilpcation of the single block determinant whose
associated characteristic polynomial is equal to:

f(s, λi, N, ν) = s2 −
(N − ν

N
+
λi
N

+
ν − 1

N(ν + 1)
+

+
N − 1

N

)
s+

+
N − 1

N

(
N − ν
N

+
λi
N

+
ν − 1

N(ν + 1)

)
−

− ν − 1

N2

(
λi −

1

ν + 1

)
(17)

Thanks to (17) it can be seen how every eigenvalue of P is
mapped in two eigenvalues of Q̄.

B. Proof of Theorem V.3

The proof of the theorem arises from a collection of
preliminary results that we are now going to show. It is
known that, being P a stochastic matrix, all its eigenvalues
can be written like λi = 1 − γi, where γi ∈ [0, 2]. Now
rewriting the second order equation (14) in two parts, one
depending from γi and one not depending from it, we obtain:

f(s, λi, N, ν) = d(s,N, ν) + γin(s,N, ν) (18)

Note that, this can be considered as a ”quantized” root locus,
where the gain is given by the N values of γi. For sake of
simplicity we will study its continuous time version in order
to understand which are the possible eigenvalues of Q̄.

Remark .1 It is known that the eigenvalues are discrete but,
to the end of exploiting the root locus technique, we will
consider their ”continuous” version. We want to highlight
that even if we have infinite values of γi in the root locus,
we are interested in just 2N points on it.

As shown in equation (18) the two polynomials involved
in the locus are

d(s,N, ν) = s2 − 2N(ν + 1)− (ν2 + 1)

N(ν + 1)
s+ 1− ν2 + 1

N(ν + 1)

n(s,N, ν) =
s

N
+
ν −N
N2

whose roots are d1 = 1, d2 = 1− ν2+1
N(ν+1) and n0 = 1− ν

N .
We recall from standard results that d1 and d2 are the starting
point of the root locus4, and n0 its ending point, respectively
for γ = 0 and γ =∞. Additionally, the double points of the
locus are

dp+,− = 1− 1

N

(
ν ±

√
ν(ν − 1)

ν + 1

)
It is easy to see that

0 < n0 ≤ d2 ≤ d1

indeed, the first inequality is trivial being ν < N , while the
second leads to

N − ν
N

− 1 +
ν2 + 1

N(ν + 1)
≤ 0⇒ ν ≥ 1

Moreover is straightforward to see that n0 is the mid point
of dp+ and dp− being

n0 =1− ν

N
=
dp− + dp+

2
=

=
1

2

(
1− 1

N

(
ν −

√
ν(ν − 1)

ν + 1

))
+

+
1

2

(
1− 1

N

(
ν +

√
ν(ν − 1)

ν + 1

))

4note that they coincide with the solution of equation (14), previously
called s

(1)
1 and s

(1)
2
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Fig. 5: (a) Root Locus of d(s) + εin(s) = 0. (b) The figure
shows that the length of the vector between the points 0 and
dp− is longer than the vector formed by the points 0, n0 and
p

It follows that the double points are centred on n0 and
that dp− lays between d1 and d2.

Let us firstly show the following two corollaries.

Corollary .2 Given a root locus function of the form5 (s−
p1)(s − p2) + K(s − z) = 0, K ∈ [0,+∞), the complex
roots lay on a circle centred on the z.

Proof: The roots of (s− p1)(s− p2) +K(s− z) = 0
are:

s1,2 =
(p1 + p2 −K)±

√
(p1 + p2 −K)2 − 4(p1p2 −Kz)

2
whose real and imaginary part, considering the complex case
that holds when (p1 + p2 −K)2 − 4(p1p2 −Kz) < 0, are:

R(s1,2) =
p1 + p2 −K

2

=(s1,2) = ±
√

(p1 + p2 −K)2 − 4(p1p2 −Kz)
2

The square of the distance of these points from z can be
computed as

(R(s1,2)− z)2 + (=(s1,2)− 0)2 = z2 − zp1 − zp2 + p1p2

that is independent on K and so is a constant.
Thank to corollary (.2), is easy to get that the absolute

value of the complex roots is descending when γi increase.
In particular every pair of complex roots has module

smaller that dp−, indeed, being |dp−| − |n0| the radius of
the circonference centred in n0, see figure 5b, it follows that

|p|2 = (|n0|+ (|dp−| − |n0|) cos θ)2 +

+ ((|dp−| − |n0|) sin θ)2

= |dp−|2 + 2|n0|(1− cos θ)(|n0| − |dp−|) ≤ |dp−|2

5This kind of equation results from the root locus of a transfer function
with one zero and two poles.

since (1− cos θ) ≥ 0 and (|n0| − |dp−|) ≤ 0. Where θ is
the angle of the vector p− n0 wrt the real axis.

Corollary .3 Consider polynomial in equation (18). For
N > 1 and ν ∈ {1, . . . , N − 1} then ∀ γi ∈ [0, 2], the real
parts of s(i)1,2, solution of f(s, λi, N, ν), are non negative.

Proof: The generic solution of the characteristic poly-
nomial (18) are equal to s(i)1,2 = 1

2

(
2N(ν+1)−(ν2+1)

N(ν+1) − γi
N

)
±

1
2

√(
2N(ν+1)−(ν2+1)

N(ν+1) − γi
N

)2
− 4

(
1− ν2+1

N(ν+1) + γi
ν−N
N2

)
whose discriminant could be ∆ Q 0. Let us firstly consider
∆ ≥ 0. In this case the value of γi such that f(s, 1−γi, N, ν)
has one root equal to zero is

γi =
N(ν2 + 1−Nν −N)

(ν + 1)(ν −N)

Imposing γi ≥ 2, after some algebra, one gets

(N − 2)ν2 + (2N − 2−N2)ν + (3N −N2) ≤ 0

which is always satisfied for N > 1 and ν ∈ {1, . . . , N−1}.

Consider now, the second case with ∆ < 0. It is easy to
see that the two pure imaginary roots of f(s, 1−γi, N, ν) are
reached with a value of γi ≥ 2. Indeed, imposing R(s

(i)
1,2) =

0 ones get

γi = 2N − ν2 + 1

ν + 1

which, ∀N ≥ 2, is a descending function of ν and assumes
its minimum value in ν = 1 which is

γi = 2N − 1 ≥ 2

Thanks to corollary .2 and .3 we know that, ∀λi(P ), all the
eigenvalues of Q̄ have positive real part. Moreover analyzing
the root locus form it is easy to understand that three main
situations can occur, that are:

(i) the value of γi corresponding to esr(P ) is sufficiently
small to individuate, on the root locus, two eigenvalue
of Q̄ that lie on the real axis between 1 and d2. In this
case the greater correspond to the esr(Q̄);

(ii) the value of γi of the esr(P ) individuates, on the locus,
two complex conjugate values that has module greater
than d2. In this case, again, the esr(Q̄) correspond to
them;

(iii) γi individuates values that have module smaller than
d2. In this case is obvious that d2 becomes the esr(Q̄)

This is enough to conclude that, calling γ∗ the value that
individuates two complex conjugate roots on the locus, say
µ1,2, such that

|µ1| = |µ2| = |d2|

then, if γ < γ∗ we get that the esr(P ) maps the esr(Q̄);
otherwise the esr(Q̄) is equal to d2. The critical value of
γ∗ is



γ∗ =
ν−1+N(ν+1)−

√
N2(ν+1)2−2N(ν3+ν+2)+(ν−1)2+(ν2+1)2

ν+1

This complete the proof.

C. Proof of Theorem V.5

Proof: Let us define the characteristic polinomial that
identify the 2N eigenvalues of Q̄N wrt those of PN , denoted
as 1− γi, as

f(s, λi, N, ν) = d(s,N, ν) + γin(s,N, ν) , g(s, γi, N, ν)

where g explicity explicitly shown the dependance on γi and
where

d(s,N, ν) = s2 − 2N(ν + 1)− (ν2 + 1)

N(ν + 1)
s+ 1− ν2 + 1

N(ν + 1)

n(s,N, ν) =
s

N
+
ν −N
N2

It can be easily shown that the sr(PN ) maps the sr(Q̄N ),
i.e choosing γi = 0 one of the two solution of g is s = 1.
Thank to assumption V.4 we have that

esr(PN ) = 1− ε(N) + o(ε(N))

and since {
g(1, 0, N, ν) = 0
∂g
∂s

∣∣∣
(1,0,N,ν)

6= 0

it is possible to exploit the implicit function theorem that
let us write, denoting with s(γi) the eigenvalues of Q̄N as
function of the corresponding γi,

s(ε(N) + o(ε(N))) = 1− ∂g

∂γi
/
∂g

∂s

∣∣∣∣
(1,0,N,ν)

(ε(N) + o(ε(N)))

= 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
which means that esr(Q̄) can be expressed as

esr(Q̄) = 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
(19)

D. Proof of Theorem V.6

Proof: Recalling that

lim
N→∞

γ∗(ν,N) =
ν2 + 1

(ν + 1)2

and being ν > 2, can be easily proved that 1− ρess(P̄N ) <
γ∗ so, thanks to Theorem V.3, it follows that ρess(Q̄N ) =

max(|s(2)1 |, |s
(2)
2 |). Moreover, after straightforward algebraic

calculations it is easy to see that |s(2)1 | > |s
(2)
2 |, therefore

ρess(Q̄N ) = s
(2)
1 = 1− α(ν)

N
(20)

where, respectively
α =

[
(ν2+1)+(1−ε)(ν+1)

2(ν+1)

(
1−

√
1− 4ν(1−ε)(ν+1)2

((ν2+1)+(1−ε)(ν+1))2

)]
ε = 2

ν

√
ν − 1

E. Proof of Corollary V.7

Proof: Since all the eigenvalues of PN different from
1 are equal to 0 the essential spectral radius ρess(PN ) = 0
and the spectral gap γ2 = 1. So it easy to see that

1− ρess(PN ) = 1 > γ∗ =
ν2 + 1

(ν + 1)2

this meaning that, for theorem (V.6)

ρess(Q̄N ) = 1− ν2 + 1

N(ν + 1)
=

2(N − 1)

N2

where the last equality follows from the fact that for a
complete graph ν = N − 1.
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