Distributed Parametric-Nonparametric Estimation in Networked Control Systems

Damiano Varagnolo

Department of Information Engineering - University of Padova

$$
\text { April, } 18^{\text {th }} 2011
$$

Research topics

topics

Research topics

Research topics

Multi-agent systems: examples of applications

First problem considered in this speech

Assumption

 noisy measurements of$$
f(x, t): \mathbb{R}^{3} \times \mathbb{R} \mapsto \mathbb{R}
$$

that are
O non uniformly sampled in space x
O non uniformly sampled in time t
O taken by different agents
Objective smoothing in space (x) and forecast in time (t) the quantity $f(x, t)$

Example 1 - channel gains in geographical areas

$x \in \mathbb{R}^{2}:$
t : time
$f(x, t)$:
position channel gain
source: Dall'Anese et al., 2011

Example 2 - waves power extraction

$x \in \mathbb{R}^{2}: \quad$ position
t : time
$f(x, t)$: sea level
source: www.graysharboroceanenergy.com

Example 3 - multi robot exploration

$$
\begin{aligned}
x \in \mathbb{R}^{2}: & \text { position } \\
f(x): & \text { ground level }
\end{aligned}
$$

source: http://www-robotics.jpl.nasa.gov

Difficulties related to this problem

Information-related difficulties

O non-uniform samplings both in time and in space
O unknown dynamics of f
O unknown or extremely complex correlations in time and space

Hardware-related difficulties
O energy \& computational \& memory \& bandwidth limitations

Framework-related difficulties
O mobile and time varying network

State of the art

 Choi et al. 2009, Predd et al. 2006, Boyd et al. 2005
Maximum Likelihoods

Schizas et al. 2008, Barbarossa and Scutari 2007, Boyd et al. 2010

proposed distributed solutions

Kalman Filtering

Cressie and Wikle 2002, Olfati-Saber 2007, Carli et al. 2008

Kriging \rightarrow Dall'Anese et al. 2011, Cortés 2010
Other Learning Techniques
Nguyen et al. 2005, Bazerque et al. 2010

State of the art

dynamic scenarios
Least Squares \rightarrow Choi et al. 2009, Predd et al. 2006, Boyd et al. 2005

Maximum Likelihoods

Schizas et al. 2008, Barbarossa and Scutari 2007, Boyd et al. 2010

proposed distributed solutions

Kalman Filtering

Cressie and Wikle 2002, Olfati-Saber 2007, Carli et al. 2008

Other Learning Techniques
Nguyen et al. 2005, Bazerque et al. 2010

State of the art

static scenarios

Least Squares \rightarrow Choi et al. 2009, Predd et al. 2006, Boyd et al. 2005

Maximum Likelihoods

proposed distributed solutions

Kalman Filtering

Schizas et al. 2008, Barbarossa and Scutari 2007, Boyd et al. 2010

Cressie and Wikle 2002, Olfati-Saber 2007, Carli et al. 2008

Kriging

Dall'Anese et al. 2011, Cortés 2010
Other Learning Techniques
Nguyen et al. 2005, Bazerque et al. 2010

State of the art - Vision

obtain

$$
\widehat{f}(x, t)=\Psi \text { (past measurements) }
$$

being
O distributed
O capable of both smoothing and prediction
Our approach nonparametric: $\Psi(\cdot)$ lives in an infinite dimensional space

Why should we use a nonparametric approach?

Motivations

O it could be difficult or even impossible to define a parametric model (e.g. when only regularity assumptions are available)

O parametric models could involve a large number of parameters (could require nonlinear optimization techniques)

O lead to convex optimization problems
O consistent, i.e. $\widehat{f} \rightarrow f$ when $\#$ measurements $\rightarrow \infty$ (De Nicolao,
Ferrari-Trecate, 1999)

State of the art - where we actually contributed

our small
 puzzle-piece

agents estimate the same f

e.g. exploration

Regularization

Network approach
static scenario (f independent of t)
no needs to discard
old measurements

Our goal

obtain a simple, self-evaluating and autotuning multi-agent regression strategy

Framework

Agents:
O noisily sample the same f

- limited computational \& communication capabilities
- 1 measurement \times agent (ease of notation)
O M measurements in total

Measurement model

$$
\begin{equation*}
y_{m}=f\left(x_{m}\right)+\nu_{m} \tag{1}
\end{equation*}
$$

O $f: \mathcal{X} \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ unknown (\mathcal{X} compact)
○ $\nu_{m} \perp x_{m}$, zero mean and variance σ^{2}
○ $x_{m} \sim \mu$ i.i.d. (agents know $\left.\mu!!\right)$
examples of μ :

uniform

jitter

generic

Considered cost function

$$
Q(f)=\sum_{m=1}^{M}\left(y_{m}-f\left(x_{m}\right)\right)^{2}+\gamma\|f\|_{K}^{2}
$$

Centralized optimal solution as a Regularization Network
$f_{c}=\sum_{m=1}^{M} c_{m} K\left(x_{m}, \cdot\right)$

$$
\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{M}
\end{array}\right]=\left(\left[\begin{array}{c}
K\left(x_{1}, x_{1}\right) \\
\vdots \\
K\left(x_{M}, x_{1}\right)
\end{array}\right.\right.
$$

$$
\left.\left.\begin{array}{c}
K\left(x_{1}, x_{M}\right) \\
\vdots \\
K\left(x_{M}, x_{M}\right)
\end{array}\right]+\gamma I\right)^{-1}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{M}
\end{array}\right]
$$

Considered cost function

$$
Q(f)=\sum_{m=1}^{M}\left(y_{m}-f\left(x_{m}\right)\right)^{2}+\gamma\|f\|_{K}^{2}
$$

lives in an infinite dimensional space
regularization factor,

$$
K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

Centralized optimal solution as a Regularization Network

$$
f_{C}=\sum_{m=1}^{M} C_{m} K\left(X_{m}, \cdot\right) \quad\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{M}
\end{array}\right]=\left(\left[\begin{array}{ccc}
K\left(x_{1}, x_{1}\right) & \cdots & K\left(x_{1}, x_{M}\right) \\
\vdots & & \vdots \\
K\left(x_{M}, x_{1}\right) & \cdots & K\left(x_{M}, x_{M}\right)
\end{array}\right]+\gamma /\right)
$$

Drawbacks

$$
f_{c}=\sum_{m=1}^{M} c_{m} K\left(x_{m}, \cdot\right)\left[\begin{array}{c}
c_{1} \\
c_{1} \\
c_{n}
\end{array}\right]=\left(\left[\begin{array}{lll}
K\left(x_{1}, x_{2}\right) & \cdots & K\left(x_{1}, x_{m}\right) \\
k\left(x_{m}, x_{2}\right) & \cdots & k\left(x_{m}, x_{m}\right)
\end{array}\right]+\gamma 1\right)^{-1}\left[\begin{array}{c}
v_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

O computational cost: $O\left(M^{3}\right)$ (inversion of $M \times M$ matrix)
O transmission cost: $O(M)$ (knowledge of whole $\left\{x_{m}, y_{m}\right\}_{m=1}^{M}$)

need to find alternative solutions

Alternative centralized optimal solution ($1^{\text {st }}$ on 2)

Structure of K implies

- $K\left(x_{1}, x_{2}\right)=\sum_{e=1}^{+\infty} \lambda_{e} \phi_{e}\left(x_{1}\right) \phi_{e}\left(x_{2}\right)$
$\lambda_{e}=$ eigenvalue
$\phi_{e}=$ eigenfunction
- $f(x)=\sum_{e=1}^{+\infty} b_{e} \phi_{e}(x)$
\Rightarrow measurement model can be rewritten as

$$
y_{m}=\overbrace{\left[\phi_{1}\left(x_{m}\right), \phi_{2}\left(x_{m}\right), \ldots\right]}^{c_{m}:=} \overbrace{\left[\begin{array}{c}
b_{1} \tag{2}\\
b_{2} \\
\vdots
\end{array}\right]}+\nu_{m}
$$

Alternative centralized optimal solution ($2^{\text {nd }}$ on 2)

$$
\begin{equation*}
b_{c}=\left(\frac{1}{M} \operatorname{diag}\left(\frac{\gamma}{\lambda_{e}}\right)+\frac{1}{M} \sum_{m=1}^{M} C_{m}^{T} C_{m}\right)^{-1}\left(\frac{1}{M} \sum_{m=1}^{M} C_{m}^{T} y_{m}\right) \tag{3}
\end{equation*}
$$

involves infinite dimensional objects:

$$
b_{c}=\left[\begin{array}{ccc}
\bullet & \cdots & \cdots \\
\vdots & \ddots & \\
\vdots & & \ddots
\end{array}\right]^{-1}\left[\begin{array}{c}
\bullet \\
\vdots \\
\vdots
\end{array}\right]
$$

\Rightarrow cannot be computed exactly

Suboptimal finite dimensional solution

New estimator

$$
b_{r}=\left(\frac{1}{M} \operatorname{diag}\left(\frac{\gamma}{\lambda_{e}}\right)+\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} C_{m}^{E}\right)^{-1}\left(\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} y_{m}\right)
$$

O computable (involves $E \times E$ matrices and E-dimensional vectors)
○ minimizes $Q^{E}(b):=\sum_{m=1}^{M}\left(y_{m}-C_{m}^{E} b\right)^{2}+\gamma \sum_{e=1}^{E} \frac{b_{e}^{2}}{\lambda_{e}}$

Suboptimal finite dimensional solution

New estimator

$$
b_{r}=\left(\frac{1}{M} \operatorname{diag}\left(\frac{\gamma}{\lambda_{e}}\right)+\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} C_{m}^{E}\right)^{-1}\left(\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} y_{m}\right)
$$

O computable (involves $E \times E$ matrices and E-dimensional vectors)

- minimizes $Q^{E}(b):=\sum_{m=1}^{M}\left(y_{m}-C_{m}^{E} b\right)^{2}+\gamma \sum_{e=1}^{E} \frac{b_{e}^{2}}{\lambda_{e}}$

Drawbacks

(1) $O\left(E^{3}\right)$ computational effort
(2) $O\left(E^{2}\right)$ transmission effort
(3) must know M

Derivation of the distributed estimator

$$
b_{r}=\left(\frac{1}{M} \operatorname{diag}\left(\frac{\gamma}{\lambda_{e}}\right)+\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} C_{m}^{E}\right)^{-1}\left(\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} y_{m}\right)
$$

Consider the approximations
○ $M \rightarrow M_{g}$ (guess)

- $\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} C_{m}^{E} \rightarrow \mathbb{E}_{\mu}\left[\left(C_{m}^{E}\right)^{T} C_{m}^{E}\right]=1$

Derivation of the distributed estimator

$$
\text { obtain: } \quad b_{d}=\left(\frac{1}{M_{g}} \operatorname{diag}\left(\frac{\gamma}{\lambda_{e}}\right)+1\right)^{-1}\left(\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} y_{m}\right)
$$

Advantages

(1) $O(E)$ computational effort
(2) $O(E)$ transmission effort

Summary of proposed estimation schemes

$b_{c}: O\left(M^{3}\right)$ comput., $O(M)$ transm
$b_{r}: O\left(E^{3}\right)$ comput., $O\left(E^{2}\right)$ transm.
$b_{d}: O(E)$ comput., $O(E)$ transm.
b_{c}
0

Summary of proposed estimation schemes

$$
\begin{aligned}
& b_{c}: O\left(M^{3}\right) \text { comput., } O(M) \text { transm. } \\
& b_{r}: O\left(E^{3}\right) \text { comput., } O\left(E^{2}\right) \text { transm. } \\
& b_{d}: O(E) \text { comput., } O(E) \text { transm. }
\end{aligned}
$$

original hyp. space

Summary of proposed estimation schemes

Quantification of performances

Assumption: E, M_{g} already chosen, b_{d} already computed

Quantification of performances

Assumption: E, M_{g} already chosen, b_{d} already computed
local residuals

Quantification of performances

Assumption: E, M_{g} already chosen, b_{d} already computed

Quantification of performances

Assumption: E, M_{g} already chosen, b_{d} already computed

Quantification of performances

Assumption: E, M_{g} already chosen, b_{d} already computed

$$
\begin{aligned}
& \propto \frac{1}{M_{\min }}-\frac{1}{M_{\max }} \\
&\left\|b_{c}-b_{d}\right\|_{2} \leq \frac{1}{M} \sum_{m=1}^{M}\left|r_{m}\right|+\left\|U_{M} b_{d}\right\|_{2}+\left\|U_{C} b_{d}\right\|_{2} \\
& \text { local residuals } \propto 1-\frac{1}{M} \sum_{m=1}^{M}\left(C_{m}^{E}\right)^{T} C_{m}^{E}
\end{aligned}
$$

Tuning of the parameters - key ideas

Assumption: have some information on the energy of f
parameters to
be estimated

number of eigenfunctions E

Tuning of the parameters - key ideas

Assumption: have some information on the energy of f
parameters to
be estimated

number of eigenfunction E

number of mealsurements M_{g}
assure $\left\|b_{c}-b_{r}(E)\right\|$
to be sufficiently small

Tuning of the parameters - key ideas

Assumption: have some information on the energy of f
parameters to
be estimated

number of eigenfunctions E

assure $\left\|b_{c}-b_{r}(E)\right\|$
to be sufficiently small
number of measurements M_{g}

minimize the bound
on $\left\|b_{c}-b_{d}\left(E, M_{g}\right)\right\|$

Regression strategy effectiveness example

 $M=100, E=20, M_{\text {min }}=90, M_{\max }=110, S N R \approx 2.5$

- meas. true f

Regression strategy effectiveness example

 $M=100, E=20, M_{\text {min }}=90, M_{\max }=110, S N R \approx 2.5$

Accuracy of the computed bound

 $M=100, E=20, M_{\min }=90, M_{\max }=110$

Comparison with oracle

$M=100, E=20, M_{\min }=90, M_{\max }=110$

Conclusions and future works for this part

Conclusions

Strategy:
O is effective and easy to be implemented
O has self-evaluation capabilities
O has self-tuning capabilities

Future works

O exploit statistical knowledge about M
O incorporate effects of finite number of steps in consensus algorithms

O extend to dynamic scenarios (long term objective)

Part Two

Privacy-aware number of agents estimation

Estimation of the number of agents (A) can be important in:
O distributed estimation
O analysis of connectivity

We assume privacy concerns \rightarrow do not use IDs!

Our goal: obtain an easily implementable distributed estimator satisfying the constraints

The basic idea

Algorithm:

The basic idea

Algorithm:

$$
y_{5} \sim \mathcal{N}(0,1)
$$

local
generation

$$
\begin{array}{ccc}
y_{2} \sim \mathcal{N}(0,1) & \ldots \ldots \\
& y_{3} \sim \mathcal{N}(0,1) & y_{1} \\
& y_{4} \sim \mathcal{N}(0,1)
\end{array}
$$

The basic idea

Algorithm:

$$
y_{2} \rightarrow \frac{1}{A} \sum_{a=1}^{A} y_{a} \rightarrow \frac{1}{A} \sum_{a=1}^{A} y_{a}
$$

average
consensus

The basic idea

Algorithm:

$$
\begin{gathered}
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right) \\
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right) \\
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right) \\
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right)
\end{gathered}
$$

local
generation
average consensus

Maximum
Likelihood

$$
\widehat{A^{-1}}=y_{\mathrm{ave}}^{2}
$$

The basic idea

Algorithm:
local
generation
average consensus

$$
\begin{gathered}
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right) \\
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right) \\
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right) \\
y_{\text {ave }} \sim \mathcal{N}\left(0, \frac{1}{A}\right)
\end{gathered}
$$

does not require

 sending IDs
Reformulating the idea as a block scheme

Plausible ways to generalize the idea

- $\mathcal{N}\left(\mu, \sigma^{2}\right)$
- $\mathcal{U}[\alpha, \beta]$
- ??
- average
- max
- ??
- ML
- MMSE
- MAP
- ??

Which cost function we consider

notice: we want to estimate A^{-1} instead of A
\downarrow
estimator $=: \widehat{A^{-1}}$
Considered cost function

$$
\mathbb{E}\left[\left(\widehat{A^{-1}}-A^{-1}\right)^{2}\right] \quad\left(\equiv \text { variance if } \widehat{A^{-1}} \text { unbiased }\right)
$$

Why?
O convenient in order to obtain mathematical results
O in our cases, asymptotically in r :

$$
\lim _{r \rightarrow+\infty} \mathbb{E}\left[\left(\frac{\widehat{A^{-1}}-A^{-1}}{A^{-1}}\right)^{2}\right]=\mathbb{E}\left[\left(\frac{\widehat{A}-A}{A}\right)^{2}\right]
$$

Theoretical results: average-consensus + ML

Assumptions
O y_{a}^{\prime} generated through Gaussian distributions $\mathcal{N}\left(\mu, \sigma^{2}\right)$
O fusion of y_{a} is through average-consensus

Theoretical results: average-consensus + ML

Assumptions
O y_{a}^{a} generated through Gaussian distributions $\mathcal{N}\left(\mu, \sigma^{2}\right)$
O fusion of y_{a}^{\prime} is through average-consensus
Results: ML estimators:
O writable in closed form

Theoretical results: average-consensus + ML

Assumptions
O y_{a}^{a} generated through Gaussian distributions $\mathcal{N}\left(\mu, \sigma^{2}\right)$
O fusion of y_{a}^{\prime} is through average-consensus
Results: ML estimators:
O writable in closed form O are MVUE (Minimum Variance and Unbiased)

Theoretical results: average-consensus + ML

Assumptions
O y_{a}^{a} generated through Gaussian distributions $\mathcal{N}\left(\mu, \sigma^{2}\right)$
O fusion of y_{a}^{\prime} is through average-consensus
Results: ML estimators:
O writable in closed form O are MVUE (Minimum Variance and Unbiased)
O performances: $\operatorname{var}\left(\frac{\widehat{A^{-1}}-A^{-1}}{A^{-1}}\right)=\frac{2}{r} \quad$ (independent of μ and σ^{2})

Theoretical results: average-consensus + ML

Assumptions

O y_{a}^{a} generated through Gaussian distributions $\mathcal{N}\left(\mu, \sigma^{2}\right)$
O fusion of y_{a}^{\prime} is through average-consensus
Results: ML estimators:
O writable in closed form O are MVUE (Minimum Variance and Unbiased)
O performances: $\operatorname{var}\left(\frac{\widehat{A^{-1}}-A^{-1}}{A^{-1}}\right)=\frac{2}{r} \quad$ (independent of μ and σ^{2})
O (conjecture: Law of Large Numbers) if $r \rightarrow+\infty$ then performances are independent of $p(\cdot)$

Theoretical results: max-consensus + ML

Assumptions
O cumulative distribution $P(\cdot)$ of y_{a}^{\prime} is strictly monotonic and continuous

O fusion of y_{a} is through max-consensus

Theoretical results: max-consensus + ML

Assumptions
O cumulative distribution $P(\cdot)$ of y_{a}^{\prime} is strictly monotonic and continuous

O fusion of y_{a} is through max-consensus
Results: ML estimators:
O writable in closed form

Theoretical results: max-consensus + ML

Assumptions
O cumulative distribution $P(\cdot)$ of y_{a}^{\prime} is strictly monotonic and continuous

O fusion of y_{a} is through max-consensus
Results: ML estimators:
O writable in closed form O are MVUE (Minimum Variance and Unbiased)

Theoretical results: max-consensus + ML

Assumptions
O cumulative distribution $P(\cdot)$ of y_{a} is strictly monotonic and continuous

O fusion of y_{a} is through max-consensus
Results: ML estimators:
O writable in closed form O are MVUE (Minimum Variance and Unbiased)
O performances: $\operatorname{var}\left(\frac{\widehat{A^{-1}}-A^{-1}}{A^{-1}}\right)=\frac{1}{r}$ independent of $P(\cdot)$

Theoretical results: max-consensus + ML

Assumptions
O cumulative distribution $P(\cdot)$ of y_{a} is strictly monotonic and continuous

O fusion of y_{a} is through max-consensus
Results: ML estimators:
O writable in closed form O are MVUE (Minimum Variance and Unbiased)
O performances: $\operatorname{var}\left(\frac{\widehat{A^{-1}}-A^{-1}}{A^{-1}}\right)=\frac{1}{r} \quad$ independent of $P(\cdot)$
O performances are twice as good as average-consensus

Results of various simulated systems (1)

$$
\mathcal{N}(0,1) \quad \text { average consensus } \quad \mathrm{ML} \quad \mathrm{~A}=10
$$

Results of various simulated systems (2)

Results of various simulated systems (3)

Conclusions

.. and future extensions

Conclusions

O effective and robust algorithm
O quantifiable performances
O rely on statistical concepts \rightarrow preserves privacy
O inherits good qualities of consensus strategies

Future extensions

O analyze optimal quantization strategies
O find optimal distributions for average consensus
O use the strategy for topological change detection purposes

Distributed Parametric-Nonparametric Estimation in Networked Control Systems

Damiano Varagnolo

Department of Information Engineering - University of Padova

$$
\text { April, } 18^{\text {th }} 2011
$$

damiano.varagnolo@dei.unipd.it www. dei.unipd.it/~varagnolo/ google: damiano varagnolo

Distributed Optimization

O F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato. Newton-Raphson consensus for distributed convex optimization. IEEE Conference on Decision and Control (CDC 2011) (submitted)

Applications of Consensus

O S. Bolognani, S. Del Favero, L. Schenato, D. Varagnolo.
Consensus-based distributed sensor calibration and least-square parameter identification in WSNs. International Journal of Robust and Nonlinear Control, 2010

O S. Bolognani, S. Del Favero, L. Schenato, D. Varagnolo. Distributed sensor calibration and least-square parameter identification in WSNs using consensus algorithms. Proceedings of Allerton Conference on Communication Control and Computing (Allerton 2008)

Parametric Regression
O D. Varagnolo, G. Pillonetto, L. Schenato. Distributed consensus-based Bayesian estimation: sufficient conditions for performance characterization. 2010 American Control Conference, 2010D. Varagnolo, P. Chen, L. Schenato, S. Sastry. Performance analysis of different routing protocols in wireless sensor networks for real-time estimation. IEEE Conference on Decision and Control (CDC 2008)

Nonparametric Regression / Classification

O D. Varagnolo, G. Pillonetto, L. Schenato. Distributed parametric and nonparametric regression with on-line performance bounds computation. Automatica (submitted)
O D. Varagnolo, G. Pillonetto, L. Schenato. Auto-tuning procedures for distributed nonparametric regression algorithms. IEEE Conference on Decision and Control (CDC 2011) (submitted)
O S. Del Favero, D. Varagnolo, F. Dinuzzo, L. Schenato, G. Pillonetto. On the discardability of data in Support Vector Classification problems. IEEE Conference on Decision and Control (CDC 2011) (submitted)
O D. Varagnolo, G. Pillonetto, L. Schenato. Distributed Function and Time Delay Estimation using Nonparametric Techniques. IEEE Conference on Decision and Control (CDC 2009)

Number of Sensors Estimation

O D. Varagnolo, G. Pillonetto, L. Schenato. Distributed statistical estimation of the number of nodes in Sensor Networks. IEEE Conference on Decision and Control (CDC 2010)

Smart Grids

O E. Bitar, A. Giani, R. Rajagopal, D. Varagnolo, P. Khargonekar, K. Poolla, V. Pravin. Optimal Contracts for Wind Power Producers in Electricity Markets. Conference on Decision and Control CDC10, 2010

left mouse / page down / space	next slide
right mouse / page up / backspace	previous slide
q / esc	exit
tab	overview toggling
t	clock toggling
home	go to first slide
end	go to last slide
I	go to the previously last seen slide
b	fade the screen to black
w	fade the screen to white
f	full screen toggling
enter	spotlight toggling
+ / -	adjust the spotlight size
mouse wheel	adjust the spotlight size
left mouse (dragging a box)	highglight a box
right mouse (on a highlighted box)	remove the highlight of that box
z	zoom toggling
right mouse (in zoom modality)	move on the image

