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Abstract— This paper studies the LQ-like performance of
networked control systems where control packets are subject to
losses. In particular we explored the two simplest compensation
strategies commonly found in the literature: the zero-input
strategy where the input to the plant is set to zero if a
packet is dropped, and the hold-input strategies where the
previous control input is used if packet is lost. We derived
numerical solutions for computing the optimal static gain for
both strategies and we compared their performance on some
numerical examples. Interestingly, none of the two can be
claimed superior to the other, even for simple scalar systems,
as there are scenarios where one performs better then the other
and vice-versa.

I. INTRODUCTION

Today’s technological advances in wireless communica-
tions and in the fabrication of inexpensive embedded elec-
tronic devices, are creating a new paradigm where a large
number of systems are interconnected, thus providing an un-
precedented opportunity for totally new applications. This is
particularly true for real-time control systems where access to
information from many sensors and distributed actuators can
potentially lead to better performances. These systems are
commonly referred as networked control systems. However,
these advantages come at the price of unreliable or at least
not-ideal communication links which lead to packet drops,
random delay, quantization errors, thus leading to degrada-
tion from the ideal performance. Recently, a great effort has
been given to understand and analyze these systems with
respect to the interaction of communications and control,
which has been recently surveyed in the nice paper [1].

In particular, one of the most common problem in net-
worked control systems, especially in wireless sensor net-
works, is packet loss, i.e. packets can be lost due to commu-
nication noise, interference, or congestion. If the controller
is not co-located with the sensor and the actuator and it is
placed in a remote location, then both sensor measurement
packets and control packets can be lost. This would be the
case, for example, in a pursuit-evasion-game scenario where
locations of evaders are obtained using a wireless sensor
networks, then processed in some centralized controller, and
then optimal control inputs are dispatched to the mobile
pursuers [2]. A large number of works in the literature
have analyzed estimation performance in lossy systems [3]
[4][5][6][7] [8] [9], where the performance of the closed
loop system is not considered. However, there are also
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several papers which considered the close loop performance
where control packet can be dropped [10][11][12][13][14].
In general, two different strategies are considered. In the first
one, that we refer as zero-input, the control input to the plant
is sent to zero when the control packet from the controller to
the actuator is lost [12][13][14], while in the second, that we
refer as hold-input, the pervious control input is used when
a packet is lost [10][11]. If smart actuators are available,
i.e. if actuators are provided with computational resources,
the controller or some effective compensation strategy can
be placed on the actuator as suggested in [15] and [14],
however this is not always possible and therefore only very
simple strategies as the two mentioned above can be adopted.

To the author’s knowledge there is no studies available in
the literature which directly compare these two strategies,
except for a simple empirical example in [14]. In particular,
it seems that the zero-input strategy is mainly used for
mathematical convenience as it gives simpler equations than
the hold-input strategy, rather than based on performance
considerations. Indeed, intuitively one is lead to consider
more effective the use the previous control input rather than
zero using continuity arguments, at least during the transient.
The zero-input strategy, however, it is not so awkward, as the
optimal control input at steady state is zero for a stable closed
loop system. Motivated by these observations, the goal of this
paper is to qualitatively quantify the performance of these
two strategies by adopting an LQ-like approach on discrete
time linear system where the control input packet is dropped
according to a Bernoulli stochastic process as described in
details the Section II. In particular, we derive equations to
compute the optimal static control gains for both strategies.
While the equations for optimal control under the zero-input
strategy in Section III have been previously derived [14], the
equations for the hold-input strategy presented in Section IV
are novel, to the author’s knowledge. The equations are then
used to compared the performance of the two strategies for
an unstable scalar system in Section V. Interestingly, even
in this simple scenario, none of the two strategies is always
superior to the other, but the performance depends on the
packet loss probability and the systems parameters.

II. PROBLEM FORMULATION

Consider the following linear stochastic system:

xk+1 = Axk + Bua
k (1)

where ua
k is the control input to the actuator. We assume that

the full state xk is available to a remote controller which
adopt a simple linear feedback:

uc
k = Lxk
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Fig. 1. Compensation approaches for actuators with no computational
resources when a control packet is lost: zero-input approach ua

k = 0 (top)
and hold-input approach ua

k = ua
k−1 (bottom).

The link between the controller and the actuator is lossy,
and stochastic variable νk models the packet loss between
the controller and the actuator. We consider two control
strategies. In the zero-input strategy, if the packet is correctly
delivered then ua

k = uc
k, otherwise if it is lost then the

actuator does nothing, i.e. ua
k = 0, which gives the following

closed loop system:

xk+1 = Axk + Bua
k

ua
k = νkuc

k

uc
k = Lzxk

(2)

In the hold-input strategy instead, when the packet is lost we
use the previous control value stored in actuator, i.e. ua

k =
ua

k−1, which leads to the following closed loop dynamics:

xk+1 = Axk + Bua
k

ua
k = νkuc

k + (1− νk)ua
k−1

uc
k = Lhxk

(3)

These two control packet loss compensation strategies are
graphically illustrated in Figure 1.

We compare the performance in terms of the infinite
horizon expected total cost

J∞ = E[
∞∑

k=0

xT
k Wxk + ua

k
T Uua

k] (4)

III. LQ OPTIMAL CONTROL: ZERO-INPUT STRATEGY

The optimal control equations are obtained using the stan-
dard dynamic programming approach, i.e. we compute the

cost-to-go function iteratively. First note that Equations (2)
can be written as

xk+1 = (A + νkBL)xk (5)
ua

k = νkLxk (6)

Let us define the cost-to-go function Ck as follows

CN
k (xk) = E[

N∑

h=k

xT
k Wkxk + ua

k
T Ukua

k|xk] (7)

where Wk = W and Uk = U except for the terminal cost
UN = 0. We claim that the cost-to-go function can be written
as

CN
k (xk) = E[xT

k Skxk|xk] (8)

This is clearly true for k = N with SN = W . Then by
induction, we show this is true for all k. Suppose it is true
for k + 1, then we have:

CN
k (xk) = E[

∑N
h=k xT

k Wxk + ua
k

T Uua
k|xk]

= E[xT
k Wxk + ua

k
T Uua

k + CN
k+1|xk]

= E[xT
k Wxk + νkxT

k LT ULxk+
+xT

k (A + νkBL)T Sk+1(A + νkBL)xk|xk]
= E

[
xT

k

(
W + (1− ν̄)LT UL + ν̄AT Sk+1A+

+(1− ν̄)(A + BL)T Sk+1(A + BL)
)
xk|xk

]
(9)

where we used the fact that νk is independent of xk.
Therefore the claim above is true and the matrix Sk is given
by:

Sk = W +ν̄ATSk+1A+(1−ν̄)
(
LTUL+(A+BL)TSk+1(A+BL)

)
= F(Sk+1, L)

(10)
where the operator F(S, L) is affine in S for fixed L, and
quadratic in L for fixed S. The infinite horizon cost can be
obtained from the cost-to-go function as follows:

J∞(L) = lim
N→∞

CN
0 (x0) = xT

0 S∞x0

where S∞ is the solution of the Lyapunov-like equation
S∞ = F(S∞, L), if such solution exists. The optimal
gain L∗ is defined as the minimizer of the infinite horizon
cost L∗ = argminLxT

0 S∞x0. It was shown in [14] that
the optimal gain is independent of the initial condition x0

and can be obtained by solving a Riccati-like equation. We
summarize those results in the following theorem:

Theorem 3.1 ([14]): Consider the system defined by
Equations (2) and the infinite horizon cost defined in Equa-
tion (4). Assume that the pairs (A,B) and (AT ,W

1
2 ) are

stabilizable. Then the optimal infinite horizon cost J∗∞ =
minL J∞(L) is given by J∗∞ = x0S

∗
∞x0 where S∗∞ is the

unique strictly positive solution of the Riccati-like equation:

S∗∞ = ATS∗∞A+W−(1−ν̄)ATS∗∞B(BTS∗∞B + U)−1BTS∗∞A
= Φ(S∗∞)

(11)
and the optimal gain is given by

L∗ = −(BT S∗∞B + U)−1BT S∗∞ (12)

The Riccati-like equation S∗∞ = Φ(S∗∞) has a positive
definite solution if and only if ν̄ < νc, where νc is a
critical packet loss probability, which depends on the pair



(A,B). The critical loss probability νc satisfies the following
bounds:

νm ≤ νc ≤ νM

νm = 1
max |λu

i |2
, νM = 1∏

i |λu
i |2

(13)

where λu
i are the unstable eigenvalues of the matrix A.

IV. LQ OPTIMAL CONTROL: HOLD-INPUT STRATEGY

We now derive the equations to compute the infinite
horizon cost for the hold-input strategy. We proceed similarly
to the previous section by computing the cost-to-go function.
We fist defined the augmented state zk = [xk ua

k−1]
T . Then

the system defined by Equations (3) can be written as:
[

xk+1

ua
k

]
=

[
A+νkBL (1−νk)B

νkL (1−νk)I

] [
xk

ua
k−1

]
(14)

= F (νk)zk (15)

where I is the identity matrix. We define the cost-to-go
function as in the previous section:

CN
k (zk) = E[

N∑

h=k

xT
k Wkxk + ua

k
T Ukua

k|zk] (16)

where Wk = W and Uk = U except for the terminal cost
UN = 0. We claim that the cost-to-go function can be written
as

CN
k (zk) = E[zT

k Vkzk|zk] (17)

This is clearly true for k = N with VN =
[

W 0
0 0

]
. Then

by induction, we show this is true for all k. Suppose it is
true for k + 1, then we have:

CN
k (zk) = E[

∑N
h=k xT

k Wxk + ua
k

T Uua
k|zk]

= E[xT
k Wxk + ua

k
T Uua

k + CN
k+1|xk]

= E[zT
k

[
W + νkLT UL νk(1− νk)LT U
νk(1− νk)UL (1− νk)2U

]
zk+

+zT
k F T (νk)Vk+1F (νk)zk|zk]

= E[zT
k

[
W + (1− ν̄)LT UL 0

0 ν̄U

]
zk+

+ν̄zT
k F T (0)Vk+1F (0)zk+

+(1− ν̄)zT
k F T (1)Vk+1F (1)zk|zk]

(18)
where we used the fact that νk is independent of xk.
Therefore the claim above is true and the matrix Vk is given
by:

Vk =

[
W + (1− ν̄)LT UL 0

0 ν̄U

]
+

+ν̄

[
AT 0
BT I

]
Vk+1

[
A B
0 I

]
+

+(1− ν̄)

[
(A + BL)T LT

0 0

]
Vk+1

[
A + BL 0

L 0

]

= G(Vk+1, L)
(19)

where the operator G(V, L) is affine in V for fixed L, and
quadratic in L for fixed V . The infinite horizon cost can be
obtained from the cost-to-go function as follows:

J∞(L) = lim
N→∞

CN
0 (x0) = zT

0 V∞z0

where V∞ is the solution of the Lyapunov-like equation
V∞ = G(V∞, L), if such solution exists.

Let us partition the matrix V∞ as follows

V∞ =
[

V1 V12

V T
12 V2

]

then the Lyapunov-like equation V∞ = F(V∞, L) can be
expanded as:

V12 = ν(AT V1B + AT V12) (20)

V2 = ν(U + BT V1B + V T
12B + BV12 + V2) (21)

V1 = W +νATV1A+(1−ν)
(
LTUL+(A+BL)TV1(A+BL)+

+LT V T
12(A + BL) + (A + BL)T V12L + LT V2L

)
(22)

After some simple algebraic manipulations, the previous
equations can be rewritten in terms of V1 as follows:

V12 = ν(I − νA)−TAT V1B (23)

V2 =
ν

1−ν

(
U+BTV1B+νBT(

V1A(I−νA)−1+(I−νA)−TATV1

)
B
)
(24)

V1 = W +ATV1A+LTUL+LTBTV1BL+(1−ν)ATV1BL+

+(1−ν)LTBTV1A+ν(1−ν)LTBTV1A(I−νA)−1A +

+ν(1−ν)A′(I−νA)−T A′V1BL +

+νLTBTV1A(I−νA)−1BL+νLTBT(I−νA)−TATV1BL (25)

Note that only the last equation depends on the control gain
L. In particular it is quadratic in L, in fact it can be written
as follows:

V1 = P1+PT
12L+LT P12+LT P2L (26)

= L(L, V1)

where:

P1(V1) = W +ATV1A

P12(V1) = (1−ν)BT V1

(
I + νA(I−νA)−1

)
A

P2(V1) =U+BT(
V1+ν(I−νA)−TATV1 + νV1A(I−νA)−1)B

Note that the matrices P1, P12, P2 are linear function of the
matrix V1, and that the operator L(L, V1) is linear in V1
for fixed L. Moreover, this operator and can be written as
follows:

L(L, V1)=P1−P12
TP−1

2 P12+(L+P2
−1P12)

T P2(L+P2
−1P12)

= Ψ(V1) + (L− LV )T P2(L− LV ) (27)

Ψ(V1) = P1 − P12
TP−1

2 P12 (28)
LV = −P2

−1P12 (29)

If P2 > 0, then we have:

Ψ(V1) ≤ L(L, V1), ∀L
where the operator Ψν(V1) is nonlinear in V1. The condition
P2 > 0 is a necessary condition for stability, otherwise we
could choose a gain L that would give a nonpositive definite
V1 which is clearly unfeasible. The previous inequality can
be used to find the optimal gain L that minimizes the matrix
V1. In fact it is possible to show that if S = L(L, S) and
T = Ψ(T ), then S ≥ T .

Theorem 4.1: Consider the system defined by Equa-
tions (3) and the infinite horizon cost defined in Equation (4).
Assume that the pairs (A,B) and (AT ,W

1
2 ) are stabilizable.

Also assume that ua
−1 = 0. Then the optimal infinite horizon

cost J∗∞ = minL J∞(L) is given by J∗∞ = x0T
∗
∞x0 where



T ∗∞ is the unique strictly positive solution of the Riccati-like
equation:

T ∗∞ = Ψ(T ∗∞) (30)

where Ψ(T ) is defined in Equation (28) and the optimal gain
is given by

L∗ = LT∗∞ (31)

where LV is defined in Equation (29). The Riccati-like
equation T ∗∞ = Ψ(T ∗∞) has a positive definite solution if and
only if ν̄ < νc, where νc is a critical packet loss probability,
which depends on the pair (A,B). The T ∗∞ can be obtained
as the limit of the sequence Tk+1 = Ψ(Tk), for T0 ≥ 0, i.e.
limk→∞ Tk = T ∗∞.

Note that the hypothesis ua
−1 = 0 is a natural choice which

for a fair comparison between the zero-input strategy and
the hold-input strategy. Note that is this case, the optimal
choice for L is independent of the initial condition x0. If
we consider ua

−1 6= 0, it is still possible to derive a similar
optimization based on a different Riccati-like equation which
might depend on the initial conditions.

So far we have shown how to compute the optimal gain
for both the zero-input strategy and for hold-input strategy.
However, we have not yet shown wether one strategy is
better than the other. In the next section, we will compare the
performance of the two strategies for scalar unstable systems.

V. HOLD-INPUT VS ZERO-INPUT: THE SCALAR CASE

Without loss of generality, we assume that B = 1, A = a,
W = w, and x0 = 1. Also we consider at first U = 0,
which corresponds to a scenario where we look for the fastest
converging controller. In fact, for ν = 0, U = 0 we obtain
the usual dead-beat controller. If we substitute these values
into Equations (11) and (12) for the zero-input strategy we
get:

s∗∞ = w + a2s∗∞ − (1− ν̄)a2 = w + ν̄a2s∗∞
=

w

1− ν̄a2
(32)

l∗z = −a (33)

Note that if the open loop system is unstable, i.e. |a| > 1,
then the optimal solution exists, i.e. s∗∞ ≥ 0, if and only if
ν̄a2 < 1.

Similarly, if we substitute these values into Equations (30)
and (31) for the hold-input strategy we get:

t∗∞ = w+a2t∗∞−(1−ν̄)2
(

1+
ν̄a

1−ν̄a

)2(
1+

2ν̄a

1−ν̄a

)−1

a2t∗∞

= w+a2t∗∞− (1−ν̄)2

1− ν̄2a2
a2t∗∞

=
w

1−
(
1− (1−ν̄)2

1−ν̄2a2

)
a2

(34)

l∗h = − (1−ν̄)a

1 + ν̄a
(35)

If the open loop system is unstable then the optimal solution
exists if and only if the denominator w

1−
(
1− (1−ν̄)2

1−ν̄2a2

)
a2

=

w(1−ν̄2a2)
(1−ν̄a2)2 is positive, which leads to the constraint ν̄|a| < 1.

The constraint ν̄|a| < 1 is less restrictive that ν̄a2 < 1, there-
fore it seems that the hold-input strategy can stabilize the
system for larger packet loss probability than the zero-input
strategy. However, we need not to forget that a necessary
and sufficient stability condition for the hold-input strategy
is that V∞ ≥ 0, which is equivalent to the conditions

V1 ≥ 0 and V1 − V12V
−1
2 V T

12 ≥ 0, V1 = t∗∞

where V1, V12, V2 are defined in Equations (23)-(25). The
first inequality is obviously satisfied, while the second, after
some simple algebraic manipulation is given by:

V1 − V12V
−1
2 V T

12 = t∗∞
1− ν̄a2

1− ν̄2a2

which is positive if and only if ν̄a2 < 1, thus recovering the
same stability condition of the zero-input strategy.

We now show that the zero-input strategy gives a better
performance than the hold-input strategy. This is equivalent
to show that:

0 ≤ s∗∞ ≤ t∗∞ ⇐⇒ ν̄ ≤ 1− (1−ν̄)2

1−ν̄2a2

⇐⇒ (1−ν̄)(1−ν̄2a2)−(1−ν̄)2

1−ν̄2a2 ≥ 0

⇐⇒ ν̄(1−ν̄)(1−ν̄a2)
1−ν̄2a2 ≥ 0 ⇐⇒ ν̄ ≤ 1

a2

(36)

which is always true since the feasibility condition is ν̄a2 <
1.

Figure 2 shows a graphical representation of Equa-
tions (32) and (34), where A = 1.2, B = W = 1, and
U = 0. In Figure 3 it is shown a typical realization for
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Fig. 2. Minimum cost J∞ for A = 1.2, B = W = x0 = 1, U = 0 under
zero-input and hold-input control architectures. The critical loss probability
for this systems is νc = 1/1.22 = 0.69.

an unstable system, A = 1.2, with packet loss probability
ν̄ = 0.5, using optimal gain l∗z = −a = −1.2 for the zero-
input strategy and l∗h = −(1 − ν̄)a/(1 + ν̄a) = −0.375 for
the hold-input strategy. Note that the first control packet is
lost and the state x starts to diverge, however as soon as
a packet arrives the zero-hold strategy drives the system to
zero, while the hold-input requires a longer time.
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Fig. 3. A specific realization for A = 1.2, x0 = 1, ν̄ = 0.5 under
under optimal zero-input control, l∗z = −a = −1.2 and optimal hold-input
control, l∗h = −(1− ν̄)a/(1 + ν̄a) = −0.375.

To validate the analytical equations derived in this paper,
we computed the empirical total cost Jemp

∞ by averaging
10000 run starting with the initial condition x0 = 1 and
u−1 = 0, for A = 1.2, B = W = x0 = 1, U = 0 and ν̄ =
0.5 for different values of the feedback gain l. The analytical
optimal gains l∗z and l∗h, and the corresponding minimum cost
J∗∞,z = s∗∞ and J∗∞,h = t∗∞ given by Equations (32)-(35)
are computed and shown in Figure 4, which appear to be
consistent with the empirical values.
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Fig. 4. Empirical total cost Jemp
∞ for A = 1.2, x0 = 1, ν̄ = 0.5 and

obtained by averaging 10000 Monte Carlo runs under zero-input and hold-
input control architectures. The analytical optimal gains l∗ and minimum
total costs J∗∞ are also shown corresponding to the two strategies are shown.

So far we have considered the case U = 0, i.e. the
case when the input it is not penalized. Figure 5 shows
the minimum cost obtained for the system where A = 1.2,

B = W = 1, and U = 10. Very interestingly, there is range
of values of the packet loss probability ν̄ for which the hold-
input strategy performs better than the zero-input strategy,
while there is another range of values for which it is the
opposite. This implies that in general it is not possible to state
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Fig. 5. Minimum cost J∞ for A = 1.2, B = W = x0 = 1, U = 10
under zero-input and hold-input control architectures.

wether the hold-input strategy is better than the hold-input
strategy or viceversa, even for simple scalar linear systems.

VI. CONCLUSION

In this paper we studied LQ-like performance of the
hold-input and zero-input strategy for control systems for
which the control packets are subject to loss. These are
the most commonly adopted strategies in the literature. We
derive explicit expressions for computing the optimal static
controller gain when control packets are lost according to
a Bernoulli process. Interestingly, we showed that none of
these two control schemes can be claimed to be superior
to the other, even in simple scalar systems. However, the
tools developed in this paper can be used to evaluate which
architecture performs once the packet loss statistics are
known.

We want to remark that although the zero-input strategy
has been proposed in the literature, the hold-input strategy
is much more popular because it is rather natural and easy
to implement. The fact that in many situations the zero-
hold strategy performs better than the hold-input strategy,
encourage further investigation in experimental settings.
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