
UNIVERSITÁ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Corso di Laurea Magistrale in

Ingegneria Informatica

Implementazione di un sistema multi-camera

per il pattugliamento perimetrale coordinato

Relatore Laureando
Prof. Schenato Luca Tamai Gianmario

Padova, 5 Aprile 2011

UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

Master's Degree in

COMPUTER ENGINEERING

Implementation of a coordinated multi-camera

perimeter patrolling system

Supervisor Examinee
Prof. Schenato Luca Tamai Gianmario

Accademic Year

2010-2011

I was born in Tunisia,

grown in Egypt and

i'm �ghting in Libya and Yemen.

I will rise in all Arab countries

until i reach Palestine.

My name is Freedom

I

Abstract

Questo lavoro di tesi nasce dalla attiva collaborazione tra l'Università di Padova

e la Videotec S.p.A..

La tesi ha lo scopo di implementare l'algoritmo di pattugliamento perimetrale

proposto dal gruppo di Sistemi di Controllo del Dipartimento di Ingegneria

dell'Informazione sul testbed fornito dall'azienda. Il suo principale obiettivo è

quello di adattare il problema teorico alle problematiche che sorgono quando

si ci scontra con vincoli pratici. Il pattugliamento perimetrale rientra tra le

caratteristiche che un sistema di videosorveglianza deve avere per essere com-

pleto ed interamente automatizzato. Nel nostro caso il sistema proposto ha un

approccio distribuito che, a di�erenza degli strumenti che l'azienda ha già a dis-

posizione, fornirebbe degli spunti interessanti per quanto riguarda la gestione

delle risorse e delle telecamere in caso di guasti. Le principali problematiche che

si sono trattate sono, in primo luogo lo studio dell'algoritmo proposto e le even-

tuali estensioni da adottare per estenderlo dal semplice pattugliamento 1-D in

un ambiente 3-D. In particolare è stato suggerito un approccio per il controllo

dei parametri della telecamera PTZ (come ad esempio il controllo dello zoom e

della velocità angolare). Un altro importante contributo che è stato proposto

è una possibile architettura distribuita per il patrolling perimetrale che con-

senta, in uno sviluppo futuro, di integrare attività di tracking. Dopo l'analisi

svolta è stata sviluppata una demo che è stata testata del tesbed aziendale

per il controllo di due telecamere in ambiente interno. Il software sviluppato,

anche se in fase embrionale, ha subito risposto agli obiettivi proposti.

III

Contents

Abstract III

Acronym IX

1 Introduction 1

1.1 Patrolling problem . 2

1.1.1 Previous work . 3

1.2 Videotec company . 3

1.3 Contributions . 4

1.3.1 Thesis outline . 5

2 A theoretical analysis of perimetral patrolling problem 7

2.1 De�nition of the problem . 7

2.1.1 Distributed optimal partitioning problem formulation . . 10

2.2 Di�erent strategies for solving the partitioning problem 10

2.2.1 Asymmetric gossip-type algorithm 11

3 Patrolling trajectories design: from 1-D to PTZ parameters 13

3.1 Patrolling trajectory generation 14

3.2 De�nition of coordinate systems 16

3.3 Camera modeling . 18

3.3.1 Intrinsic parameters . 18

3.3.2 Extrinsic parameters . 19

3.4 Cameras calibration and parameters estimation 21

V

3.4.1 Single camera calibration 21

3.4.2 Dual camera calibration 24

3.4.3 Mapping from 3D CRF point to image plane point . . . 25

3.5 Multi-camera calibration . 26

3.6 Patrolling trajectory in PTZ parameters 29

3.6.1 Simple PTZ camera model 30

3.6.2 O�set based PTZ camera model 31

3.6.3 Computation of Pan and Tilt angles 33

3.6.4 Zoom control . 34

3.6.5 Velocity control . 35

3.7 3-D patrolling trajectry from image plane points 37

3.7.1 Single camera with planar trajectory 37

3.7.2 Dual camera with 3-D trajectory 40

3.8 Review of mapping function: from image plane point to PTZ

parameters . 42

3.9 Simulation . 44

4 Software architecture: design and implementation 49

4.1 Requirements analysis of software 49

4.1.1 Camera component analysis 50

4.1.2 User process analysis . 55

4.2 Technical consideration about software development 58

4.3 Input-Output analysis . 62

4.4 Review of overall system architecture 65

4.4.1 Compute Bound controller 65

4.4.2 Transmission Bound controller 66

4.4.3 Patrolling controller . 67

4.4.4 Camera controller . 67

4.4.5 User controller . 68

4.4.6 Tracking controller . 68

5 Test results 69

5.1 Testbed architecture . 70

5.1.1 Computation of path and angles in testbed 71

VI

5.2 Computation angles test . 73

5.3 Convergence test . 76

5.4 Testbed test . 80

6 Conclusions and future developments 85

7 Acknowledgements 87

VII

Acronym

PTZ Pan Tilt Zoom

ACK Acknowledgment

UML Uni�ed Model Language

SVD Singular Value Decomposition

USB Universal Serial Bus

CGS Camera Ground System

CPGS Camera Position Ground System

IPC Inter Process Communications

CRF Camera Reference Frame

WRF World Reference Frame

IX

Chapter 1
Introduction

Nowadays we can assist a grown in demand of security.

In every crossroad we can �nd a �xed camera that controls a small area or, in

a more complex case, a group �xed camera that controls public places.

As we can see the number of cameras involved in a video-surveillance system

depends by the size of monitored area. In a big place such as oil platforms,

military bases, undergrounds and airports a camera �xed system is not a suit-

able solution.

For this reason a natural evolution of �xed camera is a PTZ camera that can

moves itself through pan (horizontally) and tilt (vertically) movement with

various levels of zoom.

Thanks to the new type of camera, large areas can be monitored with a lim-

ited number of terminals that can be moved by a user in order to tracking any

events.

However new mechanism have to be implemented to aid human operators and

for guarantee a fair coverage of areas.

In fact, thinking to large area that have to be controlled, an operator that

manages overall security system has to monitorize a lot of videos and, conse-

quently, one user cannot be su�cient to control the video-surveillance system.

From this stems the need of automated tools in order to patrol large areas and

to track activities that detect and follow an event that occurred.

Our work is focused in the implementation of perimetral patrolling tool

1

CHAPTER 1. INTRODUCTION

using PTZ cameras. The project is committed by Videotec S.p.A. in collabo-

ration with the Department of Information Engineering of Padova's university.

1.1 Patrolling problem

In [1] patrol activity was de�ned as the act of walking around an area in order to

protect or supervise it. Taking that de�nition, a good patrolling strategy is one

that minimizes the time lag between two visits to the same location, ensuring

that all locations are constantly monitored. There are some interesting vari-

eties of patrolling problem that can facilitate the operator of video-surveillance

system.

Indeed we can consider the coverage area problem, that consists in �nding the

optimal subdivision of the controlled area and in assigning that sub-area to

every camera.

Another important kind of outdoor system scenario is the perimeter patrolling.

Unlike previous approach, its surveillance is limited to one dimensional bound-

ary of the area to be protected.

This kind of problem can have di�erent architectures such as distributed or

centralized.

Normally the patrolling activities are implemented in centralized struc-

tures where a central computing unit manages the information and controls

the movement of each agent.

It is easy to understand that, in this architecture, the growth in number of

agents raise up the computational complexity of the task.

This architecture evinces some leaks such as the di�culty in scheduling dif-

ferent tasks for each camera and a non scalable system, on the other hand it

guarantees rapid fault detection and the agreement between for each camera

tasks. Some more recent systems use distributed architectures. This improve-

ment brings a normal PTZ to become a smart camera that has a processing

unit and can take decisions in function of its local informations.

In other words the computational power of centralized architectures is dis-

tributed on overall system.

2

1.2. VIDEOTEC COMPANY

This approach has an important advantage that is scalability and it results

more robust with respect to a centralized system, in managing complex events,

in detecting fault and in adjusting patrolling bounds.

The system that we show, adopts a distributed architecture and treats the

perimetral patrolling problem in his mono-dimensional de�nition.

In the next subsection we will try to take a brief review on literature of handled

problems regarding distributed patrolling.

1.1.1 Previous work

In literature the patrolling problem shows analogies with the dynamic optimal

coverage in sensor networks. As shown in [2] and [3] a team of mobile agents

coordinates themselves to gain a distributed coverage of an area avoiding col-

lision.

Indeed, in robotic system some important considerations are raised up in [4]

where a multi-agent cooperative method is proposed to be robust and adaptive

to perimeter change and a e�cient communication is taken into account.

In [5] and [6] through graphs analysis an optimal strategies are studied for

multi-agent patrolling.

Some interesting papers are [7] and [8] which talk about the concept of equi-

table partitioning in multi-agent robotic systems. In this scenario the mainly

idea is to portion the operational space into balanced areas of in�uence con-

sidering also the physical constraints of any agents.

1.2 Videotec company

The Videotec S.p.A. works in the �eld of video-surveillance since 1986, year of

its foundation.

It started its business being only an engineering industry, but then, reading the

evolution of the market and the growing demand of new generation cameras,

it proposed several types of camera. Nowadays the company submits many

products that work in di�erent scenario; from simple �xed cameras to explo-

sion or vandal proof cameras.

3

CHAPTER 1. INTRODUCTION

Very interesting for our work is the Ulisse products line.

Ulisse products are PTZ cameras that integrate a high speed 360◦ rotating Pan

and Tilt head with a camera housing. These products are ideal to be used in

all kind of application for outdoor dynamic video surveillance.

Linked to its products the company has implemented a very interesting video

agent called Albert. It's a distributed intelligence agent that cooperates with

other units detecting events and patrols areas.

In our work we used the Ulisse series cameras to implement and test the algo-

rithm proposed.

1.3 Contributions

In previous sections we saw the context of our work, we analyzed the problems

and we found some instruments to solve them.

In the next pages we will explain the core-arguments of this thesis. Now we

give to the reader the main improvements of our work.

• Extension of the proposed algorithm: from 1-D line to PTZ line

de�nition: We propose an extension of the algorithm described in 2 to

PTZ cameras. This algorithm is limited to pan movement. We expand

it also to tilt movements and we propose a new improvements to yield

more usable the patrolling system such as velocity and zoom controls.

• Design and analysis of patrolling system: we suggest a software ar-

chitecture that �t our patrolling algorithm. In particular we describe the

controllers involved in this system, their behaviour and characteristics.

• Results in Videotec Testbed: we give a brie�ng of our implemented

architecture and we show our results in Testbet.

4

1.3. CONTRIBUTIONS

1.3.1 Thesis outline

We are close to the end of this introduction and we propose a view of the thesis

structure chapter by chapter.

• Chapter 2, A theoretical analysis of perimetral patrolling problem: we

will treat the mathematical de�nition of the problem proposed by the

University of Padova in [9]. We will report the solution of distributed

de�nition and a complete description of one of the problems about vari-

ants (Synchronous Gossipe-Type Protocol).

• Chapter 3, Patrolling trajectories design: from 1-D to PTZ parameters :

in this chapter we will describe our mapping functions that bring our 1-D

de�nition of the patrolling path to PTZ de�nition. We will also propose

a suitable multi-camera calibration step for perimetral patrolling.

• Chapter 4, Software architecture: design and implementation: we will

report the analisys of requirements with UML diagrams and an input-

output analisys. Finally we will give a complete vision of our architecture

describing the controller involved.

• Chapter 5, Test results : we will give to the lector our results, in partic-

ular the computation of angles using the algorithm proposed in [12], the

convergence test of our program with a simulation of a group of cameras

and the test made by using two cameras in Videotec Testbed.

• Chapter 6, Conclusions and future developments : we will report a brief

review of our work, and an analysis of the results obtained. We will

propose some future developments such as the distributed manage of

velocity, the task assigment problem and the extension of the proposed

algorithm for covering areas.

5

CHAPTER 1. INTRODUCTION

Now let's start with a theoretical analysis of the proposed algorithm in its

variants in order to introduce the 3-D extension of the patrolling line.

6

Chapter 2
A theoretical analysis of perimetral

patrolling problem

Starting to the previous considerations, arises the perimeter patrolling problem

that was proposed in [9].

For a more widely vision, we start explaining the mathematical de�nition of

the problem and the partitioning problem of the perimeter with its three ap-

proaches.

2.1 De�nition of the problem

Given L as the perimeter to be patrolled, it is de�ned as L = [−L,L] where

L > 0.

We call N , the cardinality of the cameras that have to patrol the line. We

label the N cameras in crescent order from 1 to N .

Every camera has the following proprieties:

• it has 1-d.o.f. The �eld of view of each camera can change due to pan

movements only (more ahead we explain how we extend this limitation

also to tilt movement).

• it has �xed coverage range. During its movements the coverage range is

unchanged.

7

CHAPTER 2. A THEORETICAL ANALYSIS OF PERIMETRAL PATROLLING
PROBLEM

• it has point f.o.v..

Now, under previous assumptions, for i-th camera we de�ne that:

• Di = [Di,inf , Di,sup] ⊂ L is the total coverage length of i-th camera due

to scenario topology, agent con�guration and its physical constaints.

• vi ∈ [−Vi,max,+Vi,max] is the (bounded) speed of the i-th camera during

its movements.

• Ai = [ai−1, ai] is the e�ective coverage range of i-th camera during pa-

trolling activities. Obviously Ai ⊆ Di,∀i ∈ 1, ..., N ;

• zi(t) : R+ → Di, is the continuous function that map the position of the

f.o.v of the i-th camera as a function of the time variable t.

On our analysis we assume that the coverage ranges Di, i ∈ 1, ..., N , satify the

following interlacing constraints:

Di,inf ≤ Di+1,inf , Di,sup ≤ Di+1,sup (2.1)

We introduce a proprely cost function J to de�ne the patrolling problem.

We can take J as a monotonic function of the time lag Tlag de�ned as the

maximum elapsed time between two visits of the same location. More simply

the minimization problem correspond to the computation of the smallest time

lag To, constrained to the system dynamics.

8

2.1. DEFINITION OF THE PROBLEM

Figure 2.1: Example of perimeter patrolled by a camera set. We can see the physical

coverage Di with the optimal partition domains Ai

Now for a moment, we leave out the physical constraints of each camera.

We gain the optimal coverage of the whole perimeter assuming that each cam-

era patrol the path with its maximum speed [Vi,max] with a periodical motion

of period T . The area length |Ai| and the optimal period T are obtained in

this way:

|Ai| = |Vi,max|ToandT = 2To =
2L∑N

i=1 |Vi,max|
(2.2)

Starting to this easy problem, we introduce the constrained solution.

In general a bounded solution is di�erent to an unconstrained one; this solution

could be the same only if the found solution with (1) is feasible (Ai ⊆ Di).

Called To,c the optimal patrolling period with constraints, we have To,c ≥ To.

Appling a Divide and Conquer approach to this problem, the authors propose

in [9] this solution:

If the uncostrained solution yields Ai 6⊆ Di, the optimal coverage is attained

by splitting the domain into two di�erent subproblems (Ll = [−L,Di,inf] and

Lr = [Di,sup, L]) and considering them separately.

Being T lo and T
r
o the optimal periods for the subproblem, the global coverage

period is obtained as To,c = maxT lo, T
r
o.

In the next subsection we are going to consider the distributed scenario.

We assume that, at the begining, each camera is initialized with its partition

Ai(0) that in general does not coincide with the optimal solution.

9

CHAPTER 2. A THEORETICAL ANALYSIS OF PERIMETRAL PATROLLING
PROBLEM

In every algorithm's step each camera is allowed to update its bounds using

only local information comming from neighboring cameras. The goal of the

solution proposed in the next subsection is to lead the cameras to reach the

optimal steady-state con�guration for patrolling extremes.

2.1.1 Distributed optimal partitioning problem formula-

tion

We assime that at time t = 0 each camera is initlialized with a dominance

interval Ai(0) = [ai,l(0), ai,r(0)] where ai,l(0) and ai,r(0) are respectively the

left and the right extreme of Ai. We hire that the set Ai(0), ..., AN(0) statis�es

three contraints.

• physical constraint : Ai ⊆ Di for i ∈ 1, ..., N

• covering constraint :
⋃
i={1,...,N}Ai(0) = L

• interlacing constraint : ai,l(0) ≤ ai+1,l(0), ai,r(0) ≤ ai+1,r(0)

Observe that the interlacing and the covering constraints imply that ai,l(0) =

−L and aN,r(0) = L. The distributed algorithm has to allow for each camera

to update its bounds using only local information coming from neighboring

cameras. During its evolution the algorithm have to meet all the three con-

straints and the set of dominance intervals have to converge to the optimal

partition.

Analyzing the type of communication between two neighboring cameras we

can obtain di�erent solutions of the same problem.

2.2 Di�erent strategies for solving the partition-

ing problem

The authors in [9] propose di�erent approach. In particular they propose the

synchronous solution where, at each communication round, each camera trans-

mits to its neighbors the information related to its current dominance interval.

After that, they relaxed the synchronism and they proposed the gossip-type

10

2.2. DIFFERENT STRATEGIES FOR SOLVING THE PARTITIONING PROBLEM

communication protocol where at each iteration of the algorithm only a pair

of neighboring cameras communicate with each other.

The authors suggest another subdivision of the same protocol: they propose

the symmetric and asymmetric variants.

In the symmetric version, only one pair of neighboring cameras share their

information and the communication occurs in both directions, while in the

asymmetric one the exchange of information occurs in only one direction; this

mean for example that one camera sends only its information and the adjacent

camera reads the received data.

We can understand that the asymmetric gossip-type protocol proposed

needs less resources than the other solution proposed. For this reason we

treat only this protocol version in our work. In the following paragraph, we

are going to explain in detail the asymmetric gossip-type protocol.

2.2.1 Asymmetric gossip-type algorithm

In [9] (section VI) the authors gave the description of the asymmetric gossip-

type algorithm that doesn't take into account the physical bounds. With

opportune changes, we report the description of this algorithm considering all

the constraints.

Now we subdivide the algorithm in two steps: theTransmission iteration

and the Extremes' iteration.

• Transmission iteration: At each time t ∈ N , there is only one camera

that transmits its information to one of its neighbors camera. (Without

loss of generality we assume that i-th camera sends its bounds to i+1

camera).

• Extremes' iteration: For hdivi+ 1 camera h left unchange its bounds.

From the new information received, i+1 camera updates its extreme as:

11

CHAPTER 2. A THEORETICAL ANALYSIS OF PERIMETRAL PATROLLING
PROBLEM

Called atemp =
ai+1,r(t)vi+ai,l(i)vi+1

vi+vi+1
, then

ai+1,l(t+ 1) =

Di+1,l if atemp < Di+1,l

ai,r(t) if atemp > ai,r(t)

atemp otherwise

(2.3)

Now we give the specular version of the extremes' iteration for completeness.

We take into account the case in which i-th camera updates its bounds accord-

ing to the information coming from i+1 camera.

Called atemp =
ai,l(t)vi+1+ai+1,rvi

vi+vi+1
, then

ai,r(t+ 1) =

Di,r if atemp > Di,r

ai+1,l(t) if atemp < ai+1,l

atemp otherwise

(2.4)

We have just seen the description of the algorithm that we will adopt for

our implementation of patrolling system. We are going to introduce our ex-

tension on the original problem, in particular the introduction of PTZ cameras

and other changes due to pratical needs.

12

Chapter 3
Patrolling trajectories design: from 1-D

to PTZ parameters

To reach our targets, we have to explore the way to describe our patrolling

trajectory in the PTZ (Pan Tilt Zoom) parameters.

First of all we have to gain an istrument that generate our path de�ned in a

3-D enviroment, in particular a mapping function that relates the distance of

one point to the origin and the 3-D point that is linked to that distance. After

this, we will show what are the reference systems involved, the parameter for

calibrate a camera and our suggestion for calibrating a group of cameras that

have to control a perimeter. Moreover, we describe the instrument that we

have used to obtain a camera calibration using Matlab.

As we described in section 2, our model puts camera's f.o.v as a point. It

is easy to imagine that, for an accurate patrolling activity, we want that a

camera points a speci�c 3-D position given as input. From this arises the

need of another mapping instrument that links a 3-D point P in the camera

reference frame with Pan and Tilt angles that bring the camera to point P .

Finally we give two possible solutions to link image plane points to 3-D point.

13

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.1 Patrolling trajectory generation

As we said above, we give the way to obtain the patrolling path.

Using a PTZ camera we have 2 d.o.f; it implies a logical extension of the

perimeter de�nition. De�ned patrolled path as a 3-D line we can patrol a

more complex perimeter. Given a set of 3-D points called Pp2p, we suppose to
obtain a patrolling path point-to-point de�nition in 3-D space. We need one

black box function that accepts in entry the distance D from the origin of the

line and returns the 3-D point P that has distance D from the origin.

In particular called S this function we have:

S : L → P

where

L ∈ R

P ∈ R3

and L is the distance from the origin of the path of the 3-D point P . To gain

this function, we have to calculate the distance from the origin for each point

in Pp2p and through the spline function we obtain a line that interpolate these

points. The spline, as de�ned in [14], is a special function de�ned piecewise by

polynomials. In this way we can obtain a function that could be evaluated in

the domain of distances from origin. In other words we really stretch the 3-D

patrolling path and we obtain 1-D line as shown in the following �gure.

Figure 3.1: Spline Function. The continue line is a path obtained by spline function,

the doted line is the straight line that passes for each points

Now we explain the steps to obtain this tool:

14

3.1. PATROLLING TRAJECTORY GENERATION

Algorithm 1 Algorithm that shows the use of spline function

{P is a vector composed by the points that de�ne our trajectory}
P ← def_points()
{cicle that compute a vector D of distances from origin. The i-th cell corre-
spond to the distance from the origin of the i-th point}
D0 ← 0
for i = 1 to N do
Di ← distance(Pi)

end for
{we compute a spline function}
S ← spline(D,P)
{now we can evaluate a spline S given as ingoing parameter the distance d
and it returns the point P that is distant d from the origin}
Point← S(d)

It is easy to understand the importance of this change. In fact we can

apply our patrolling algorithm without minding the 3-D point managing, but

we only work with the indexes of the path's array gained with spline function.

15

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.2 De�nition of coordinate systems

In this section we are going to show what are the reference frames involved in

a PTZ camera.

Figure 3.2: Reference system involved in PTZ camera

As we can see in Figure 3.2 there are two main reference systems:

• Camera reference frame (CRF): it is the system indicated in the image

as Zc, Yc and Xc

• World reference frame (WRF): it is the system indicated as Zw, Yw and

Xw in the image above

With this, we can represent the same point P in CRF and WRF.

There is a relation between CRF and WRF. In fact as we can see, a point

expressed in CRF could be translate in the WRF with a rototraslation; now

we are going to show how: Called,

• R the rotation matrix

• T the translaction vector

16

3.2. DEFINITION OF COORDINATE SYSTEMS

• Pc the point expressed in the CRF

• Pw the point expressed in the WRF

we have:

Pc = RPw + T (3.1)

and the inverse relation is:

Pw = RT (Pc − T) (3.2)

We underline that the rotation matrix R and the translation vector T are

unique for each camera, more correctly we have to de�ne R as Ri and T as Ti

where i is the index of the camera.

We will show in next section how to gain these parameters.

17

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.3 Camera modeling

In this section we are going to introduce the model that we adopt to manage a

camera. In particular we are going to explain what are the principal parameters

that allow a conversion from image plane, CRF and WRF First of all we

will introduce the intrinsic parameters that link image plane points to points

expressed in CRF and then we will show the estrinsic parameters that relate

CRF points to WRF points.

3.3.1 Intrinsic parameters

The intrinsic parameters are:

• Focal length fc: The focal length in pixels.

• Principal point cc: The principal point coordinates.

• Skew coe�cient alphac: The skew coe�cient de�ning the angle between

the x and y pixel axes.

• Distortions kc: The image distortion coe�cients (radial and tangential

distortions).

Now we are going to describe in a more explicit way the relation between image

points and 3-D points.

Let P be a point in space of coordinate vector Pc =
[
Xc Yc Zc

]
in the camera

reference frame.

pn =

[
Xc/Zc

Yc/Zc

]
=

[
xn

yn

]
After including lens distortion, the new normalized point coordinate pd is de-

�ned as follows:

pd =

[
pd(1)

pd(2)

]
= (1 + k/c(1)r2 + kc(2)r4 + kc(5)r6)pn + dx

18

3.3. CAMERA MODELING

Where r = x2n + y2n and dx is the tangential distortion vector:

dx =

[
2kc(3)xnyn + kc(4)(r2 + 2x2)

kc(3)(r2 + 2y2n) + 2kc(4)xnyn

]

Once distortion is applied, the �nal pixel coordinates Pp = [xp; yp] of the

projection of P on the image plane is:{
xp = fc(1)(pd(1) + alphac ∗ pd(2)) + cc(1)

yp = fc(2)pd(2) + cc(2)

Therefore, in matrix notation:xpyp
1

 = KK

pd(1)

pd(2)

1

where KK is the camera matrix de�ned as follows:

KK =

fc(1) alphac ∗ fc(1) cc(1)

0 fc(2) cc(2)

0 0 1

3.3.2 Extrinsic parameters

Another important feature that this tool provides is the possibility to get a

corrispondence with the 3-D world centered coordinate and the 3-D camera

centered coordinate.

This mapping is obtained with the extrinsic parameters. In fact given Pw as a

point space of coordinate vector Pw =
[
Xw Yw Zw

]
in the grid reference

frame (take as world reference frame shown in Figure 3.2).

Let Pc =
[
Xc Yc Zc

]
the coordinate vector of the point Pw in the camera

reference frame.

Then Pw and Pc are related by a rigid motion equation:

Pc = RcPw + Tc

19

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

where Rc is the rotation matrix and Tc is the translation vector, the last one

indicates the distance between the camera center and the grid(world) center.

As we can see the extrinsic parameters aided to compute the mapping function

between CRF and WRF as we showed in equation 3.1.

Now we describe our tool that we used to compute these parameters un-

derlining its propriety and function.

20

3.4. CAMERAS CALIBRATION AND PARAMETERS ESTIMATION

3.4 Cameras calibration and parameters estima-

tion

To obtain the parameters that we have described, we used a Bouguet's Camera

Calibration Toolbox for Matlab [15].

The toolbox we have used is based on [10]. In this paper, the authors describe

four steps to calibrate a camera in order to obtain a mapping between 3-D

reference coordinates and 2-D image coordinates. With this instrument it is

possible to calibrate a camera on a grid as we will show in Figure 3.3. Through

a relation of image pixel point of this grid and the dimension of grid's square

that are known it can supplies the intrinsic parameter. Moreover, by the

relation of points expressed in the grid reference frame and points expressed

in the CRF, we can obtain the extrinsic parameters (this tool take the grid

system as the WRF).

This tool provides two principal tools:

• Single camera calibration: this tool provides the intrinsic and extrin-

sic parameters of a �xed camera.

• Dual camera calibration: this tool provides the intrinsic and extrinsic

parameters of both cameras to the same calibration board.

Let us de�ne this tools starting from the single camera calibration.

3.4.1 Single camera calibration

This tool supplies our calibration parameters through these steps:

• Take some snapshot of the calibration board in di�erent posi-

tion: As we show in Figure 3.3, we can see di�erent images of the same

board placed in di�erent positions.

21

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Figure 3.3: Bouguet's toolbox � Picture to calibrate a camera

• For each image, we indicate the WRF in the grid: As we can see

in Figure 3.4 we have to indicate the placement of WRF for each photo.

Figure 3.4: Bouguet's toolbox � WRF in a grid

• Extraction of grid corner : Through this command the tool provide

the recognition of the point of the WRF that we have indicated in the

previous step and after that, we can correct the wrong place corners.

(Figure 3.5)

22

3.4. CAMERAS CALIBRATION AND PARAMETERS ESTIMATION

Figure 3.5: Bouguet's toolbox � Corner extraction

• Extract intrinsic parameters: in this step it provides the intrinsic

parameters as we shown in Figure 3.6.

Figure 3.6: Bouguet's toolbox � Intrinsic Parameters

• Extract extrinsic parameters: After we have chosen a picture that

indicates the �nal position of the grid and thus our WRF, through an

extraction of grid corner for this image we gain the extrinsic parameters

for WRF and CRF. (Figure 3.8 and Figure 3.7)

23

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Figure 3.7: Bouguet's toolbox � Image of WRF in the grid

Figure 3.8: Bouguet's toolbox � Extrinsic Parameters

3.4.2 Dual camera calibration

As we said before, this tool provides a calibration of two cameras to the same

grid, in particular we have to operate these steps to calibrate them:

• Place the grid in di�erent positions and for each placement take for the

right and the left camera an image.(as we have seen in Figure 3.3)

• Calibrate separately the two cameras with their picture and gain the

intrinsic and extrinsic parameters as we have shown in subsection 3.4.1.

• Use the stereo calibrate tool to obtain the extrinsic parameter for each

camera: as we show in Figure 3.9 we gain the graphical representation

of our calibrate steps and the parameters that we have obtained.

24

3.4. CAMERAS CALIBRATION AND PARAMETERS ESTIMATION

Figure 3.9: Bouguet's toolbox � Intrinsic Parameters

3.4.3 Mapping from 3D CRF point to image plane point

We have just described the mapping between image and 3-D world. Now, given

a 3-D point P , we can compute the normalized point and �nally we gain the

pixel coordinates of a point Pp in the image.

It is also possible to produce the inverse mapping. In fact, given a pixel point

Pp in the image we can produce the normalized point pn with the function

provided by the Bouguet's toolbox called:

normalize(Pp, fc, cc, kc, alphac) (3.3)

Similarly to the intrinsic parameters, the uncertainties attached to the esti-

mates of the extrinsic parameters omc, Tc are also computed by the toolbox.

Those uncertainties are stored in the vectors omc_error, Tc_error.

We will see in the next section how to use The Camera Calibration Toolbox

for Matlab to reach our scope, in particular how to gain a suitable calibration

steps for our cameras system. In the next section we are going to introduce our

proposal for calibrating a group of camera that have to do patrolling activity

along a trajectory.

25

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.5 Multi-camera calibration

Given a set of N 3-D points expressed in world reference frame, for translating

that points in a camera system we have to store for each camera the extrinsic

parameters obtained calibrating them in the same world/grid frame. But it

is an awful constraint because in a real situation we cannot have all cameras

directed to the same point.

Among the constraints of the perimetral patrolling problem we can �nd

one particular feature. The visual �elds of consecutive cameras have to be

overlapped, then we can calibrate the cameras two by two and take the grid

frame of the �rst camera as the world frame. As we have shown in Figure 3.10,

Figure 3.10: Camera calibration two by two.

if we take a random camera it borders with at most two cameras, then it has

two distinct extrinsic parameters that it uses for translating a point received

by a neighboring camera in his camera reference frame. Now we show how we

have to operate.

26

3.5. MULTI-CAMERA CALIBRATION

Take the �rs board as the WRF of the overall patrolling system and taking

Ci as the i-th cameras with 1 < i < N , we de�ne:

• Ri
gLeft and T

i
gLeft : are the rotational matrix and the translaction vector

that allow to translate a point from WRF of the left grids of the camera

to the CRF of the i-th cameras.

• Ri
gRight and T

i
gRight are the rotational matrix and the translaction vector

that allow to translate a point from WRF of the right grids of the camera

to the CRF of the i-th cameras.

We note that these parameters are given by the extrinsic parameters obtained

by a calibration to the grid. Now we show a diagram (Figure 3.11) that explains

what are the de�nition of variables. Now called Gj as the j-th grid, where

Figure 3.11: Explanation of parameters for cameras calibration two by two.

1 < j ≤ N (N is the cardinality of the grids); for each Gj we de�ne a function

Gjleft that translates a point from j-th grid to its left neighbor grid. We have:

Gjleft : PGj
→ PGj−1

(3.4)

where

PGj
∈ R3;PGj−1

∈ R3

are respectively the point of the starting grid and the point of the left grid of

27

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

the PG Let us de�ne this function:

Gjleft(PGj
) = (Rj

gleft)
T
((
Rj
gRightPGj

+ T jgRight
)
− T jgleft

)
(3.5)

After this function de�nition we obtain a chain of functions that allows us to

compute a mapping function from a point in anyone grids to the �rst grid. In

fact, starting to k-th grid to obtain a function that translates a point from that

grid to the �rts grid we have:

G2left(....Gk−1left (G
k
left(PGk

))) (3.6)

Whereas the calibration between two consecutive cameras is provided by

Camera Calibration Toolbox for Matlab as we have seen in 3.4.2, then our

setting system is a suitable solution.

Until now, we have spoken about the camera calibration and we have pro-

posed a suitable system to obtain the trajectory de�nition. Starting from this

issues, in the next subsection we are going to treat about the computation of

pan and tilt angle necessary to move the camera pointing a 3-D point given in

the entrance with the aim to describe the patrolling path with Pan, Tilt and

Zoom parameters.

28

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

3.6 Patrolling trajectory in PTZ parameters

As we said above, we have to gain a mapping from 3-D point to pan and tilt

angles. First of all, to gain these angles that bring a camera to point a speci�c

point P we have to introduce a mathematical model for PTZ camera.

The camera's reference frame spoted a point in the world as a triplet of pa-

rameter as shown in Figure 3.2.

Given a point in the space called P , if this point is in the center of the camera

image plane, it has the normalized point:

pn =

[
Xc/Zc

Yc/Zc

]
=

[
0

0

]

Indeed, the coordinates x and y of P are 0 while z-coordinate is a constant. We

present two models to compute pan and tilt angles, the �rst one is an intuitive

solution while the second one is more complex and design the cameras that we

use.

29

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.6.1 Simple PTZ camera model

Now we give the following theoretical model for stylizing a camera that is

proposed in [11].

Figure 3.12: Camera reference frame. The red pyramid is the camera and in blu

we denote the reference system.

As evidenced in the reduced model in Figure 3.12 using a rotation around

x and y axes we can gain the pan and tilt rotation respectively.

Now, given in entrance a 3-D point P , we have to compute the pan and tilt

angle that bring the camera to point P . In an analog mode we can compute a

pair of angles that, through rotations around x and y axes, brought a point on

z axis. Those angles are the inverse pan and tilt angle. We show how to �nd

these angle.

Given a point P =
[
x y z

]
and we call the above angles θ and φ

where θ is the inverse pan angle and φ the inverse tilt angle. Now we have:1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

xy
z

 =

 0

0√
x2 + y2 + z2

Given this matrix equation, it is easy to obtain Pan and Tilt angle through

the solution of trigonometric equations with cramer's rule.

30

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

This model unfortunately is not realistic. In fact we have supposed that the

rotation axes are centered to the same point (the origin of the system).

In a lot of PTZ cameras (such as our Ulisse cameras) this model is not suitable

because the camera has axes that are non-centered.

Now we o�er an o�set based model that is suggested in [12] by ETH control

group.

3.6.2 O�set based PTZ camera model

A realistic PTZ camera do not only has pan and tilt axes that are intersected.

In fact taking our Ulisse PTZ camera shown in Figure 3.13 we can see how the

Figure 3.13: Technical detail of Ulisse Compatc camera.

movements engine are o�-axes.

The model proposed by ETH is presented in the next �gure (N.B. : Pay at-

tention, camera reference system is not the classical system that we have show

in Figure 3.2).

31

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Figure 3.14: O�set camera model .

As we can see, given a combination C(pan, tilt) of pan and tilt rotation and

a point P obtained by a calibration of a camera starting to C, we can translate

P = [xoc; yoc; zoc] in the original camera system (XY Z)fc through the series

of matricians operations proposed in 3.7. We call original camera system, the

camera reference system obtained where pan and tilt angles are both 0.

Pw =

 0

0

H

+Rθ

D0

0

+Rφ

xoyo
zo

+

xocyoc
zoc

 (3.7)

Where:

• D, xo, yoandzo are the o�set shown in Figure 3.14. Respectively D is

the o�set between pan and tilt axes, where xo, yo and zo are the o�set

between tilt axes and the camera's hole.

• Rφ and Rθ are rotation matrices. Rφ is the rotation matrix along tilt

axis (Y-axis) and Rθ is the rotation matrix along pan axis (Z-axis).

• H is the height of camera from ground.

32

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

3.6.3 Computation of Pan and Tilt angles

Given this model, it is easy to obtain a corrispondence between points in the

ground and pan and tilt angles. In fact given a point Pw = [xw, yw, 0] we have

to compute θ and φ to obtain a Poc = [d, 0, 0], where d is the distance between

the point and the camera (under the assumption that the target is centered

we have yoc = zoc = 0). Let us to explain in detail how to gain pan and tilt

angles.

∆ =

δ1δ2
δ3

 =

D0
0

+Rφ

xoyo
zo

+

xoc0

0

we have

∆ =

D + (xo + xoc) cosφ+ zo sinφ

yo

zo cosφ− (xo + xoc) sinφ

substituting ∆ in 3.7

∆ =

δ1 cos θ − δ2 sin θ = xw

δ1 sin θ − δ2 cos θ = yw

H + δ3 = 0

with appropriate changes we can obtain:

∆ =

δ1 cos θ sin θ − δ2 sin2 θ = xw sin θ

δ1 cos θ sin θ − δ2 cos2 θ = yw cos θ

H + δ3 = 0

Now, from the �rst two equations we can derive

cos θ =
δ2yw ±

√
x4w − x2wδ22 + x2wy

2
w

x2w + y2w
(3.8)

this yelds two solutions, but since we know xw and yw we can see what is the

correct root.

33

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

For gaining φ we use the fact that δ3 = −H, from this stems:

sinφ =
H(xo + xoc)±

√
z4o −H2z2o + (xo + xoc)2z2o

(xo + xoc)2 + z2o
(3.9)

As we can see xoc is unknown since we have only xw and yw. Considering the

o�set much smaller than xoc we can approximate xoc as:√
(
√
x2w + y2w −D)2 +H2

We gain two solutions for φ from our equation, thus we have to choose the

suitable solution starting from the values of xw and yw and H.

3.6.4 Zoom control

It is also important, in order to aid the human operator, to obtain for each

camera's video an image that has the same rate between real and digital di-

mension. In other words when we frame an object and we know its sizes, we

want to have similar images independently from its distance from the camera.

For this reason we have to set a new zoom function Z de�ned as:

Z : D− > [zmin, zmax]

where, given a speci�c model of camera, zmin, zmax are respectively the mini-

mum and maximum values of zoom supported. For simplicity we can set Di as
the distance between an object and i-th camera. Given Di, we can link a level

of zoom zok and obtain a ratio between them that we call Rz = Di

zok
. Using

that ratio we set:

Zi =
Di
Rz

(3.10)

34

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

3.6.5 Velocity control

When an operator manages the video-surveillance system in his monitor �ows

the video stream from each camera that, we suppose, is doing patrolling ac-

tivities along a perimeter. To aid the operator's work we have to patrol our

perimeter with an acceptable velocity (for example 5m/s) and each camera

have to do its movement keeping the patrol velocity along the path constant.

This restriction simpli�es the computation of the camera's bounds because the

velocity data are no longer necessary, but it implies an additional problem:

keeping constant the patrolling velocity along the perimeter, we obtain vari-

able velocities in pan (V pani) and tilt (V tilti) movements. Analyzing more in

deep this problem we can �nd new constraints for our cameras. Indeed, taking

one camera, it has two velocity constraints that we de�ne in this way:

• Vapani
that is Vapanimin

≤ Vapani
≤ Vapanimax

• Vatilti that is Vatiltimin
≤ Vatilti ≤ Vatiltimax

where Vatiltimax
, Vatiltimin

, Vapanimax
, Vapanimin

are values depending on the type

of camera that we are analyzing.

Picking up the de�nition of our problem given in precedence, we can see how

the velocity constraint in section 2 change. In fact we have to �nd the max

value for the linear velocity that satis�es the two constraints reported above

during patrolling activity along the path; but it isn't easy because the path

that one camera have to control changes during patrolling, thus a camera

has di�erent values of linear velocity during the evolution of the algorithm.

Moreover our algorithm is a distributed one and it implies that one camera

can have only local information; but to �nd a global common value for velocity

is a very complex activity that involves our algorithm in all its parts.

In order to solve this problem we can make an o�-line search for this value

that let us set a correct value for the patrolling velocity along the path.

Another important issue that we propose is how to compute the angular

velocities to keep constant the linear velocity along the trajectory. For each

movement of our camera from two points we have:

• Vi the constant velocity along the patrolling path.

35

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

• dPi→Pi+1
the distance between the starting point (Pi) of this movement

and its next point (Pi+1).

• ∆θi the relative pan angle to move a camera from Pi to Pi+1.

• ∆φi the relative tilt angle to move a camera from Pi to Pi+1.

frist we compute:

∆θi = |θPi
− θPi+1

|

∆φi = |φPi
− φPi+1

|

dPi→Pi+1
= |Pi − Pi+1|

and thus we can simply gain the time elapsed for traveling from Pi to Pi+1 as

Ti =
dPi→Pi+1

Vi

�nally, the angular velocities for this movement

Vapani
=

∆θi
Ti

(3.11)

Vatilti =
∆φi
Ti

(3.12)

From these values we can obtain another mapping function that relate points

to angular velocities.

36

3.7. 3-D PATROLLING TRAJECTRY FROM IMAGE PLANE POINTS

3.7 3-D patrolling trajectry from image plane

points

In order to get out a 3-D patrolling path to apply the distributed algorithm

described in chapter number 2 we must �nd a simply mechanism for a human

to set up the principal path's points. We call principal path point a corner

point that describes a broken line that approximates an ideal patrolling path.

In fact we could not be satis�ed to gain a simply list of some 3-D points, but

we have to �nd a relation between image points, that are given by a human,

and 3-D points of the world. We are going to present two principal solutions

to obtain this relation. The �rst method impose a restriction for which all the

3-D points must lies in the ground; the second, using two cameras, shows how

to compute a 3-D point that is placed everywhere in the space starting from

two pixel points.

3.7.1 Single camera with planar trajectory

In our targets we have to move a camera through pan, tilt and zoom move-

ments. For reducing the number of freedom degrees we choose to mind only

pan and tilt. With this simpli�cation we only need a list of 3-D points that

lie in the same plane; it implies that z coordinate is the same for every points

that belong to the path.the

For gaining a 3-D point that lie in a plane starts to image's 2-D points we

use the method of Bouguet's software called normalize (that we have show in

3.4.3). In fact, after a calibration step, from a 2-D pixel point and camera

calibration parameters a function produces a normalized point pn that is:

pn =

[
Xc/Zc

Yc/Zc

]
=

[
xn

yn

]

where Pc =
[
Xc Yc Zc

]
is a point expressed in a camera reference frame

and Pw =
[
Xw Yw Zw

]
is a point expressed in world reference frame.

But points lies in the same plane and in order to allow a simply conversion

from 3-D point expressed in one camera reference system to another camera

37

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

reference system we set the z-coordinate of a point expressed in the world

reference system to a constant k, (Zw = k). We set k = 0 for simplicity.

In this way through extrinsic parameters of every camera we can translate a

point from the world system to the camera system. In fact, as it was explained

in the previous sections there is a relation between 3-D points expressed in the

world reference system and points expressed in the camera reference system.Xc

Yc

Zc

 =

rc11 rc12 rc13

rc21 rc22 rc23

rc31 rc32 rc33

Xw

Yw

Zw

+

tc1tc2
tc3

Thus,

Xc = rc11Xw + rc12Yw + rc13Zw + tc1

Yc = rc21Xw + rc22Yw + rc23Zw + tc2

Zc = rc31Xw + rc32Yw + rc33Zw + tc3

But we have posed Zw = 0 thus,

Xc = rc11Xw + rc12Yw + tc1

Yc = rc21Xw + rc22Yw + tc2

Zc = rc31Xw + rc32Yw + tc3

Now if we want to �nd the world centered 3-D coordinate given a normalized

point pn we have to resolve the next system of equation where Xw and Yw are

unknowns.
pn(1) =

rc11Xw+rc12Yw+tc1
rc31Xw+rc32Yw+tc3

pn(2) =
rc21Xw+rc22Yw+tc2
rc31Xw+rc32Yw+tc3

extracting Xw and Yw we gain the follower parameter:

J = rc12 − pn(1)rc32

H = rc21 − pn(2)rc31

L = rc22 − pn(2)rc32

K = rc11 − pn(1)rc13

T1 = −tc3pn(1) + tc1

T2 = −tc2pn(2) + tc3

38

3.7. 3-D PATROLLING TRAJECTRY FROM IMAGE PLANE POINTS

And,

A = −JH
K+L

B = HT1
K+T2

Thus,

Xw = B
A

Yw = −T1−XwJ
K

Zw = 0

(3.13)

With this method we have found a mapping from 2D to 3-D world-centered

points, but this system has an important weakness. In fact, given an image

recovered by a camera with a de�ned zoom, we have a bounded vision of

the world and for gaining a complete de�nition of patrolling path we have to

implement a complex mechanism. This tool must gather all the information

coming from each camera and adds them (according to common points that

must be de�ned) in order to describe the path in a suitable world reference

system. This changes are not treated in this thesis because we want to focus

the implementation of the algorithm proposed.

Now we are going to propose a possible solution to multi-camera calibration

in a perimeter.

39

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.7.2 Dual camera with 3-D trajectory

As we can see the previous method has a limitation that constrains our work.

Now we introduce a method that links a 3-D point with two pixel points. As

we show in Figure 3.15 we can see a schema that describes our enviroment.

Figure 3.15: A suitable model of distributed system.

Now take a point Pw de�ned as:

Pw =

Xw

Yw

Zw

It can be translated in the CRS of our cameras, we call P 1

c and P 2
c where the

�rst is expressed in the �rst camera system and the second is expressed in the

other camera. We have:

P 1
c = R1Pw + T 1

X
1
c

Y 1
c

Z1
c

P 2
c = R2Pw + T 2

X
2
c

Y 2
c

Z2
c

As we mentioned in section 3.3 we have a relation between point expressed in

40

3.7. 3-D PATROLLING TRAJECTRY FROM IMAGE PLANE POINTS

the CRF and pixel point and, in order to do it, we used the normalized tool

provided by Camera Calibration Tool for Matlab in 3.4.3. In fact we have:

p1n =

[
X1
c /Z

1
c

Y 1
c /Z

1
c

]
=

[
x1n

y1n

]

p2n =

[
X2
c /Z

2
c

Y 2
c /Z

2
c

]
=

[
x2n

y2n

]
applying the method that we have used in the previous subsection we have

x1n =
r1c11Xw+r1c12Yw+r1c13Zw+t1c1
r1c31Xw+r1c32Yw+r1c33Zw+t1c3

y1n =
r1c21Xw+r1c22Yw+r1c23Zw+t1c2
r1c31Xw+r1c32Yw+r1c33Zw+t1c3

x2n =

r2c11Xw+r2c12Yw+r2c13Zw+t2c1
r2c31Xw+r2c32Yw+r2c33Zw+t2c3

y2n =
r2c21Xw+r2c22Yw+r2c23Zw+t2c2
r2c31Xw+r2c32Yw+r2c33Zw+t2c3

(3.14)

Now we have three unknown parameters (Xw, Yw and Zw) and four equations

and we are able to extract the coordinates of point Pw

The issues that we propose in this section are not important for our work

because it is focused on the de�nition of patrolling trajectory in the pan, tilt

and zoom parameters. To clarify our work we are going to introduce a review

of our proposed mapping functions.

41

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.8 Review of mapping function: from image

plane point to PTZ parameters

To summarize all the features we discovered, we propose the following schema:

Figure 3.16: Review of mapping function.

Let us describing the block diagram above:

• Multi-camera calibration step: As we described in section 3.5 we

calibrate our set of cameras. This allows us to obtain the extrinsic and

intrinsic parameters for each camera and a function that translate a point

from anyone grid to the �rst grid take as the world reference system.

• From image plane points to 3-D WRF points: this step is obtained

by the procedures described in section 3.7. The procedures are two. In

the �rst we impose that the patrolling path lies on the ground, while the

second method does not forces any conditions.

• Trajectory de�nition using spline function: as we have shown in

section 3.1, we set up a continuously path using spline function. Starting

from the 3-D points that are supply from the previous step we gain a

corrispondence from distance from the origin of the Trajectory and 3-D

point and vice versa.

• Patrolling trajectory in PTZ parameters: To translate a point from

3-D de�nition to PTZ de�nition we have to:

42

3.8. REVIEW OF MAPPING FUNCTION: FROM IMAGE PLANE POINT TO PTZ

PARAMETERS

� Compute pan and tilt angles to bring a 3-D point in the center of

the image. (subsection 3.6.3)

� Compute zoom parameters that keep the object observed to the

same dimension during the patrolling activity. (subsection 3.6.4)

� Compute the angular velocity in tilt and pan movements for each

point. (subsection 3.6.5)

43

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.9 Simulation

In this section we are going to test all the mapping function that bring a 1-D

trajectory de�nition to PTZ de�nition with pan and tilt velocities.

First o� all, we describe our simulation environment. It is composed by:

Figure 3.17: Simulation environment

• One PTZ camera modelled as a Ulisse Compact Camera

• Trajectory de�nition per point (see red crosses in Figure 3.17) and its

spline approximation (see green line in Figure 3.17)

We note that in this �gure, the camera is oriented as pan and tilt equals to

zero. Running our simulation code written in Matlab, we gain the following

diagram:

44

3.9. SIMULATION

• Camera position in 1-D trajectory de�nition: Starting from a

patrolling path described in our problem de�nition in section 2, we obtain

a chart in which we analyze camera position along the time.

Figure 3.18: 1-D camera position along the time

• Pan angle: We describe the movements of our camera in its Pan angle

along the time.

45

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Figure 3.19: Pan diagram

• Tilt angle: We describe the movements of our camera in its Tilt angle

along the time.

Figure 3.20: Tilt diagram

• Zoom parameter: We describe the variation of Zoom parameters along

the time.

46

3.9. SIMULATION

Figure 3.21: Zoom diagram

• Pan angular velocity parameter: We describe the variation of Pan's

velocity during the time.

Figure 3.22: Pan angular velocity diagram

47

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

• Tilt angular velocity parameter: We describe the variation of Tilt's

velocity during the time.

Figure 3.23: Tilt angular velocity diagram

These are the diagrams, obtained with our simulation program. We can see a

few proprieties of them in particular:

• �gurename 3.19 evidence how Pan angle depends more on trajectory

de�nition then the height of camera and the distance of patrolling path

to the camera.

• �gurename 3.20 and �gurename 3.21 show how Tilt and Zoom parameters

depend largely on camera height and the distance between camera and

trajectory.

Starting from this proposed analysis we are going to introduce a possible

software architecture for the Videotec Testbed.

The software architecture that we are going to explain does not depend on

camera calibration step, in particular we impose that we have the 3-D de�-

nition of our path with a spline function and we compute o�ine all the PTZ

parameters that describe our trajectory.

48

Chapter 4
Software architecture: design and

implementation

In next sections we will go in the detail of our patrolling software describing

its component. Let us start with the software's analisis of requirements.

4.1 Requirements analysis of software

In light of the above consideration, we summarize the requirements of the

system and de�ne how it works. To describe as well the requiremens we choose

to use UML to design our components. Our patrolling system is made by

two main components: an user and a camera. The next �gure describes a

distributed system.

49

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

Figure 4.1: A suitable model of distributed system.

Now we are going to present the camera component. In a �rst instance

we are going to present a statechart diagram that models the behavior of the

component and its state along the time; after that, we will propose an activity

diagram that shows what are its steps and controllers. Finally we will present

an usecase diagram for the user component.

4.1.1 Camera component analysis

The camera component must manages only one camera and move it along

patrolling path which was de�ned before. To describe its behavior over time,

we can take it as a �nite states machine. In fact this type of diagram emphasizes

state's de�nitions and how the process changes its state over time.

50

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

Figure 4.2: UML Statechart diagram for Patrolling component.

In Figure 4.2 we propose our statechart diagram that describes camera

process.

First of all, we can see six main states that are activated by switching condi-

tions. Now we give a description of camera component for each state:

• Ready: it is lunched and set up the initial enviroment variables.

• Dead: it is aborted after a user's command.

• Patrolling: it does the patrolling activity, such as move camera and

controls it zoom and velocity.

• Adjust Extremes: it receives and computes the new bound of patrolling

path according to its red data. This state stems by the Extremes' itera-

tion of our patrolling algorithm proposed in section 2.2.1.

• Delivery: it sends its bound to neighboring cameras.

• Tracking: it does tracking activities. This state includes the Auto track-
ing and the Manual tracking state.

We summarize the description of the diagram in the next table.

51

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

Start state Final state Event Guard Procedure

Ready Patrolling inizialize
enviroment
variabiles

Patrolling Adjust Ex-
tremes

after CLK2

sec
Patrolling Delivery after CLK1

sec
Patrolling Auto-

tracking
command re-
ceived

command=auto-
tracking

suspend

Patrolling Manual-
tracking

command re-
ceived

command=manual-
tracking

suspend

Patrolling Dead command re-
ceived

command=SIGQUIT suspend

Table 4.1: Statechart table for diagram in Figure 4.2

The table proposed above shows which are the state transitions, the events

and the conditions that make the changes possible and the procedure that the

process has to execute.

This diagram is focused in the description of process state but it doesn't

explain very well the activity that it must do during the evolution over time.

In order to do that we could be aided by the activity diagram in Figure 4.3.

52

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

Figure 4.3: UML Activity diagram for Patrolling component.

For an easy lecture of the diagram we have to think how the processor's

time needs to be associated to the patrolling activities. Moreover, this type of

diagram shapes very well the communications signals between camera process

and user process. In this diagram we can see six activities of camera process:

• Setup variables: it sets up the enviroment variables.

• Send patrolling bounds: it sends its bound to neighboring cameras.

• Compute bound: it receives the neighboring's bound and compute its

new bound.

• Warn adjacent camera: it warns its neighboring that it has to leave

the patrolling activity for entering in the tracking activity.

• Track: it does the tracking activity.

• Patrol: it does the patrolling activity. It moves the camera from the left

to the right bounds, computed in compute bound activity.

53

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

• Quit: it deallocates the memory and closes the process.

There are also four interrupt signals that are modeled: three are ingoing and

one is outgoing. Let us analyse them in the next table:

Signal Description Type

Switch to tracking warns the camera component that must switch
to tracking mode

ingoing

Switch to patrolling warns the camera process that must set up the
environment variables and goes in patroling
mode

ingoing

Terminate warns the camera component that must empty
the variables that were used and quit

ingoing

Warn user process warns user process that, after the quit activity,
it is o�

outgoing

Table 4.2: Description of the signals of Figure 4.3

We have just concluded the analysis of camera process. Now we are going

to do a fast review of user's functions to control the camera process.

54

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

4.1.2 User process analysis

Figure 4.4: UML Usecase diagram for User component.

The diagram reported in Figure 4.4 shows what are the principal instru-

ments of user for managing the camera through the communication between

user and camera process. In the next table we clarify the usecase diagram

describing the features for each state.

55

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

Usecase: Start Patrolling

Features Description

Actors User
Description User starts the patrolling system
Preconditions -
Main �ow user executes the program and start the patrolling system
Other �ow -
Postconditions -

Usecase: Switch Tracking Mode

Features Description

Actors User
Description User communicates to one camera to switch to tracking.
Preconditions The patrolling system has to be started
Main �ow User chooses a camera Ci that he wants to controll and

switch it to tracking mode. He can choose between auto-
tracking and manual-tracking modalities

Other �ow If the choosen camera doesn't exist or it is already in track-
ing mode, it displaies a warning message

Postconditions the choosen camera are suspend from patrolling activities

Usecase: Switch Patrolling Mode

Features Description

Actors User
Description User communicates to one camera to switch to patrolling

mode.
Preconditions The patrolling system has to be started
Main �ow User choose a camera Ci that he wants to controll and

switch it to patrolling mode.
Other �ow If the choosen camera doesn't exist or it is already in pa-

trolling mode display a warning message
Postconditions the choosen camera are suspend from his previous activities

(eg: tracking activity)

56

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

Usecase: Take snapshot one camera

Features Description

Actors User
Description User queries one camera to know its state.
Preconditions The patrolling system has to be started
Main �ow User chooses a camera Ci and query it.
Other �ow If the choosen camera doesn't exists display a warning mes-

sage
Postconditions the choosen camera returns to user its state

Usecase: Take system's snapshot each T sec

Features Description

Actors User
Description User launches this command and a the system start to

query each camera every T sec, for each query each pro-
cess respond with its state.

Preconditions The patrolling system has to be started, if not this com-
mand start it.

Main �ow User launches this this command at the beginning
Other �ow User can start �rst the patrolling system than launches this

command.
Postconditions A continuously polling is made by the query component. It

monitors processes evolution.

Usecase: Quit

Features Description

Actors User
Description User closes the application and stops patrolling system.
Preconditions The patrolling system has to be started
Main �ow User stops the overall system
Other �ow -
Postconditions all patrolling process are killed

Table 4.3: Description case by case of the usecase diagram

We will see in the section 4.4.5 that this analysis is more important, in fact

this step aided us and allows us to saved a lot of time, especially in the debug

step of the system.

57

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

4.2 Technical consideration about software de-

velopment

In previous sections we have described the UML diagram that describes the

system requirement and the testbed architecture that we used. Submitted of

our consideration and to the constraint that we have to use the C language,

in order to use the serial library with the aim of moving the cameras, steams

the following considerations. Starting to Figure 4.1 we have to implement a

software in a centralized structure underline in the following �gure.

To adjust our analysis to our testbed architecture we have to take into consid-

Figure 4.5: Testbed architecture.

eration the interface of communication that is possible to use with C language.

There are two communication interfaces in order to obtain our scope. The

�rst one is the communication interface that is used to communicate between

two neighbouring cameras and it has to be a publish/subscribe protocol. The

second one is the interface between the user and the camera component and it

uses an interrupt protocol. For our project we chose the IPC libraries [16], in

our particular case we used the libraries:

• types.h and ipc.h: They provide the de�nition of type variables and main

functions.

• signal.h: it provides the interrupt communication signals

58

4.2. TECHNICAL CONSIDERATION ABOUT SOFTWARE DEVELOPMENT

• msg.h:it provides the send/receive method to communicate throug com-

ponent.

Finally, to complete our analogy, we treat all component as process that live

in the same machine.

To explane more precisely the architetcure that we implemented, we present

two component diagrams that clarify the structure of our process.

Figure 4.6: UML Patrolling Component diagram of the communication interfaces.

59

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

As we can see in Figure 4.6 we propose an UML component diagram that

clarify the communication interface between processes. In particular there are:

• signal interface: it is the interface between user process and all the

patrolling process. It provides two functions, such as:

� signal(INT,fnc): signal handler for interrupt INT. When an INT

interrupt is lunched, the program catches the signal and executes

the function fnc.

� kill(IDP,INT): it sends an interrupt signal of INT type to a process

which has IDP id.

• snd/rcv interface: it is the interface between two processes. Each one

of them controls only one camera. It provides two function, such as:

� msgsnd(): after establish an one-directional communication chan-

nel between processes, the sender can sand a message through the

channel using this function.

� msgrcv(): similar to the previous function, but it provides, a receive

function for the receiver process.

Figure 4.7: UML Component diagram of the communication interfaces between Pa-

trolling and Tracking component.

60

4.2. TECHNICAL CONSIDERATION ABOUT SOFTWARE DEVELOPMENT

The second component diagram (Figure 4.7) shows the structure of pa-

trolling process, in particular it proposes a subdivision in components that

cooperate each other. Looking at the analisys of activity diagram that we

proposed in section 4.1.1 we can see four principal activities: Send patrolling

bound, Compute bound, Patrol and Track. Analizing more deeply these activ-

ities we �nd three propriety that we have to take into account:

• Patrol activity only has to control the camera: when we control a cam-

era, using the serial function provided by Videotec, we have to manage

the signals using USB interface. In particular when we communicate a

movement command to the camera we must wait a rotational time before

forwarding another command. During this time our application must not

idle, but it can do another available activity. For this reason and to keep

separately the camera control from the other activity, we have to de-

cide to implement a unique component that is dedicated only to camera

managment. It is the Patrolling controller shown in Figure 4.7.

• Send patrolling bound and Compute bound : this two activities are in-

dipendent from the other camera controller activities. They could be

executed in concurrency to the Patrol activity and moreover they could

be executed in parallel. For this reason we decided to implement two

distinct component: The Send bound controller and Compute bound con-

troller shown in section 4.4.3.

• Track activities are external to our scope: for this reason we implemented

another process that is the tracking process that is launched when the

patrolling process is suspended.

We have isolated the three components that compose the patrolling pro-

cess. We decided to implement them by threads and they can communicate

each other through a shared memory because they belong to the same process.

From these techical considerations stems the need of an analysis that spots

the parameter that we must give as input of our process. In order to obtain

this, we are going to introduce an input-output analysis of our process.

61

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

4.3 Input-Output analysis

We take into account the user process and we present the following table that

describes its features in order to spot the scope, the ingoing and the outgoing

parameters.

Scope: Controls the cameras connected to the workstation and initializes
the sequence of patrolling processes. Through interrupt signals

queries a patrolling process Pi and controls the evolutions of the
overall system.

In parameters: -
Out parameters: N processes where N is the number of camera connected via usb

to the workstation.

Table 4.4: Input-output analysis for user process

From table 4.4 we can see how the user process creates one controller for

each camera. This feature is created only for our testbed. In a future devel-

opment will not be necessary to create processes, because they are launched,

everyone of them, in its agent since beginning.

Very interesting is the analysis of the camera process that is reviewed in

table 4.5.

62

4.3. INPUT-OUTPUT ANALYSIS

Scope: To move the camera Ci, given as input, along a patrolling path P
delimited by ai,l and ai,r with a costant patrolling velocity vi.
At �rst instance ai,l = Di,inf and ai,r = Di,sup.
Through the comunication channels, the camera Ci comunicates
its patrolling bounds (ai,l and ai,r) to the camera Ci+1 and Ci−1.
Ci+1 updates its patrolling bounds according to recieved param-
eters from Ci.
N.B. we set the constant velocity along patrolling path as always
feasible with the camera angular velocity constraints during the
evolution of the algorithm.

In parameters:

• Ci: id of the camera connected via usb.

• ai,l = Di,inf and ai,r = Di,sup: at the �rst instance we set
the patrolling physical constraints of the camera as input
for ai,l and ai,r.

• vi: constant velocity along the patrolling path.

• SNDchci→ci−1 : communication channel between ci and
ci−1 cameras. Camera ci send its bound to ci−1.

• RCV chci→ci−1 : communication channel between ci and
ci−1 cameras. Camera ci receive the messages comming
from ci−1.

• SNDchci→ci+1 : communication channel between ci and
ci+1 cameras. Camera ci send its bound to ci+1.

• RCV chci→ci+1 : communication channel between ci and
ci+1 cameras. Camera ci receive the messages comming
from ci+1.

• CLK1: time between two consecutive transmission steps.

• CLK2: time between two consecutive computing bound
steps.

Out parameters:

• At every trasmission step, the proccess comunicate through
message channels (chci→ci−1

and chci→ci+1
) its new com-

puted bound to processes (Pi−1 and Pi+1).

• Pstatei : process state. It could be [patrolling, manual track-

ing, stop, ready, auto-tracking]. It is returned when user
process query patrolling process.

• ai,l and ai,r: it have to return it's patrolling bounds when
it receives an interrupt by the user process.

Table 4.5: Input-output analysis for camera process

63

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

A very important speci�cation, reported above, is the choose of velocity's

parameter. This parameter has to be chosen o�ine. In fact it must be a

feasible parameter during the entire evolution of our algorithm. Other notable

parameters are the clocks (for the trasmission and the computing bound step)

and the communication channels that are four for each camera due to the

one-directional feature of our send/receive protocol.

64

4.4. REVIEW OF OVERALL SYSTEM ARCHITECTURE

4.4 Review of overall system architecture

In order to give to the lector a complete vision of the architecture, we are

going to describe in detail each component of our system. In particular we will

see the Compute bound controller, the Transmission Bound controller (for both

controllers we will describe their way of communication), the Camera controller

and the User controller. We underline that both controller (Trasmission and

Compute bound controller) communicate via shared memory. In other words

they save its sensible data (such as bounds variable) in the same memory

location. We will see this feature in the Camera controller diagram and in the

section 4.4.4.

4.4.1 Compute Bound controller

In order to describe the Compute Bound controller we take into account the

diagram in Figure 4.8.

Figure 4.8: UML Component diagram of the Compute Bound Controller.

65

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

As we can see the main controller is composed by two sub-controller:

• Receiver controller: it controls the two ingoing channels for messages

that are comming from its neighbouring cameras and receive the messages

and save it into the enviroment variable.

• Left bound controller: it computes the new left bound of the patrolling

portion of path.

• Right bound controller: it computes the new right bound of the pa-

trolling portion of path.

4.4.2 Transmission Bound controller

Figure 4.9: UML Component diagram of the Trasmission Bound Controller.

In light of the diagram in Figure 4.9 we have only one sub-controller:

• Sender controller: it sends to the neighbouring cameras its patrolling

bounds using the send command improved by msg.h interface.

66

4.4. REVIEW OF OVERALL SYSTEM ARCHITECTURE

4.4.3 Patrolling controller

The target of this controller is simply to control the movement of one camera.

Its features are displayed in Figure 4.10.

Figure 4.10: UML Component diagram of the Patrolling Controller.

The main sub-component (Movement controller) use the serial library to

move its assigned camera. It moves its camera with a position command

function and realizes the velocity control function proposed in section 3.6.5. In

section 3.6.4 we have proposed a zoom control for our patrolling system. This

improvement, unfortunately, cannot be implemented in our testbed because

the available space isn't su�cient to make a review of our proposed changes.

4.4.4 Camera controller

As we mentioned, the Camera controller diagram Figure 4.7 has the target to

clarify the communication interface among camera components. As we can see

each component of the camera component communicates each other via shared

memory. Let us see what are the main variables that camera controller has to

save in the shared memory. In order to describe it we propose the following

table:

As we can see in the table above, there is only one controller, that accesses

in write mode, for each variable type. This implies that it is not neccessary to

do some mutex variables.

67

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

Variables type Compute Bound C. Trasmission Bound C. Patrolling C.
R W R W R W

Bounds Variables × × ×
Ingoing channels ×
Outgoing channels ×

Table 4.6: Analysis of the type of access of the variables, in Camera controller

4.4.5 User controller

Starting from the proposed diagram Figure 4.4 we can see the main functions

that we need to implement. Now we propose the command that we imple-

mented:

• start : it starts the patrolling system

• snap [i] : it queries the i-th patrolling process through a SIGHUP inter-

rupt.

• sys_snap [s] : it creates a thread that poll each patrolling process using

the function snap.

• switch [i] : it changes the target of the i-th camera. If the i-th camera

is doing patrolling, it switches the camera into tracking activity and vice

versa. It warns the camera using SIGCHLD interrupt.

• quit : it closes the system. It has to warn all the processes using SIGQUIT

interrupt. The warned process has to execute the exit function and frees

all the memories.

4.4.6 Tracking controller

The last one controller that we analize is the Tracking controller. It is outside

our scope, but for completeness we implemented it. In particular we have to

implement an instrument that is able to manage the user command (in par-

ticular switch [i], sys_snap [s] and quit). In order to obtain this, we reuse the

interrupt manage structure that we have implemented for patrolling controller

and adjust it to the tracking controller requirements.

68

Chapter 5
Test results

In the previous chapter we have explaned the theoretical analysis for our prob-

lem. In particular we have spoken about the mathematical de�nition of the

problem in chapter 2. Then we have proposed the key proposals for PTZ man-

agement in chapter 3 (in particular in section 3.6.3 we have analized the way

to compute the pan and tilt angles to direct the camera to a given point). In

chapter 4 we have suggested a suitable architecture for our patrolling software.

After this complex analysis, in this chapter we are going to show what are the

results gained using the proposed methods. We will see three main tests of the

proposal that we have given:

• Test of the angles computation proposed in section 3.6.3.

• Test of the convergence of our perimetral patrolling software proposed in

chapter 4.

• Test of the entire system in the Videotec testbed.

Now, Before explaining our tests we are going to introduce our testbed.

69

CHAPTER 5. TEST RESULTS

5.1 Testbed architecture

The Videotec testbed that we used is composed by two cameras of di�erent

type: we used an Ulisse Compact camera and an Ulisse standard camera. They

have di�erent characteristics that we have to take into account. In the next

table we can see their features:

Camera type Angular Velocity Tilt O�set
Max Min Max Min pan-tilt tilt-hole pan-hole

Ulisse Compact 120◦/s 0.1◦/s 90 -90 124mm 60mm 20mm
Ulisse standard 30◦/s 0.1◦/s 90 -40 na na na

Table 5.1: Camera features table. For angular velocity we mean the velocity of

PTZ camera in position control and the o�set for stardard Ulisse are

not aviable because they depend by camera installation

Their position are shown in the following �gure:

Figure 5.1: Testbed pan. Layout of cameras and their reference systems

70

5.1. TESTBED ARCHITECTURE

As we can see the Testbet that we have at our disposal is limited and we

must take the necessary measures for operating with it in order to realize a

demo of our patrolling software. The cameras could be controlled through a

serial interface (USB) and for the implementation of patrolling software we

used a centralized control interface.

After this presentation of our testbed, we are going to explain the procedure

that we have taken to compute the patrolling path and the angles associated

to each point.

5.1.1 Computation of path and angles in testbed

Due to limitated available space and to the testbed's features exposed in the

previous section we decided to do a sempli�cation of our enviroment of work.

In fact, as we show in Figure 5.1, we took, as the global patrolling path, a

straight line of 3 meters from point A to point B. In order to take in considera-

tion our mapping functions (described in section 3.8) in our testbed we do not

mind the �rst two steps but we suppose to start from a 3-D de�nition of our

trajectory poin by point and, after that we apply the step describes in section

3.1 and the mapping function that we have seen in section 3.6.

Now we introduce the steps that we made to setting up the enviroment of

our testbed.

• Setting up the ground system for each camera: Every camera must

have a ground system (CGS), against which we compute the coordinate

of two starting point A and B. For each CGS we de�ned we have to

gain the phase shift angle (ψ) between the position ground system of one

camera (CPGS), due to its poistion in the space, and the CGS that we

use for convenience.

• Compute the coordinate of the points that describe our path:

For each CGS that we have de�ned we compute the coordinate of our

points. This measures are a�ected by error because we used a meter for

gaining them.

71

CHAPTER 5. TEST RESULTS

• Compute a spline function to each CGS's point measured: For

each path de�nition against to one CGS, we computed a spline function

to gain the complete de�nition of our patrolling path with respect to

each camera.

• O�ine angle computation: For each spline that we obtained, we

computed the angles that corrispond to each point in the spline that we

evaluated.

All these steps are implemented using Matlab. The output that this procedure

yields is a vector where each cell is composed by three values: the pan and

the tilt angles and the distance from the next point in the ground. Now we

propose our tests starting to the computation of angles test.

72

5.2. COMPUTATION ANGLES TEST

5.2 Computation angles test

In section 3.6.3 we have described the process of angles computation; in par-

ticular we have seen that given a 2-D point P = [xw; yw] through our method

we gain Pan and Tilt. Our test was done in the Videotec testbed (section 5.1)

and we used the method described in section 5.1.1. First of all we give the

starting image of our test. As we can see in Figure 5.2 the red cross indicates

Figure 5.2: Starting image of our angles test.

the image center and the red-yellow circle shows the target point that we have

to reach. This image is taken with the Ulisse Compact camera, it has:

Pan : 119◦

Tilt : 39◦

Zoom : 2.36×

After applying our angle computation function we gain the new angle that

bring our camera to point the red-yellow circle shown before. We gain:

Pan : 122◦

73

CHAPTER 5. TEST RESULTS

Tilt : 37◦

The image recovered after an absolute movement of the computed angles is:

Figure 5.3: Centered image of our angles test.

In this image comes evident that the calculated angles do not bring the

camera to point the target indicated. We underline that the Figure 5.3 is

taken with a di�erent level of zoom with respect to the starting image (Fig-

ure 5.2), its zoom is 10×. Now we analize the possible errors (see Figure 5.3)

• Error due to measure of the target "by hand": As we said in

section 5.1, due to the limit of our testbed we have to measure by hand the

ground coordinate of the target point. This modus operandi introduce

a measurement error that drugs our starting data. To give an idea of

the error that we introduced with the Bouguet's toolbox, in 3-D space

a point has the sensitivity of the millimeter, while when we measure a

3-D point in the space we have to consider a large space (more or less 3

square meters as shown in Figure 5.1).

• Error due to measure of rotational angle of the camera: As we

show in Figure 5.1 we measured the angle between the CPGS and the

74

5.2. COMPUTATION ANGLES TEST

CGS that we chose. This measure is taken "by hand" and this procedure

introduce a possible error.

These are the possible sources of error in our angles computation. More-

over, working in a limited environment, the computational errors are more

evident; in fact in order to be able to work in this environment, we have to

use an high level of zoom and it underlines the possible mismatch between

computed angle and the target point.

If we work in outdoor environments these error are less evident. It is also possi-

ble to reduce the errors using the corrispondence between focal lenght and pixel

dimension in order to �nd the relation between one pixel point and the cor-

rispondent point in the CGS, but this improvement is not treated in this thesis.

Now we are going to prove the convergence of our implemented software

with a simulation.

75

CHAPTER 5. TEST RESULTS

5.3 Convergence test

For this test we simulate a patrolling system composed by �ve cameras with

these speci�cs: The patrolled perimeter can be assumed as a line that is de�ned

Camera Left bound Right bound Trasmission B. Clock Compute B. Clock
1 0 30 4 sec 4 sec
2 20 35 4 sec 4 sec
3 30 60 4 sec 4 sec
4 50 80 4 sec 4 sec
5 70 100 4 sec 4 sec

Table 5.2: Speci�cation of cameras for convergence test

as a vector [0; 100] and all the cameras have the same velocity.

Figure 5.4: Image test � Start of our patrolling software.

As we can see in the Figure 5.4 we start the system and we gain the con-

�guration described in the above table.

After a few seconds, the system reaches the convergence as shown in Figure 5.5.

76

5.3. CONVERGENCE TEST

Figure 5.5: Image test � Convergence reached.

In this image we can see which is the optimal subdivision of patrolling

spaces; in particular we observe that the second camera (process 2686) responds

to its physical bounds. In fact, if we suppose that all the cameras do not have

any physical bounds, each camera should patrol a portion of path that is long

20.

Now we show what happen when we unplug (e.g. switch to patrolling) one

camera. With the command switch we warn the fourth camera as we report

in Figure 5.6.

77

CHAPTER 5. TEST RESULTS

Figure 5.6: Image test � Switching the fourth camera.

After a few seconds, the adjacent cameras become aware of the absence of

the fourth camera and they resize their bounds in order to cover the area of

the de�cient camera, as we can see in Figure 5.7.

Figure 5.7: Image test � Convergence reached even the fourth camera is unplugged.

We reconnect the camera and the system come back to the optimal coverage

state (Figure 5.8).

78

5.3. CONVERGENCE TEST

Figure 5.8: Image test � Come back to patrolling of the fourth camera and the

reaching of steady optimal convergence state.

Finally we close our system as we can see in the last �gure (Figure 5.9).

Figure 5.9: Image test � Closing of our patrolling system.

79

CHAPTER 5. TEST RESULTS

5.4 Testbed test

In this section we analize the results of our test in the Videotec's testbed. As

we mentioned in section 5.1, we have two cameras of di�erent type and our

test consists in patrolling a line of three meters, as we can see in Figure 5.1.

We initialize the system with these parameters shown in the next table:

Camera Left bound Right bound Trasmission Clock Compute Clock Velocity
1 0 15 5 sec 5 sec 5 m/s
2 0 15 5 sec 5 sec 5 m/s

Table 5.3: Speci�cation of cameras for the test on testbed

Our test consists of four steps:

1. Start the patrolling system: we launch our system with the command

sys_snap 1 and we gain a continuously monitoring of the process until

the system reaches the convergence state.

2. Switch the camera from patrolling to tracking activity: through

the command switch we close the patrolling activity and we launch the

tracking for the Ulisse standard camera.

3. Wait the camera to detect what is happened and observe its

behaviour: we wait few seconds before the Ulisse Compact camera dis-

covers that its neighbor camera are in tracking mode and we observe that

it comes back to its original bounds.

4. We reinsert the Ulisse standard camera we plug this camera to the

patrolling system and we wait the convergence state.

80

5.4. TESTBED TEST

Now we are going to show our results:

The images that we have taken are composed by three principal elements shown

in Figure 5.10.

Figure 5.10: Testbed's test � �gures schema.

The Figure 5.11 and Figure 5.12 show the point one of our test. As we can

see the two cameras start from the same location and they do their activity.

In the terminal of Figure 5.12 we can see the convergence state of our system.

81

CHAPTER 5. TEST RESULTS

Figure 5.11: Testbed's test � start of the system.

Figure 5.12: Testbed's test � state of convergence reached.

82

5.4. TESTBED TEST

In Figure 5.13 we rappresent the point two of the test and in Figure 5.14

we show how only one camera moves.

Figure 5.13: Testbed's test � we warn Ulisse Standard camera.

Finally, in the last picture (Figure 5.15), we replug the camera to the sys-

tem.

As we can notice the images are not prefectly centered to the target line:

only one camera (Ulisse Compact) is closed to the path. It is caused by the

error introduced into the measures (as we have shown in 5.2).

We underline that the o�sets are available only for the Ulisse Compact camera

thus the angles computation for the Ulisse standard are a�ected by o�set error.

83

CHAPTER 5. TEST RESULTS

Figure 5.14: Testbed's test � only Ulisse Compact camera moves itself.

Figure 5.15: Testbed's test � reconnection of the Ulisse Standard camera.

84

Chapter 6
Conclusions and future developments

Along this thesis we have treated all the features of perimetral patrolling prob-

lem with PTZ cameras, in particular the extension of the problem proposed in

[9]. The changes we have proposed are one �rst solution for our problem; in

fact in order to obtain a complete video surveillance system it is necessary to

analyze other improvements that we will give in this chapter. Let us analyze

our proposed improvements and their goodness:

• Extension of the proposed algorithm. From 1-D line to PTZ

de�nition: we have treated this improvement in chapter 3. In the sec-

tion 3.8 we have explained a diagram block in order to manage the entire

system, from 2-D image plane point to PTZ parameters that describes

anyone 3-D trajectory. It is evident that the calibration procedure de-

pends from the calibration tool that we use. In a future context, we

suggest to adopt another calibration toolbox to gain a more precisely

step of calibration and for creating a multi-camera calibration step that

we described in section 3.5.

In our thesis we have proposed a possible controller for the zoom and

the velocity. It is evident that they must be tested in a more complex

testbed in order to measure their e�ective state and improve them. In

particular, in a future development, Videotec propose some tests in its

outdoor testbed in Schio. From these tests it could be possible to dis-

cover some improvements, for example we can implement and analyze

the zoom control proposed or try to improve the velocity control with

85

CHAPTER 6. CONCLUSIONS AND FUTURE DEVELOPMENTS

the one provided by Videotec's cameras.

• Software architecture: in the chapter 4 we have proposed our architec-
ture for patrolling software. In particular we made a distributed analysis

but we implemented this software in a centralized structure. In future,

we could change the interface of communication in order to adapt our

software to the Videotec's agent that is called Albert.

From this analysis stems the need to obtain more results in future tests with

di�erent con�gurations of the testbed.

There are also some improvements that we can discover analyzing the prob-

lem in its completeness. As we can see in section 4.3 the choice of velocity was

made o�ine. In fact we have to test di�erent velocities along di�erent path's

segments and we have to take the minimum of these. In a future development

we will try to formulate a new distributed algorithm that adjusts the velocity

during the evolution of the algorithm.

Another important feature that we have to take into account is the develop-

ment of a mechanism that chooses for each camera the correct activity to be

assigned. This problem is called Task assignment problem. A solution to this

problem is given in [13] by the Automated Control Group of the Padova's Uni-

versity. Starting from our work it is possible to extend and to implement new

tools that cover also these requests.

In order to realize an extension of our algorithm, it is possible to change the

target of our problem from patrolling along a perimeter to patrolling in an area.

We could think about an extension of this algorithm such as a preprocessing

step that consists in �nding a path that, de�ned a zoom function, covers areas

instead of a simple 1-D line. In fact, in our analysis, we have taken the f.o.v of

one camera as a point, but in a real situation, it is an area that depends from

the level of zoom that we adopt.

In conclusion, our work is one of the �rst steps to gain a complete distributed

video surveillance system. We handled the �rst problems that arise adapting

the theoretical problem to the PTZ cameras. We are sure that our progress

could be helpful for the future problems, in particular when we are in presence

of integration problems with PTZ cameras.

86

Chapter 7
Acknowledgements

• Ringrazio la mia famiglia che, nonostante tutte le di�coltà, mi ha sempre

sostenuto. Ringrazio anche i parenti tutti, in particolare coloro che non

ci sono più: sono sempre nei miei pensieri.

• I miei amici di infanzia, con loro ne ho passate tante e di tutti i tipi.

Grazie di cuore.

• I miei colleghi di università per i continui scambi di opinione e per questi

lunghi 5 anni passati insieme. Sopratutto per i momenti di grande im-

pegno, i lavori di gruppo, le pause tra una lezione e l'altra e le pause

pranzo in cui si iniziava a parlare del piu e del meno e si �niva a parlare

dei grandi problemi che a�iggono il mondo. I soliti discorsi noiosi da

ingegneri.

• Ringrazio Piero Donaggio per tutto ciò che mi ha insegnato in questi sei

mesi di tirocinio.

• Ringrazio il professore Luca Schenato che si è dimostrato, in ogni mo-

mento, disponibile e cordiale. Sono convinto che se tutti i professori

fossero come lui i problemi dell'Università italiana si dimezzerebbero.

• Ed in�ne, ringrazio te. Tu che in questi anni sei sempre stata al mio

�anco in ogni momento anche in quelli più bui, e sai che ce ne sono

stati tanti. Questa laurea è anche un pò tua, se sono arrivato a questo

87

CHAPTER 7. ACKNOWLEDGEMENTS

importante traguardo è grazie a te. Da oggi 5 Aprile 2011 inizia una

nuova avventura che spero mi porti a costruire un futuro assieme a te.

Ti amo.

88

Bibliography

[1] F.R. Abate, Ed., The Oxford Dictionary and Thesaurus: The Ultimate

Language Reference for American Readers, Oxford University Press, 1996.

[2] I. Hussein and D. Stipanovic, E�ective coverage control using dynamic

sensor networks, dec. 2006, pp. 2747 - 2752.

[3] I. Hussein and D. Stipanovic, E�ective coverage control using dynamic

sensor networks with �ocking and guaranteed collision avoidance, jul.

2007, pp. 3420 - 3425.

[4] D. Kingston, R. Beard, and R. Holt, Decentralized perimeter surveillance

using a team of uavs, Robotics, IEEE Transactions on, vol. 24, no. 6, pp.

1394 - 1404, dec. 2008.

[5] Y. Chevaleyre, Theoretical analysis of the multi-agent patrolling problem,

sep. 2004, pp. 302 - 308.

[6] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Corru-

ble, and C. Y., Recent advances on multi-agent patrolling, Lecture Notes

in Computer Science, vol. 3171, p. 474?483, 2004.

[7] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, Equitable partitioning

policies for mobile robotic networks, IEEE Transactions on Automatic

Control, Provisionally Accepted, 2008.

[8] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, Equitable partitioning

policies for robotic networks, in ICRA'09: Proceedings of the 2009 IEEE

89

BIBLIOGRAPHY

international conference on Robotics and Automation. Piscataway, NJ,

USA: IEEE Press, 2009, pp. 3979 - 3984.

[9] R. Carli, A. Cenedese, L. Schenato, Distributed Partitioning Strategies for

Perimeter patrolling, Proceedings of the ACC'11, 2011.

[10] J. Heikkila, O. Silven, A Four-Step Camera Calibration Procedure with

Implicit Image Correction, In Proc. of IEEE Computer Vision and Pattern

Recognition, pp. 1106-1112, 1997.

[11] P. Desai, K.S. Rattan, Indoor Localization and Surveillance using Wireless

Sensor Network and Pan/Tilt Camera, Proceedings of the IEEE 2009

National, 2010.

[12] D. M. Raimondo, S. Gasparella, D. Sturzenegger, J. Lygeros, M. Morari,

A tracking algorithm for PTZ cameras, 2010.

[13] A. Cenedese, F. Cerruti, M. Fabbro, C. Masiero, L. Schenato, Decen-

tralized task assignment in camera networks, Conference on Decision and

Control CDC10, 2010

90

Sitography

[14] http://en.wikipedia.org/wiki/Spline_(mathematics)

[15] http://www.vision.caltech.edu/bouguetj/calib_doc/

[16] http://en.wikipedia.org/wiki/Inter-process_communication

91

http://en.wikipedia.org/wiki/Spline_(mathematics)
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://en.wikipedia.org/wiki/Inter-process_communication

	Abstract
	Acronym
	Introduction
	Patrolling problem
	Previous work

	Videotec company
	Contributions
	Thesis outline

	A theoretical analysis of perimetral patrolling problem
	Definition of the problem
	Distributed optimal partitioning problem formulation

	Different strategies for solving the partitioning problem
	Asymmetric gossip-type algorithm

	Patrolling trajectories design: from 1-D to PTZ parameters
	Patrolling trajectory generation
	Definition of coordinate systems
	Camera modeling
	Intrinsic parameters
	Extrinsic parameters

	Cameras calibration and parameters estimation
	Single camera calibration
	Dual camera calibration
	Mapping from 3D CRF point to image plane point

	Multi-camera calibration
	Patrolling trajectory in PTZ parameters
	Simple PTZ camera model
	Offset based PTZ camera model
	Computation of Pan and Tilt angles
	Zoom control
	Velocity control

	3-D patrolling trajectry from image plane points
	Single camera with planar trajectory
	Dual camera with 3-D trajectory

	Review of mapping function: from image plane point to PTZ parameters
	Simulation

	Software architecture: design and implementation
	Requirements analysis of software
	Camera component analysis
	User process analysis

	Technical consideration about software development
	Input-Output analysis
	Review of overall system architecture
	Compute Bound controller
	Transmission Bound controller
	Patrolling controller
	Camera controller
	User controller
	Tracking controller

	Test results
	Testbed architecture
	Computation of path and angles in testbed

	Computation angles test
	Convergence test
	Testbed test

	Conclusions and future developments
	Acknowledgements

