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Distributed Source Seeking via a Circular Formation
of Agents under Communication Constraints

Lara Briñón-Arranz, Luca Schenato, Member, IEEE, and Alexandre Seuret

Abstract—This paper addresses the source seeking problem in
which a group of autonomous vehicles must locate and follow
the source of some signal based on measurements of the signal
strength at different positions. Based on the observation that
the gradient of the signal strength can be approximated by a
circular formation of agents via a simple weighted average of
the signal measured by each agent, we propose a combination of
a cooperative control law to stabilize the agents to a circular
formation and a distributed consensus-based source seeking
algorithm, which is guaranteed to steer the circular formation
towards the vicinity of the source location. In particular, the
proposed algorithm is provided with two tunable parameters that
allow for a tradeoff between speed of convergence, noise filtering
and formation stability. The benefit of using consensus-based
algorithms resides in a more realist discrete time control of the
agents and in asynchronous communication resilient to delays,
which is particularly relevant for underwater applications. The
analytic results are complemented with numerical simulations.

Index Terms—Distributed control, multi-agent systems, source
seeking, consensus algorithms, lossy communication

I. INTRODUCTION

Detecting the source of a signal is relevant to many complex
applications such as environmental monitoring [23], search
and rescue operations [14], odor source detection [19], sound
source localization [34] and pollution sensing [17]. Source
localization is also a fundamental problem in nature. Inspired
by the behavior of some bacteria, which are able to find
chemical sources, the problem of seeking a maximum using
autonomous vehicles is studied in [18], [21].

There are various approaches to deal with this topic in
the current literature. For example, several source seeking
algorithms are based on gradient-descent methods. If it is
available, the gradient of the signal strength can be used to
produce a gradient-descent algorithm for a vehicle or group
of vehicles [2]. However, in practice, the agents are only
capable of measuring the signal strength and the gradient
information is usually unknown. In this situation, the gradient
can be approximated using spatially distributed measurements
of the signal distribution. In the literature there are two
different strategies to collect distributed measurements. The
first one uses a single vehicle that changes its position over
time in order to measure the signal propagation at different
locations [1], [2], [3]. The other option consists in multiple
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vehicles collaborating to collect concentration measurements
at multiple locations [23], [22].

The application of extremum-seeking techniques to the
source localization problem has been analyzed under different
constraints using a single nonholonomic vehicle [33], [8]. The
idea is to add an excitatory input to the vehicle steering control
in order to approximate the gradient of the signal strength and
to use this information to drive the vehicle towards the source.
Novel stochastic approaches based on the classical extremum-
seeking algorithm are introduced in [1], [18], [26]. A recent
paper [20] proposes a strategy to steer a single integrator robot
to the maximum of a scalar field without explicit gradient
estimation. The main disadvantage of both strategies is that in
order to collect sufficient information, the vehicle may have
to travel large distances, delaying the vehicle’s convergence
to the source. The authors of [13] extend the classical idea of
extremum seeking intro a discrete-time multi-agent scenario
showing improved convergence and robustness.

Collaborative methods using multi-agent systems have been
proposed in recent literature. In [9], [23] a group of vehicles
equipped with appropriate sensors estimates the model param-
eters of the scalar field via collected measurements. A least-
squares approximation is applied in order to steer the group
of agents to the source location. Other works are based on
distributed estimation of the concentration plume [24], [25].
In this case, the function signal is estimated or approximated
and the source localization becomes a distributed optimization
problem. The authors of [7], [11] propose different least-
squares estimation algorithms to locate peaks of a scalar field
generated by a network of radial basis Gaussian functions.
These strategies rely on a prior model of the signal distribution,
which might not be known a priori if the environment is
unknown.

Other approaches to cooperative estimate the gradient of the
signal are available. For example, a collaborative control law
to steer a circular formation of nonholonomic vehicles to the
source of a signal distribution using only their direct signal
measurements is presented in [22]. Following the same idea,
the authors of [36] present a centralized algorithm based on
leader-follower strategies in which the gradient is estimated
by using a least-squares method. In [15] a distributed source
seeking algorithm is proposed using optimization techniques.
A source seeking algorithm based on consensus filters is
presented in [16] to deal with limited communication. The
main drawback of these works is that the spatial propagation
of the signal is assumed to be quadratic or concave. Motivated
by behaviors of fish groups seeking darker regions, the authors
of [28] proposed a distributed source seeking algorithm for a
group of vehicles with no explicit gradient estimation.
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Another interesting approach is presented in [35] and [29]
for the 2- and 3-dimensional cases respectively. In both papers,
a Kalman filter is used to estimate the value of the scalar
field of interest, its gradient and Hessian at the center of
a formation of double-integrator agents. The shape of the
platform formation is defined in order to minimize the error
in the estimates and a cooperative formation control law is de-
signed to asymptotically achieve the optimal formation shape.
Based on the same formation control, and using a H∞ filter to
estimate the value and gradient of the field at the center of the
formation, the authors of [30] propose a switching strategy to
choose between individual and cooperative search for a group
of simple integrator robots to deal with the source seeking
task. These works propose a decoupled strategy to solve both
cooperative motion and filtering problems for mobile sensor
platforms using simple dynamics for the vehicles. However,
the communication constraints between the agents are not
considered.

The present paper addresses an alternative solution to the
source localization problem. In order to locate the source of a
scalar field, we consider a group of vehicles equipped with
sensors that measure the field of interest such as temper-
ature, salinity, or pollutant flow. In this situation, the fleet
of vehicles can be seen as a mobile sensor network. We
exploit preliminary results from [4], [5] in which a group
of vehicles, uniformly distributed in a circular formation, is
able to estimate the gradient of the measured signal. No prior
knowledge of the environment or convexity of the signal field
is required. The problem is tackled in a 2-dimensional space,
hence the configuration considered is a planar formation.
Using a cooperative control law from our previous work [6],
a group of vehicles modeled with non-holonomic dynamics
can be stabilized to a circular formation that tracks a time-
varying center. In order to maintain the formation and to
steer its center towards the source location, we propose a
distributed algorithm based on the multidimensional Newton-
Raphson consensus strategy from [32]. The suggested strategy
thus inherits the desirable properties of consensus algorithms
[10], namely their simplicity, their potential implementation
with asynchronous communication schemes, their ability to
adapt to time-varying network topologies, and their resilience
to packet loss and random delay.

The rest of the paper is organized as follows. First, Section II
presents the problem statement including the model of the
agents, the cooperative motion control strategy to achieve a
time-varying circular formation and some assumptions on the
signal strength. Section III provides preliminary results on
gradient estimation and additional analysis. Section IV exposes
the main contribution, a distributed consensus-based source
seeking algorithm. The performance of the proposed strategy is
analyzed through numerical simulations in Section V. Finally,
we present our conclusions and future directions.

II. PROBLEM FORMULATION

The main objective of this paper is to design a distributed
algorithm to steer a group of agents to the source location of a
field of interest. The problem is divided to two steps. Firstly,

the agents, modeled with nonlinear dynamics, are stabilized
to a desired particular formation. Secondly, a distributed
algorithm allows the agents to estimate the gradient of the
scalar field at the center of the formation and drives the center
towards the source location using the estimated gradient. For
the sake of simplicity, we focus on the 2-dimensional case.

A. Agents

Consider a group of N identical vehicles modeled with uni-
cycle kinematics subject to a simple non-holonomic constraint
such that the dynamics of agent i = 1, . . . ,N are defined by

ṙi =vi [cosθi sinθi]
T

θ̇i =ui ,
(1)

where ri ∈ R2 is the position vector of agent i, θi its heading
angle and vi,ui are the control inputs. We assume that each
vehicle knows its absolute vector position ri with respect to
the inertial frame.

The first objective of this paper is to stabilize the multi-
agent system (1) to a uniformly distributed circular formation.
A circular formation of agents is considered in this paper
for two main reasons. As will be shown in next section,
the measurements collected by a group of sensors uniformly
distributed in a circle allow the estimation of the gradient of a
signal strength at the center of the circle. On the other hand,
some underwater and aerial vehicles are not able to stop at the
source position due to physical constraints (e.g., if the linear
velocity cannot be zero, see [27]).

We want to design a feedback control to ensure the conver-
gence of the agents to a circular motion with given radius
D > 0, angular velocity ω0 6= 0 and time-varying center
c(t) = [cx cy]

T ∈ R2. In a practical situation, the given center
may be an external reference corrupted by noise or may not
be available to all the agents, thus, we assume that each
agent supplies its own reference center ci ∈R2. Thanks to the
circular control law presented in Theorem 1 from our previous
paper [6], each agent modeled by (1) converges independently
to a circular motion around its center ci(t). In order to compute
this circular control law, the first and second derivatives of
ci(t) are needed. If all the agents compute the same center,
i.e., ci = c, ∀i, the cooperative circular control law presented in
Corollary 1 from our previous work [6] makes the multi-agent
system (1) converge to a uniformly distributed time-varying
circular formation. In order to achieve the uniform distribution
along the circle the agents uses only relative information,
specifically, they exchange their heading angles.

Consider now the multi-agent system (1) stabilized to a
planar uniform distributed circular formation described by a
radius D, a rotation angle φ0(t) = ω0t and the given center
point c. The position of each agent expressed in discrete time
at instant k is given by the following equation:

ri(k) = c(k)+DR(φi)e = c(k)+ ei(k) (2)

where φi = φ0(k) + i 2π

N is the rotation angle, R(φ) =[
cosφ −sinφ

sinφ cosφ

]
denotes the rotation matrix and e= [1, 0]T .
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The communication topology of the agents is defined by
means of a graph G . Let G = (V,E) be an undirected com-
munication graph. The set of nodes (agents) is denoted by
V = {1, . . . ,N} and the set of edges (i, j) ∈ E represents
the communication links. Let P ∈ RN×N denote a doubly
stochastic matrix, i.e., a matrix whose elements are non-
negative, P1 = 1 and 1T = 1T P, where 1 := [1, . . . ,1]T ∈ RN .
P is consistent with a graph G if Pi j > 0 only if (i, j) ∈ E.
Such matrix P is also often referred as a consensus matrix.
The essential spectral radius of a stochastic matrix is defined
as esr(P) = maxλi 6=1 |λi(P)|, where λi(P) indicates the eigen-
values of P. In the sequel, ⊗ denotes the Kronecker product
and the bold variables are used to represent vectors containing
multi-agent information, i.e, c = [cT

1 ,c
T
2 , . . . ,c

T
N ]

T ∈R2N is the
vector of all the centers ci, i = 1, . . . ,N.

According to [6], with a view to uniformly distribute the
agents along the circular formation, the communication graph
must be at least circulant, such as if each agent communi-
cates only with its close left and right neighbors. It is also
proven that, if a distance-dependent communication topology
is considered, i.e., each vehicle can only communicate in a
certain region delimited by a critical communication radius,
then due to the geometric properties of the circle the resulting
communication graph is a ring and the corresponding consen-
sus matrix P is circulant. The distributed approach from [6]
ensures that the uniform distribution of the vehicles around
the circle is robust to a single agent failure.

B. Signal strength

Each agent represents a mobile sensor or a vehicle equipped
with a sensor that is able to measure the signal strength emitted
by the source. In mathematical terms, the signal distribution
emitted by the source is a bidimensional spatial function
representing the scalar field with a maximum or minimum
in the position where the source is located. The distribution
of the signal strength in the environment is described by an
unknown positive spatial mapping σ(z) : R2 → R+, so that
agent i measures the signal strength at its position ri(k) as
σ(ri(k)). We assume here that the signal is emitted by a single
source such that the source located at z∗ is the only maximum
of the scalar field. Let ∇σ(z) = [∇xσ(z)∇yσ(z)]T ∈R2 denote
the gradient vector at z and Hσ (z) the corresponding Hessian
matrix. Therefore, the following assumption is considered.

Assumption 1 The function σ : R2→ R belongs to C 3, i.e.,
it is continuous up to the third partial derivative, ∇σ(z∗) = 0,
∇σ(z) 6= 0, ∀z ∈ R2\{z∗} and Hσ (z∗) is negative definite.
Moreover σ(z) is Lipschitz and there exist positive con-
stants a1,a2,a3 such that a1‖z‖2 ≤ σ(z∗)−σ(z)≤ a2‖z‖2 and
‖∇σ(z)‖ ≤ a3‖z‖.

Assumption 1 allows a large class of functions to represent
the signal strength of the scalar field of interest. In this paper
we also analyze the particular case of quadratic signals. It
is well known that there are several physical quantities that
satisfy the inverse-square law. In that situation, the intensity
of linear waves radiating from a point source is inversely
proportional to the square of the distance from the source.

SOURCE
∇σ(c)

r1 − c

r2 − cr3 − c

r4 − c

Fig. 1: Collaborative source seeking strategy: the measure-
ments collected by a circular formation of agents are used to
estimate the gradient of a signal strength.

For instance, the effects of electrical and magnetic fields as
well as light, radiation and sound signals follow an inverse-
square law. In a 2-dimensional plane, the signal distributions
representing these quantities have quadratic level curves.

Considering a mapping of the inverse of the intensity radi-
ated from a point source, then we obtain a signal proportional
to the square of the distance to the source, i.e., a quadratic
function. Different mappings could be considered to approxi-
mate several scalar fields to quadratic functions. For example,
using the natural logarithm (inverse function of the exponential
function), a Gaussian distribution can be transformed to a
quadratic signal. Therefore, the analysis of quadratic functions
is convenient to deal with signal strengths representing sound
intensity, irradiance or electromagnetic fields.

C. Control objectives

Using a gradient-descent algorithm, the group of agents can
be driven to the source of the signal distribution, see [2], [22].
Nevertheless, the gradient information is not usually available.
In that situation, we propose a cooperative approach in order
to satisfy the following control objectives:

(i) Stabilizing and keeping a circular formation of agents
(ii) Estimating the gradient
(iii) Steering the formation towards the source location.

The main purpose of the source seeking is to accomplish
objective (iii). The approach proposed in this paper is based
on gradient-descent methods and consequently (ii) is required.
As it will be presented in Section III, a circular formation is
considered to estimate the gradient of the signal and thus the
formation control of the agents is an additional objective. In
order to accomplish objective (i), we consider a cooperative
control law from [6] to stabilize each agent defined by (1) to
a circular motion tracking a time-varying center ci. In order to
keep the formation, the agents must reach an agreement on the
centers’ positions, therefore a consensus algorithm on centers
ci is implemented.

The gradient direction of the signal distribution is estimated
via concentration measurements collected by the circular for-
mation of agents in Section III. The estimated direction of
the gradient will be the reference velocity of the formation
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center in order to steer the group of agents to the source
location, as represented in Fig. 1. To accomplish the main
objective (iii), the common center of the circular formation
will be driven towards the source using the estimated direction
of the gradient. In order to achieve all of the control aims,
we propose the combination of a circular control law from
[6] and a distributed algorithm based on the Newton-Raphson
consensus method for distributed optimization from [32].

III. GRADIENT APPROXIMATION

This section presents mathematical results dealing with the
gradient approximation of a signal, studying both the general
and the quadratic cases.

A. Gradient approximation by a fixed circular formation

Consider a circular formation of agents given by (2) taking
measurements of a signal distribution σ(z). Let ∇σ(c) denote
the gradient of σ(z) at the center of the circular formation.
Based on the previous result from [5], the following lemma is
proposed:

Lemma 1 Let σ :R2→R be a bounded function and σ(ri) be
the measure collected by agent i, where ri is the position vector
given by (2). Considering a fleet of N > 2 agents uniformly
distributed along the circle centered at c with radius D, the
following equation holds:

2
D2N

N

∑
i=1

σ(ri)(ri− c) = ∇σ(c)+ϕ(D,c) (3)

where the approximation error term ϕ(D,c) satisfies

‖ϕ(D,c)‖ ≤ λmax(Hσ )D.

Proof: Using the first-order Taylor expansion of each
measurement σ(ri) about the point c and recalling that ||ri−
c||= D, then the following equation holds for all i = 1, . . . ,N:

σ(ri)−σ(c) = ∇σ(c)T (ri− c)+ϕi(D,c), (4)

where ϕi(D,c) denotes the remainder of the Taylor expansion.
Multiplying the previous equation by 2

D2N (ri−c) and summing
over i = 1, . . . ,N, we get

2
ND2

N

∑
i=1

σ(ri)(ri− c)−σ(c)
2

ND2

N

∑
i=1

(ri− c) =

2
D2N

N

∑
i=1

∇σ(c)T (ri− c)(ri− c) +
2

ND2

N

∑
i=1

ϕi(D,c)(ri− c).

Since the agents are uniformly distributed along a fixed circle,
then we have ∑

N
i=1(ri− c) = 0 and thus

2
ND2

N

∑
i=1

σ(ri)(ri−c)=
2

ND2

(
N

∑
i=1

(ri− c)(ri− c)T

)
∇σ(c)+ϕ(D,c),

where ϕ(D,c) = 2
ND2 ∑

N
i=1 ϕi(D,c)(ri−c). We analyze the second

term of the previous equation using (2) to express the position
of the agents ri(k) at each instant k to obtain

∑
N
i=1(ri− c)(ri− c)T = D2

∑
N
i=1 R(φi)eeT R(φi)

T

= D2 R(φ0)
(
∑

N
i=1 R(i2π/N)eeT R(i2π/N)T )R(φ0)

T

= D2 R(φ0)

(
∑

N
i=1

[
cos2(i2π/N) 0.5sin(i4π/N)

0.5sin(i4π/N) sin2(i2π/N)

])
R(φ0)

T

= D2 R(φ0)(
N
2 I2)R(φ0)

T = ND2

2 I2

since cos2 φ = 1/2(1+ cos(2φ)), sin2
φ = 1/2(1− cos(2φ)),

and ∑
N
i=1 cos(2i 2π

N ) = ∑
N
i=1 sin(2i 2π

N ) = 0 for N > 2, where
I2 ∈R2×2 represents the identity matrix. Thus, the equality of
Eq. (3) is satisfied.

Thanks to the Taylor’s Theorem cite each remainder ϕi(D,c)
satisfies the inequality

|ϕi(D,c)| ≤ 1
2

λmax(Hσ )‖ri− c‖2 =
1
2

λmax(Hσ )D2, ∀i.

Therefore, the function ϕ(D,c) can be bounded as

‖ϕ(D,c)‖ ≤ 2
D2N

N

∑
i=1
|ϕi(D,c)|‖(ri− c)‖ ≤ λmax(Hσ )D.

This result provides the gradient estimation of the signal
strength at the center c(k) of a circular formation at each
instant k.

B. Gradient computation of a quadratic signal

In this paper we present a new result dealing with the gradi-
ent computation in the case of quadratic functions. Following
the same ideas of previous Lemma 1, it is shown that the
gradient of a quadratic signal can be exactly computed using
the measurements collected by a uniform distributed circular
formation of sensors. This new contribution is presented in the
following corollary.

Corollary 1 Let σ : R2 → R be a quadratic function such
that σ(z) = zT Sz + bT z + a where S ∈ R2×2 is a positive
semi-definite matrix, b ∈ R2 and a ∈ R. Let σ(ri) be the
measurement collected by agent i, where ri is the position
vector given by (2). Considering a fleet of N > 2 agents
uniformly distributed along the circle centered at c and radius
D, the following equation is satisfied:

2
ND2

N

∑
i=1

σ(ri)(ri− c) = ∇σ(c). (5)

Proof: Follow the same steps as in the proof of Lemma 1.
In the case of quadratic functions and according to the Taylor
expansion of σ(ri) about the point c, the reminder ϕi(D,c)
satisfies

ϕi(D,c) =
1
2
(ri− c)T Hσ (c)(ri− c) =

1
2
(ri− c)T S(ri− c).

Consequently, the error term of equation (3) becomes

ϕ(D,c) =
1

ND2

N

∑
i=1

(ri− c)T S(ri− c)(ri− c).

According to Eq. (2) representing a circular formation of
agents, replace ri by (2) to obtain

ϕ(D,c) =
1

ND2

N

∑
i=1

[
D2eT R(φi)

T SR(φi)e
]
(ri− c)

=
1
N

N

∑
i=1

[
R(φi)eeT R(φi)

T ST ]DR(φi)e,

which can be rewritten as
D
N

N

∑
i=1

[
S11 cos3 φi +2S12 cos2 φi sinφi +S22 cosφi sin2

φi
S11 cos2 φi sinφi +2S12 cosφi sin2

φi +S22 sin3
φi

]
. (6)
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Using trigonometric properties, the following equations hold:

cos2 φ sinφ = (1− sin2
φ)sinφ = sinφ − sin3

φ

sin2
φ cosφ = (1− cos2 φ)cosφ = cosφ − cos3 φ .

The solution of the first term in (6) is reduced by computing
∑

N
i=1 cos3 (i 2π

N ) and ∑
N
i=1 sin3 (i 2π

N ). Applying trigonometric
properties we obtain cos3 φi =

3
4 cosφi +

1
4 cos3φi and then

∑
N
i=1 cos3 (i 2π

N ) = 0. (The same equation holds for sin3
φi).

Therefore, the error term ϕ(D,c) = 0 in the case of quadratic
functions and, consequently, equation (5) holds.

This result provides an exact computation of the gradient
of a quadratic signal σ(z) = zT Sz+bT z+a at the center c(k)
of a circular formation at each instant k. The results presented
in the previous lemma and corollary are based on the Taylor’s
Theorem and, although it is beyond the scope of this paper
they can be extended to the 3-dimensional case by choosing
an appropriate formation in 3D.

C. Noise analysis
Consider that each vehicle is able to measure the signal

strength at its own position by σ(ri) but the measurements are
corrupted by white zero-mean Gaussian noise ωi ∼N (0,σ2

ω).
We analyze how the noise affects the gradient approximation
presented in Lemma 1. Due to the noised measurements,
the previous computed average of weighted relative position
vectors from Lemma 1 becomes

2
ND2

N

∑
i=1

(σ(ri)+ωi)(ri−c) = ∇σ(c)+ϕ(D,c)+
2

ND2

N

∑
i=1

ωi (ri−c).

In order to analyze the influence of noise, the expectation and
variance of the last term are studied

E

[
2

ND2

N

∑
i=1

ωi (ri− c)

]
=

2
ND2

N

∑
i=1

E [ωi] (ri− c) = 0.

Using the same trigonometric properties as in the proof
of Lemma 1, the variance Var

(
2

ND2 ∑
N
i=1 ωi (ri− c)

)
can be

expressed as

E
[

4
N2D4 ∑

N
i=1 ω2

i (ri− c)(ri− c)T
]

= 4
N2D4 ∑

N
i=1E

[
ω2

i
]
(ri− c)(ri− c)T

= 4
N2D4 ∑

N
i=1 σ2

ω (ri− c)(ri− c)T = 2
ND2 σ2

ω .

The variance is inversely proportional to the radius squared,
thus, the greater the radius the smaller the influence of noise in
the gradient approximation. However, as proven in Lemma 1
the error in the gradient approximation vanishes when the
radius tends to zero. Consequently, we conclude that the radius
has an important role in the gradient estimation and the noise
attenuation.

IV. DISTRIBUTED SOURCE SEEKING

As presented in the previous section, if the gradient is not
available, the direction of the gradient of a signal strength can
be approximated by a group of agents distributed uniformly
around a circular formation. If we assume all-to-all and
instantaneous communication, all of the agents compute the
same estimated gradient direction and then this direction can
be used to drive the formation towards the source following

Algorithm 1 Distributed source seeking algorithm

1: for i = 1, . . . ,N do
2: hi(0)= g̃i(0)= g̃i(−1)=ci(0)+σ(ri(0))(ri(0)−ci(0))
3: end for
4: for k = 1,2, . . . do
5: for i = 1, . . . ,N do
6: gi(k) = ci(k)+ 2

D2 σ(ri(k))(ri(k)− ci(k))
7: g̃i(k) = (1−α)g̃i(k−1)+αgi(k)
8: h̃i(k) = hi(k−1)+ g̃i(k−1)− g̃i(k−2)
9: end for

10: h(k) = (P⊗ I2)h̃(k)
11: for i = 1, . . . ,N do
12: ci(k) = (1− ε)ci(k−1)+ εhi(k)
13: end for
14: end for

a gradient-descent method as shown in [5], [22]. However,
the all-to-all communication assumption is not realistic and
in several situations each agent communicates only with their
neighbors.

Our main contribution is to develop a consensus-based
algorithm in order to use the collaborative estimation of
the gradient direction presented in Lemma 1 and thus, to
achieve the source seeking task in a distributed way. The
proposed algorithm will provide the trajectory of each center
ci needed to compute the circular formation control for the
multi-agent system (1), in order to drive the formation to the
source location. At each instant k, each agent computes its
position ri(k), its center ci(k) and its estimated gradient vector
fi(k) = 2

D2 σ(ri)(ri(k)− ci(k)). The objective for the agents is
now to reach an agreement on the centers’ position ci and to
compute the vector f̄ (k) at each time k defined by:

f̄ (k) =
1
N

N

∑
i=1

2
D2 σ(ri)(ri(k)− ci(k)). (7)

According to Lemma 1, (7) is a good approximation of the
gradient direction of the measured signal distribution. The aim
for the formation is to reach the source location, such that
limk→∞ ci(k) = z∗, ∀i.

The proposed source seeking strategy is described in Algo-
rithm 1, which is based on distributed optimization methods
presented in [31], [32]. This algorithm presents two main con-
tributions with respect to previous works. The first difference
is that the gradient of the signal is unknown; it is estimated
by 2

D2 σ(ri)(ri−ci) in line 6. Moreover, Algorithm 1 includes
local low-pass filtering of the signal gi(k) in order to make
the algorithm more robust to measurement noise. The low-
pass filter is regulated by the parameter α , which tradeoffs
smoothing the signal (α ≈ 0) with responsiveness to changes
of the signal gi(k) (α ≈ 1).

Algorithm 1 works as follows. Lines 6 and 8 are compu-
tations used to track the local quantities which are needed
to compute the approximate gradient as in Lemma 1. Line 7
is a low-pass filter in which α regulates the contribution of
previous local measurements. Line 10 performs the consensus
operation, where h = [hT

1 , . . . ,h
T
N ]

T denotes the column vector
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of all the estimates. Operations in line 12 are again local
convex combinations of the past and new estimates. This
algorithm has two tunable parameters, namely ε and α , which
can be used to tradeoff the rate of convergence, robustness
to noisy measurements and formation stability. A formal
statement of the properties of Algorithm 1 is given in the
following theorem.

Theorem 1 Let σ : R2→R be a bounded function that satis-
fies Assumption 1 and σ(ri) be the measurement collected by
agent i, whose position ri(k) is given by (2) after substituting
c with ci. Consider Algorithm 1, where α ∈ (0,1], and P
is a doubly stochastic matrix with essential spectral radius
esr(P)< 1. Then, there exist ε̄ > 0, D̄ > 0,andρ > 0 (possibly
depending on α and on esr(P)) such that, for all D ∈ (0, D̄),
ε ∈ (0, ε̄) and ci(0) satisfying ||ci(0)||< ρ , we have

lim
k→∞
||ci(k)− z∗||< γ(D), ∀i.

Therefore, all the centers ci(k) converge to the vicinity of the
source location z∗.

Proof: See Appendix.
Since proof of Theorem 1 is particularly involved, we prefer
to give the intuition behind the proof of the theorem and refer
the interested reader to the Appendix. The main idea lies on
multi-time-scales approaches for standard singular perturba-
tion model analysis [12], which studies the system behaviour
by considering the slow and fast dynamics separately.
Fast dynamics: If we set ε = 0, then ci(k) = ci(0) = ci for all
k ≥ 0 and thus, according to Eq. (2) the position of agent i
becomes ri(k) = ci +DR(φi)e = ri(0) = ri for all k ≥ 0. This
implies that gi(k) = ci+

2
D2 σ(ri)(ri−ci) for all k≥ 1 and thus

∀α ∈ (0,1] g̃i(k) = ci+
2

D2 σ(ri)(ri−ci) for all k≥ 1. Therefore
h̃i(1) = ci +

2
D2 σ(ri)(ri− ci) and h̃i(k) = hi(k− 1) for k > 1.

As a further consequence, the dynamics of h become h(k) =
(P⊗ I2)h(k−1) for k ≥ 1, which implies that

lim
k→∞

hi(k) =
1
N

N

∑
i=1

(
ci +

2
D2 σi(ri)(ri− ci)

)
= h̄(c)

exponentially fast with rate given by esr(P).
Slow dynamics: If we insert the steady state of the fast
dynamics hi(k) = h̄(c) into the slow dynamics we get

ci(k) = (1− ε)ci(k−1)+ ε h̄(c(k−1)).

Since each system is driven by the same forcing term
h̄(c(k − 1)), then limk→∞ ci(k) − c j(k) = 0, which implies
that the circular formation of agents is maintained and their
position vectors depend on the common center, such that
ri(c). Therefore, we can restrict our attention to the sce-
nario where ci(k) = c̄(k), ∀i, which implies that h̄(c(k)) =
c̄(k)+ 2

ND2 ∑
N
i=1 σ(ri(c̄(k)))(ri(c̄(k))− c̄(k)). In that situation,

each agent computes the estimate of the gradient direction
f̄ (c̄) = 2

ND2 ∑
N
i=1 σ(ri)(ri − c̄). Thanks to Lemma 1 dealing

with the approximation via a circular formation of agents of
the gradient of a signal strength at the center of the circle, the
following equation holds:

h̄(c(k)) = c̄(k)+ f̄ (c̄(k)) = c̄(k)+∇σ(c̄)+ϕ(D, c̄).

0 10 20 30 40 50 60
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20

25

Fig. 2: Four agents implementing a source seeking strategy that
is the combination of Algorithm 1 and the circular formation
control from [6] (ε = 0.5, α = 1).

And thus the dynamics of c̄ are given by

c̄(k+1) = (1− ε)c̄(k)+ ε (c̄(k)+∇σ(c̄)+ϕ(D, c̄))
= c̄(k)+ ε(∇σ(c̄)+ϕ(D, c̄)),

which can be seen as the discretized dynamics with sampling
period ε of the system

˙̄c(t) = ∇σ(c̄(t))+ϕ(D, c̄). (8)

Eq. (8) is a perturbed version of a standard continuous-time
gradient ascent, which converges to an equilibrium point under
mild conditions. If ε is sufficiently small, then the separation
of time-scale holds and limk→∞ ci(k) = limk→∞ c̄(k) converges
to a point in the neighborhood of z∗.

Remark 1 Although in the theorem we considered a constant
consensus matrix P, the same conclusion applies even for
time-varying consensus matrices P(k) with possibly random
but bounded time-delay, as long as the slow dynamics is
sufficiently slow as compared to the convergence rate of the
product of the consensus matrices P(k), as presented in [31].
Since the slow dynamics are regulated by the tunable parame-
ter ε , this requirement is always fulfilled. Thus, asynchronous
communication does not impair the algorithm, however P(k)
still needs to be doubly stochastic in order to compute the
exact average of the local vectors h̃i(k).

Algorithm 1 generates the trajectories of the centers ci to
drive a circular formation of agents to the location of the
source. The agents are stabilized to a circular formation by the
cooperative formation control law explained in Section II. In
order to implement both the formation control and the source
seeking algorithm, the parameter ε must be chosen properly
to guarantee the separation of time-scales, to ensure that the
velocity of the centers ci is bounded, and that the following
condition ‖ċi(t)‖< D|ω0|, ∀i is satisfied; see [6].

As shown in Lemma 1, the gradient estimation accuracy
depends on the formation radius. Consequently, we conclude
that the radius D of the circular formation has a very important
role in the stability of the algorithm, the speed of conver-
gence, the noise attenuation and to determine the domain of
convergence. In ongoing research, we seek the optimal value
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Fig. 3: Infuence of parameter ε in the convergence rate of the
proposed source seeking strategy.

of D that improves the convergence of our source seeking
algorithm.

V. SIMULATION RESULTS

In this section, we present some simulations to show the
convergence of the proposed source seeking algorithm. For all
simulations of sections V-A, V-B and V-C, the scalar field is
a combination of two ellipsis and thus with non-convex level
curves given by

σ1(z) = exp
(
−zT S1z

)
+ exp

(
−zT R(π/4)T S2R(π/4)z

)
,

where S1 = 1
100

[
1/
√

30 0
0 1

]
, S2 = 1

100

[
1 0
0 1/

√
15

]
. The

maximum corresponding to the source is located at z∗1 = [0, 0]T

represented by the black ×. The communication topology is a
ring, where agent i can communicate only to agents i−1 and
i+1 modulo N neighbors, and thus the communication matrix
is a symmetric circulant matrix given by

P =

 1/2 1/4 0 1/4
1/4 1/2 1/4 0

0 1/4 1/2 1/4
1/4 0 1/4 1/2


In order to combine the circular formation control law in
continuous time and the source seeking algorithm in discrete
time, the first and second derivatives of the center trajectories,
ċi and c̈i, are computed as discrete derivatives and filtered to
obtain a smooth continuous signal.

A. Source seeking without noise

Firstly, the case without noise is studied. Each agent mea-
sures the scalar field of interest at its position as σ(ri). Fig. 2
shows a simulation of four agents, whose dynamics are given
by (1), computing the formation control law from Corollary 1
of our previous work [6] with radius D = 2 and ω0 = 1.
Algorithm 1 is then implemented in order to generate the
centers’ trajectories. The control parameters are ε = 0.5 and
α = 1. The agents are displayed in green at three different
instants: the initial conditions, an intermediate state at t = 500s
and the final state at t = 2000s. The red lines represent
the trajectories of centers ci during the source seeking task.
Thanks to Algorithm 1, the fleet of agents reaches a consensus
on the center position and the formation is steered to the
neighborhood of the source location.
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Fig. 4: Four agents collecting signal measurements corrupted
by noise implement the proposed source seeking strategy (ε =
0.5, α = 0.5).

In order to study the influence of the various parameters
of Algorithm 1 on the convergence to the source location,
several simulation results are shown in the sequel. Due to
Theorem 1, with regard to ensure the separation of time-scales,
the parameter ε must be chosen depending on the complexity
of the scalar field and on the radius of the circular formation.
Although the signal strength is unknown, we can always find
a sufficiently small value of ε that satisfies the conditions of
the theorem.

Fig. 3 displays the evolution of the first component of the
centers’ trajectories cx,i(t) for three simulations of four agents
implementing the proposed strategy with α = 1 and three
values of ε . The convergence rate to reach the source position
for each simulation with ε = 0.8, ε = 0.5 and ε = 0.2 are,
respectively, t = 1500s, t = 1800s, and t = 3000s. Reasonably,
the larger the value of ε the faster the convergence of the
algorithm and the faster the circular formation reaches the
source location.

B. Source seeking with noisy measurements

We consider now that the signal measurements collected
by each agent are corrupted by zero-mean Gaussian noise
ωi(k)∼N (0,0.2). In this situation, the low-pass filter present
in Algorithm 1 has an important role. Due to the noisy
measurements, the error in the gradient estimate is greater
than in the previous case without noise, and thus the centers
ci converge to a greater neigborhod of the source location
z∗. Fig. 4 shows a simulation of four agents modeled by
the unicycle dynamics (1) implementing the source seeking
strategy. Algorithm 1 generates the centers’ trajectories for the
circular formation of agents with radius D= 2 and ω0 = 1. The
control parameters are ε = 0.5 and α = 0.5. The fleet of agents
reaches a consensus on the center position and the formation
is steered to the neighborhood of the source location.

The influence of the filter, regulated by the parameter α ,
is also studied. Fig. 5 displays the evolution of the first com-
ponent of the centers’ trajectories, cx,i, for three simulations
of four agents computing Algorithm 1 with ε = 0.5 and three
values of α . The signal measurements are corrupted by zero-
mean Gaussian noise ωi(k)∼N (0,0.2). The convergence rate
to reach the source position for each simulation with α = 0.8,
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Fig. 5: Infuence of parameter α in the convergence rate of the
proposed source seeking strategy.

α = 0.5 and α = 0.2 is, respectively, t = 1500s, t = 2000s and
t = 3000s. The low-pass filter regulated by parameter α allows
attenuating the measurement noise and hence the centers’
trajectories are smoother for smaller values of α . However,
the smaller this parameter is, the slower the convergence to
the source location.

C. Asynchronous communication

Here we analyze the case in which the communication
between the agents is asynchronous. Following the ideas
of [31], the new asynchronous communication matrix P(k)
is built upon the standard symmetric gossip consensus. At
every time step a single agent is activated, then this agent
selects one of its neighbors and communicates with it; at each
iteration k only two agents are able to exchange information.
Therefore, the consensus of the quantities h̃i(k) in Algorithm 1
is slower than in the synchronous situation. Consequently, the
distributed source seeking algorithm requires smaller values of
the parameter ε . Note that the asynchronous communication is
only considered to implement Algorithm 1. However, to main-
tain the agents uniformly distributed along the formation, they
still need to continuously receive information in a circulant
communication topology.

Fig. 6 displays the evolution of the first component of the
centers’ trajectories, cx,i(k), in discrete-time for two simula-
tions of four agents computing Algorithm 1 with ε = 0.2. In
the first case, noise is not considered and α = 1 (red line).
In the second case, the signal measurements are corrupted
by zero-mean Gaussian noise ωi(k)∼N (0,0.2) and α = 0.5
(blue line). These numerical results show that thanks to the
inherent properties of the consensus protocols, our distributed
source seeking algorithm also works in the case of asyn-
chronous communication.

D. Multiple or time-varying sources

To show the performance of our algorithm and also its
limitations, a scenario with two sources is considered. Now,
the scalar field is given by
σ2(z)=σ1(z)+exp

(
−(z− z∗2)

T R(3π/4)T S2R(3π/4)(z− z∗2)
)
,

where S2 and σ1(z) are as defined previously. As in the
previous case, one source is locate at the origin z∗1 and the
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Fig. 6: Source seeking Algorithm 1 with asynchronous com-
munication for two simulations without and with noisy mea-
surements.

second one is located at z∗2 = [30, 30]T , both represented by
black ×. The communication topology considered is a ring.
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Fig. 7: Two simulations of four agents collecting noisy mea-
surements implementing the proposed source seeking strategy
starting from different initial conditions.

Fig. 7 displays two different simulations of four unicyle-
like agents implementing the circular formation control law
from [6] with D = 2 and ω0 = 1 and computing Algorithm 1
to generate the centers’ trajectories with ε = 0.5 and α = 0.5.
The agents are displayed in green at three different instants,
initial conditions, t = 250s and t = 3000s. For each simulation,
the initial conditions are different in order to show the local
stability properties of our approach. In the case of multiple
sources, the agents converge to a local maximum depending
on their initial conditions. As shown in Fig. 7, the convergence
rate depends also on the initial conditions and the shape of the
signal measured.

Fig. 8 show a simulation of four agents in a time-varying
environment. The simulation starts in the same scenario as in
Fig. 7 and the agents converge to a local maximum located in
the neighborhood of the second source z∗2. At instant t = 2000s
the scalar field σ2(z) vanishes and then the formation of agents
driven by Algorithm 1 travels towards the source of σ1 located
at the origin. At instant t = 3000s this source also vanishes and
therefore there is no field to be measured and the center of the
formation moves following a random walk due to the noisy
measurements. The initial scalar field σ2 is displayed in gray.

The quadratic case has been also studied through numerical
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(c) From t = 3000s to t = 4500s

Fig. 8: Simulation of four agents computing the proposed distributed source seeking strategy in a time-varying environmment.

simulations concluding that the behavior and convergence rate
is the same that using a standard gradient-ascent algorithm.
Videos showing more simulations are accessible online1.

VI. CONCLUSION AND FUTURE WORK

This paper provides a distributed solution to the 2-
dimensional source localization problem. Our cooperative ap-
proach considers a group of unicycle-like agents, which are
able to measure the signal distribution emitted by the source.
Firstly, thanks to the circular formation control from our
previous work [6], the nonlinear vehicles can be stabilized
to a time-varying circular formation. Then, we have shown
that collecting the measurements of the agents uniformly
distributed along the formation, the gradient of the signal
strength at the center can be estimated. Using this information,
a distributed source seeking algorithm is proposed to provide
the trajectory of the center in order to steer the fleet of vehicles
to the source location. This result is based on consensus
algorithms and thus can deal with several communication
constraints and can be applied also in the case of asynchronous
communication. Our solution allows maintaining the circular
formation, estimating the gradient of the signal and driving
the center of the formation to the maximum of the scalar field
of interest. Moreover, we include a low-pass filter in order to
make the algorithm more robust to measurement noise.

Future work will be focused on extending this approach
to the 3-dimensional case. Another future direction is to
approximate the Hessian of the signal distribution at the center
of the circular formation in order to improve the convergence
rate of our source seeking algorithm. In addition, to improve
our distributed algorithm and its convergence properties, the
control of the radius of the formation will be a key point in
future research.

APPENDIX

Proof of Theorem 1:
Introducing the additional variable v(k) = g(k− 1) where

g(k) = [g1(k)T , . . . ,gN(k)T ]T ∈ R2N , Algorithm 1 can be
rewritten as

v(k) =g(k−1)
h(k) =(P⊗ I2)(h(k−1)+g(k−1)− v(k−1))
ci(k) =(1− ε)ci(k−1)+ εhi(k).

(9)

1Simulations are accessible in https://sites.google.com/site/lbrinonarranz/videos

This system is the Euler discretization with time interval T = ε

of the following continuous-time system

ε v̇(t) =− v(t)+g(t)
εḣ(t) =−Kh(t)+(I2N−K)(g(t)− v(t))
ċi(t) =− ci(t)+hi(t),

(10)

where K = I2N − (P⊗ I2). If the parameter ε is sufficiently
small, the discretized system (9) inherits the stability properties
of system (10). This system is composed by two different time-
scale subsystems regulated by the parameter ε . The conver-
gence properties can be proved by exploiting Theorem 11.4
from [12]. The idea is to analyze separately the convergence
of the reduced system (slow dynamics) and the boundary layer
system (fast dynamics).

Firstly, we define the change of variables d(t) = h(t)−v(t),
which implies

ε(ḋ(t)+ v̇(t)) =−K(d(t)+ v(t))+(I2N−K)(g(t)− v(t))

and, due to the dynamics (10), then

ε ḋ(t) =−K(d(t)−g(t)). (11)

In order to decompose Eq. (11) in two projections we use the
following definitions:

Π
‖ =

1N1T
N

N
⊗ I2 and Π

⊥ =

(
IN−

1N1T
N

N

)
⊗ I2.

Moreover, c‖=Π‖c(k) and c⊥=Π⊥c(k). By definition, Π‖K =
0 and Π⊥K = K. Defining the decomposition d(t) = d‖+d⊥,
Eq. (11) can be also decomposed as

ε ḋ‖(t) = 0 and ε ḋ⊥(t) =−K(d⊥(t)+g(t)).

Then, system (10) becomes
ε v̇(t) =− v(t)+g(t)

ε ḋ⊥(t) =−K(d⊥(t)+g(t))
ċi(t) =− ci(t)+ [d⊥(t)+ v(t)]i

(12)

where [·]i denotes the submatrix of the operand that is relative
to agent i.

Following the singular perturbation model analysis we study
both slow and fast dynamics of system (10). To analyze the
behavior of the boundary layer system assume that ci(t) = ci∀i
and thus we can write c(t) = c and g(t) = g(c) with c constant
in time. Consider the system
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ε v̇(t) =− v(t)+g(c)

ε ḋ⊥(t) =−K(d⊥(t)+g(c)).
(13)

Applying the change of variables induced by the isolated root
of (13), namely,

ṽ(t) = v(t)−g(c), d̃⊥(t) =−K(d⊥(t)−g⊥(c)), τ =
t
ε
,

an exponentially stable boundary-layer system is obtained, i.e.,
˙̃v(τ) =− ṽ(τ)

˙̃d⊥(τ) =−Kd̃⊥(t).
(14)

Therefore

lim
t→∞

(
v(t)

d⊥(t)

)
=

(
g(c)
−g⊥(c)

)
.

To prove this property for the last equation consider for
example the Lyapunov function V (d̃⊥) = 1

2‖d̃
⊥‖2 and its

derivative V̇ (d̃⊥) = −(d̃⊥)T Kd̃⊥ ≤ −λ2‖d̃⊥‖2 ≤ −λ2V (d̃⊥),
where λ2 denotes the smallest non-zero eigenvalue of matrix
K. Therefore, d̃⊥ converges to zero exponentially.

Given the analysis of the boundary layer system above, if we
substitute the previous equilibrium points into the last equation
of system (12) we obtain the reduced system

ċi(t) =−ci(t)+ [g‖(c(t))]i, (15)

where

g‖(c(t)) =

[
1
N

N

∑
i=1

(
ci(t)+

2
D2 σ(ri(t))(ri(t)− ci(t))

)]
⊗1N

=ḡ(c(t))⊗1N

and we get
ċi(t) =−ci(t)+ ḡ(c(t)). (16)

We rewrite Eq. 16 in a compact way
ċ(t) =−c(t)+ ḡ(c(t))⊗1N

and decomposing it along the projections Π‖ and Π⊥

ċ‖(t) =−c‖(t)+ ḡ(c‖(t)+c⊥(t))⊗1N and ċ⊥(t) =−c⊥(t)

since Π⊥(A⊗1N) = 0 for all A∈R2×2. Since the dynamics of
c⊥(t) are exponentially stable, c⊥(t) is bounded. Considering
c‖(t) = c̄(t)⊗1N , we can restrict our attention to the dynamics
of the average, i.e.,

˙̄c(t) =−c̄(t)+ ḡ(c̄(t)+ c⊥(t)).

Using (2) to express the position of the agents, we have the
following result

ḡ(c(t)) = c̄(t)+ 2
ND2 ∑

N
i=1 σ(ri(t))(ri(t)− ci(t))

= 2
ND2 ∑

N
i=1 σ(c̄(t)+ c⊥i (t)+ ei(t))ei(t)

= 2
ND2 ∑

N
i=1 σ(c̄+ ei)ei

+ 2
ND2 ∑

N
i=1
[
σ(c̄+ c⊥i + ei)−σ(c̄+ ei)

]
ei

= 2
ND2 ∑

N
i=1 σ(c̄+ ei)ei +ψ(D,c).

According to Lemma 1 the dynamics of c̄ are given by
˙̄c(t) = ∇σ(c̄)+ϕ(D, c̄)+ψ(D,c), (17)

which is the standard gradient ascent algorithm apart from the
approximation error ϕ(D, c̄) and the perturbed term ψ(D,c).

The stability of the reduced system is analyzed using the
Lyapunov function

V (c̄) = σ(z∗)−σ(c̄)≥ 0,

which is positive definite since z∗ is the only minimum of the
signal distribution. Differentiating along the solutions of (17),
the following equation holds:
V̇ (c̄) = −‖∇σ(c̄)‖2−∇σ(c̄)T (ϕ(D, c̄)+ψ(D,c))

≤−‖∇σ(c̄)‖2 +‖∇σ(c̄)‖(‖ϕ(D, c̄)‖+‖ψ(D,c)‖) .
Consider Assumption 1 and the Lipschitz constant L, then
‖ψ(D,c)‖ ≤ 2

ND2 ∑
N
i=1 ‖σ(c̄+ c⊥i + ei)−σ(c̄+ ei)‖‖ei‖

≤ 2L
ND ∑

N
i=1 ‖c⊥i (t)‖.

Since c⊥(t) is bounded, we assume that ‖c⊥i (t)‖ ≤ δ ,∀i and,
using Lemma 1, we know that ‖ϕ(D, c̄)‖ ≤ λmax(Hσ )D. The
following inequality is obtained:

V̇ (c̄) ≤−‖∇σ(c̄)‖2 +‖∇σ(c̄)‖
(
λmax(Hσ )D+ 2L

D δ
)

≤−‖∇σ(c̄)‖
(
‖∇σ(c̄)‖−λmax(Hσ )D− 2L

D δ
)
.

Therefore, V̇ (c̄) ≤ 0 when ‖∇σ(c̄)‖ ≥ λmax(Hσ )D + 2L
D δ =

β . Considering Assumption 1, V̇ (c̄) ≤ 0 when ‖c̄‖ ≥
1
a3
(λmax(Hσ )D+ 2L

D δ ). Let Ωl = {c̄ : ‖c̄‖≤ l}= β be a level set
of the Lyapunov function V (c̄) with l = a2β 2. Without lost of
generality, we assume that the minimum of the signal strength
corresponds to the origin, s.t., z∗ = 0. Then, the closed ball
Bβ centered at c̄ = 0 and with radius β is contained in Ωl
because

‖c̄‖ ≤ β ⇒ V (c̄)≤ a2‖c̄‖2 ≤ a2β
2 = l,

and thus c̄ ∈Ωl . As a result, any solution of (17) starting in
R2/Ωl satisfies V̇ (c̄)< 0. Thus, it enters Ωl in finite time and
remains in Ωl thereafter. This guarantees asymptotic stability
of c̄ = 0 with a radius γ(D,Hσ ,δ ). To obtain the value of γ

we use the lower bound of the signal distribution according
to Assumption 1, such that

a1‖c̄‖2 ≤V (c̄)≤ a2β
2

and thus the solutions enter the region ‖c̄‖ ≤ β

√
a2
a1

. This
implies that the radius of the γ-stability is

γ =
1
a3

(
λmax(Hσ )D+

2L
D

δ

)√
a2

a1
.

The γ-stability of c̄(t) = z∗ implies that ‖c̄(t)− z∗‖ ≤ γ as
t → ∞. If ε is sufficiently small then, the separation of time
scales holds and limk→∞ ci(k) = limk→∞ c̄(k), which converges
asymptotically to the neighborhood of the minimum of the
signal strength. Note that, in the quadratic case, the approxi-
mation term ϕ(D,c) vanishes because by Lemma 1 we obtain
˙̄c(t) =−∇σ(c̄)+ψ(D,c) and, the radius of the γ-stability is
reduced to

γ =
2Lδ

a3D

√
a2

a1
.

REFERENCES

[1] S. Azuma, M. S. Sakar, and G. J. Pappas. Stochastic source seeking by
mobile robots. IEEE Trans. Autom. Control, 57:2308–2321, 2012.

[2] R. Bachmayer and N. E. Leonard. Vehicle networks for gradient descent
in a sampled environment. In Proc. of the 41st IEEE Conference on
Decision and Control, pages 112–117, 2002.

[3] E. Biyik and M. Arcak. Gradient climbing in formation via extremum
seeking and passivity-based coordination rules. Asian Journal of
Control, Special Issue on Collective Behavior and Control of Multi-
Agent Systems, 10(2):201–211, 2008.
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