
1

Newton-Raphson Consensus
for Distributed Convex Optimization

Damiano Varagnolo, Filippo Zanella, Angelo Cenedese,
Gianluigi Pillonetto, Luca Schenato

Abstract—We address the problem of distributed unconstrained convex
optimization under separability assumptions, i.e., the framework where
each agent of a network is endowed with a local private multidimensional
convex cost, is subject to communication constraints, and wants to
collaborate to compute the minimizer of the sum of the local costs.
We propose a design methodology that combines average consensus
algorithms and separation of time-scales ideas. This strategy is proved,
under suitable hypotheses, to be globally convergent to the true minimizer.
Intuitively, the procedure lets the agents distributedly compute and
sequentially update an approximated Newton-Raphson direction by
means of suitable average consensus ratios. We show with numerical
simulations that the speed of convergence of this strategy is comparable
with alternative optimization strategies such as the Alternating Direction
Method of Multipliers. Finally, we propose some alternative strategies
which trade-off communication and computational requirements with
convergence speed.

Index Terms—Distributed optimization, unconstrained convex opti-
mization, consensus, multi-agent systems, Newton-Raphson methods,
smooth functions.

I. INTRODUCTION

Optimization is a pervasive concept underlying many aspects of
modern life [3], [4], [5], and it also includes the management
of distributed systems, i.e., artifacts composed by a multitude of
interacting entities often referred to as “agents”. Examples are
transportation systems, where the agents are both the vehicles and
the traffic management devices (traffic lights), and smart electrical
grids, where the agents are the energy producers-consumers and the
power transformers-transporters.

Here we consider the problem of distributed optimization, i.e., the
class of algorithms suitable for networked systems and characterized
by the absence of a centralized coordination unit [6], [7], [8].
Distributed optimization tools have received an increasing attention
over the last years, concurrently with the research on networked
control systems. Motivations comprise the fact that the former
methods let the networks self-organize and adapt to surrounding
and changing environments, and that they are necessary to manage
extremely complex systems in an autonomous way with only limited
human intervention. In particular we focus on unconstrained convex
optimization, although there is a rich literature also on distributed
constrained optimization such as Linear Programming [9].

D. Varagnolo is with the Department of Computer Science, Electrical and
Space Engineering, Luleå University of Technology, Luleå Sweden. Email:
damiano.varagnolo@ltu.se. F. Zanella, A. Cenedese, G. Pillonetto
and L. Schenato are with the Department of Information Engineering, Univer-
sità di Padova, Padova, Italy. Emails: {fzanella | angelo.cenedese
| giapi | schenato }@dei.unipd.it.

This work is supported by the Framework Programme for Research and
Innovation Horizon 2020 under the grant agreement n. 636834 “DISIRE”,
the Swedish research council Norrbottens Forskningsråd, by the University
of Padova under the “Progetto di Ateneo CPDA147754/14-New statistical
learning approach for multi-agents adaptive estimation and coverage control.”,
and by the Italian Ministry of Education under the grant agreement SCN 00398
“Smart & safe Energy-aware Assisted Living”. This paper is an extended and
revised version of [1], [2].

Literature review

The literature on distributed unconstrained convex optimization is
extremely vast and a first taxonomy can be based whether the strategy
uses or not the Lagrangian framework, see, e.g., [5, Chap. 5].

Among the distributed methods exploiting Lagrangian formalism,
the most widely known algorithm is Alternating Direction Method of
Multipliers (ADMM) [10], whose roots can be traced back to [11]. Its
efficacy in several practical scenarios is undoubted, see, e.g., [12] and
references therein. A notable size of the dedicated literature focuses
on the analysis of its convergence performance and on the tuning
of its parameters for optimal convergence speed, see, e.g., [13] for
Least Squares (LS) estimation scenarios, [14] for linearly constrained
convex programs, and [15] for more general ADMM algorithms.
Even if proved to be an effective algorithm, ADMM suffers from
requiring synchronous communication protocols, although some re-
cent attempts for asynchronous and distributed implementations have
appeared [16], [17], [18].

On the other hand, among the distributed methods not exploiting
Lagrangian formalisms, the most popular ones are the Distributed
Subgradient Methods (DSMs) [19]. Here the optimization of non-
smooth cost functions is performed by means of subgradient based
descent/ascent directions. These methods arise in both primal and
dual formulations, since sometimes it is better to perform dual
optimization. Subgradient methods have been exploited for several
practical purposes, e.g., to optimally allocate resources in Wireless
Sensor Networks (WSNs) [20], to maximize the convergence speeds
of gossip algorithms [21], to manage optimality criteria defined in
terms of ergodic limits [22]. Several works focus on the analysis
of the convergence properties of the DSM basic algorithm [23],
[24], [25] (see [26] for a unified view of many convergence results).
We can also find analyses for several extensions of the original
idea, e.g., directions that are computed combining information from
other agents [27], [28] and stochastic errors in the evaluation of the
subgradients [29]. Explicit characterizations can also show trade-offs
between desired accuracy and number of iterations [30].

These methods have the advantage of being easily distributed,
to have limited computational requirements and to be inherently
asynchronous as shown in [31], [32], [33]. However they suffer from
low convergence rate since they require the update steps to decrease
to zero as 1/t (being t the time) therefore as a consequence the rate
of convergence is sub-exponential. In fact, one of the current trends
is to design strategies that improve the convergence rate of DSMs.
For example, a way is to accelerate the convergence of subgradient
methods by means of multi-step approaches, exploiting the history
of the past iterations to compute the future ones [34]. Another is to
use Newton-like methods, when additional smoothness assumptions
can be used. These techniques are based on estimating the Newton
direction starting from the Laplacian of the communication graph.
More specifically, distributed Newton techniques have been proposed
in dual ascent scenarios [35], [36], [37]. Since the Laplacian cannot be
computed exactly, the convergence rates of these schemes rely on the
analysis of inexact Newton methods [38]. These Newton methods are

2

shown to have super-linear convergence under specific assumptions,
but can be applied only to specific optimization problems such as
network flow problems.

Recently, several alternative approaches to ADMM and DSM have
appeared. For example, in [39], [40] the authors construct contraction
mappings by means of cyclic projections of the estimate of the
optimum onto the constraints. A similar idea based on contraction
maps is used in F-Lipschitz methods [41] but it requires additional as-
sumptions on the cost functions. Other methods are the control-based
approach [42] which exploits distributed consensus, the distributed
randomized Kaczmarz method [43] for quadratic cost functions, and
distributed dual sub-gradient methods [44].

Statement of contributions

Here we propose a distributed Newton-Raphson optimization pro-
cedure, named Newton-Raphson Consensus (NRC), for the exact
minimization of smooth multidimensional convex separable prob-
lems, where the global function is a sum of private local costs. With
respect to the classification proposed before, the strategy exploits
neither Lagrangian formalisms nor Laplacian estimation steps. More
specifically, it is based on average consensus techniques [45] and
on the principle of separation of time-scales [46, Chap. 11]. The
main idea is that agents compute and keep updated, by means
of average consensus protocols, an approximated Newton-Raphson
direction that is built from suitable Taylor expansions of the local
costs. Simultaneously, agents move their local guesses towards the
Newton-Raphson direction. It is proved that, if the costs satisfy
some smoothness assumptions and the rate of change of the local
update steps is sufficiently slow to allow the consensus algorithm
to converge, then the NRC algorithm exponentially converges to the
global minimizer.

The main contribution of this work is to propose an algorithm that
extends Newton-Raphson ideas in a distributed setting, thus being
able to exploit second order information to speed up converge rate.
By using singular perturbation theory we formally show that under
suitable assumptions the convergence of the algorithm is exponential
(linear in logspace). Differently, DSM algorithms have sublinear
convergence rate even if the cost functions are smooth [39], [47],
although they are easy to implement and can be employed also
for non-smooth cost functions and for constrained optimization. We
also show by means of numerical simulations on real-world database
benchmarks that the proposed algorithm exhibits faster convergence
rates (in number of communications) than standard implementations
of distributed ADMM algorithms [12], probably due to the second-
order information embedded into the Newton-Raphson consensus.
Although we have no theoretical guarantee of the superiority of
the proposed algorithmic in terms of convergence rate, these sim-
ulations suggest that it is at least a potentially competitive algorithm.
Moreover, one of the promising features of the NRC is that it is
essentially based on average consensus algorithms, for which there
exist robust implementations that encompass asynchronous commu-
nications, time-varying network topologies [48], directed graphs [49],
and packet-losses effects.

Structure of the paper

The paper is organized as follows: Section II collects the notation
used through the whole paper, while Section III formulates the con-
sidered problem and provides some ancillary results that are then used
to study the convergence properties of the main algorithm. Section IV
proposes the main optimization algorithm, provides convergence
results and describes some strategies to trade-off communication and

computational complexities with convergence speed. Section V com-
pares, via numerical simulations, the performance of the proposed
algorithm with several distributed optimization strategies available in
the literature. Finally, Section VI collects some final observations and
suggests future research directions. We collect all the proofs in the
Appendix.

II. NOTATION

We model the communication network as a graph G = (N , E)
whose vertices N := {1, 2, . . . , N} represent the agents and whose
edges (i, j) ∈ E represent the available communication links. We
assume that the graph is undirected and connected, and that the matrix
P ∈ RN×N is stochastic, i.e., its elements are non-negative, it is
s.t. P1 = 1 (where 1 := [1 1 · · · 1]T ∈ RN), symmetric, i.e.,
P = PT and consistent with the graph G, in the sense that each
entry pij of P is pij > 0 only if (i, j) ∈ E . We recall that if
P is stochastic, symmetric, and includes all edges (i.e., pij > 0
if and only if (i, j) ∈ E) then limk→∞ P k = 1

N
11T . Such P ’s

are also often referred to as average consensus matrices. We will
indicate with ρ(P) := maxi,λi 6=1 |λi(P)| the spectral radius of P ,
with σ(P) := 1− ρ(P) its spectral gap.

We use fraction bars to indicate also Hadamard divisions, e.g.,
if a = [a1, . . . , aN]T and b = [b1, . . . , bN]T then

a

b
:=[

a1
b1

. . .
aN
bN

]T
. Fraction bars like the previous ones may also

indicate pre-multiplication with inverse matrices, i.e., if bi is a matrix
then

ai
bi

indicates b−1
i ai. We indicate with n the dimensionality of the

domains of the cost functions, k a discrete time index, t a continuous
time index. For notational simplicity we denote differentiation with
∇ operators, so that ∇f = ∂f/∂x and ∇2f = ∂2f/∂x2. With a
little abuse of notation, we will define χ = (x, Z), where x ∈ Rn
and Z ∈ R`×q as the vector obtained by stacking in a column both
the vector x and the vectorized matrix Z. We indicate with ‖ · ‖
Frobenius norms. With an other abuse of notation we also define the
norm of the pair χ = (x, Z) where x is a vector and Z a matrix
with ‖χ‖2 = ‖x‖2 + ‖Z‖2.

When using plain italic fonts with a subscript (usually i, e.g.,
xi ∈ Rn) we refer to the local decision variable of the specific
agent i. When using bold italic fonts, e.g., x, we instead refer to
the collection of the decision variables of all the various agents, e.g.,
x :=

[
xT1 , . . . , xTN

]T ∈ RnN . To indicate special variables we will
instead consider the following notation:

x :=
1

N

N∑
i=1

xi Rn

x‖ := 1N ⊗ x RnN

x⊥ := x− x‖ RnN

As in [46, p. 116], we say that a function V is a Lyapunov function for
a specific dynamics if V is continuously differentiable and satisfies
V (0) = 0, V (x) > 0 for x 6= 0, and V̇ (x) ≤ 0.

III. PROBLEM FORMULATION AND PRELIMINARY RESULTS

A. Structure of the section

Our main contribution is to characterize the convergence properties
of the distributed Newton-Raphson (NR) scheme proposed in Sec-
tion IV. In doing so we both exploit standard singular perturbation
analysis tools [46, Chap. 11] [50] and a set of ancillary results,
collected for readability in this section.

The logical flow of these ancillary results is the following: Sec-
tion III-C claims that, under suitable assumptions, forward-Euler
discretizations of stable continuous dynamics lead to stable discrete

3

dynamics. This basic result enables reasoning on continuous-time
systems. Then, Sections III-D and III-E respectively claim that single-
and multi-agent continuous-time NR dynamics satisfy these dis-
cretization assumptions. Sections III-F and III-G then generalize these
dynamics by introducing perturbation terms that mimic the behavior
of the proposed main optimization algorithm, and characterize their
stability properties. Summarizing, the ancillary results characterize
the stability properties of systems that are progressive approximations
of the dynamics under investigation.

B. Problem formulation

We assume that the N agents of the network are endowed with
cost functions fi : Rn 7→ R so that

f : Rn 7→ R, f (x) :=
1

N

N∑
i=1

fi (x) (1)

is a well-defined global cost. We assume that the aim of the agents is
to cooperate and distributedly compute the minimizer of f , namely

x∗ := arg min
x∈Rn

f (x) . (2)

We now enforce the following simplifying assumptions, valid
throughout the rest of the paper:

Assumption 1 (Convexity) The local costs fi in (1) are of class C3.
Moreover the global cost f has bounded positive definite Hessian,
i.e., 0 < cI ≤ ∇2f(x) ≤ mI for some c,m ∈ R+ and ∀x ∈ Rn.
Moreover, w.l.o.g., we assume f(x∗) = 0, c ≤ 1 and m ≥ 1.

The scalar c is assumed to be known by all the agents a-priori.
Assumption 1 ensures that x∗ in (2) exists and is unique. The strictly
positive definite Hessian is moreover a mild sufficient condition
to guarantee that the minimum x∗ defined in (2) will be globally
exponentially stable under the continuous and discrete Newton-
Raphson dynamics described in the following Theorem 3. We also
notice that, for the subsequent Theorems 2 and 3, in principle just
the average function f needs to have specific properties, and thus no
conditions for the single fi’s are required (that for example might be
even non convex). For the convergence of the distributed NR scheme
we will nonetheless enforce the more restrictive Assumptions 5 and 9,
not presented now for readability issues. In the rest of this section,
in order to simplify notation, we will considerer, without loss of
generality, the following translated cost functions:

f ′
i(x) = fi(x+ x∗), f ′(x) =

1

N

N∑
i=1

f ′
i(x) (3)

so that the origin becomes the minimizer of the averaged cost function
f ′(x), i.e. f ′(0) = 0.

C. Stability of discretized dynamics

This subsection aims to show that, under suitable assump-
tions, forward-Euler discretization of suitable exponentially stable
continuous-time dynamics maintains the same global exponential
stability properties.

Theorem 2 Let the continuous-time system

ẋ = φ(x) (4)

admit x = 0 ∈ Rn as an equilibrium, and let V (x) : Rn 7→ R
be a Lyapunov function for (4) for which there exist positive scalars
a1, a2, a3, a4 s.t., ∀x ∈ Rn,

a1I ≤ ∇2V (x) ≤ a2I (5a)
∂V (x)

∂x
φ(x) ≤ −a3‖x‖2 (5b)

‖φ(x)‖ ≤ a4‖x‖. (5c)

Then:

a) for system (4) the origin is globally exponentially stable;
b) for the following forward-Euler discretization of system (4),

x(k + 1) = x(k) + εφ
(
x(k)

)
, (6)

there exists a positive scalar ε such that for every ε ∈ (0, ε)
the origin is globally exponentially stable.

D. Stability of single-agent NR dynamics

This subsection shows that the results of Section III-C apply
to continuous NR dynamics, i.e., that forward-Euler discretizations
maintain global exponential stability properties1.

Theorem 3 Let

φNR(x) := −h′(x)−1∇f ′(x) (7)

be defined by a generic function h′(x) ∈ Rn×n that satisfies the
positive definiteness conditions cI ≤ h′(x) = h′(x)T ≤ mI for all
x ∈ Rn where c and m are defined in Assumption 1. Let (7) define
both the dynamics

ẋ = φNR(x), (8)

x(k + 1) = x(k) + εφNR
(
x(k)

)
. (9)

Then, under Assumption 1:

a)
VNR(x) := f ′(x) (10)

is a Lyapunov function for (8);
b) there exist positive scalars b1, b2, b3, b4 s.t., ∀x ∈ Rn,

b1I ≤ ∇2VNR(x) ≤ b2I (11a)
∂VNR

∂x
φNR(x) ≤ −b3‖x‖2 (11b)

‖φNR(x)‖ ≤ b4‖x‖, (11c)

i.e., Theorem 2 applies to dynamics (8) and (9).

For suitable choices of h′(x) the dynamics (8) corresponds to
continuous versions of well known descent dynamics. Indeed, the
correspondences are

h′(x) =

∇2f ′(x) → Newton-Raphson descent(12a)

diag
[
∇2f ′(x)

]
→ Jacobi descent (12b)

I → Gradient descent (12c)

where diag[A] is a diagonal matrix containing the main diagonal of
A. Note that for every choice of h′(x) as in (12a)-(12c), Assump-
tion 1 ensures the hypotheses2 of Theorem 3, therefore by combining
Theorem 3 with Theorem 2 we are guaranteed that both continuous
and discrete generalized NR dynamics induced by (7) are globally
exponentially stable:

Lemma 4 Under Assumption 1, the origin is a globally exponentially
stable point for dynamics (8). Moreover there exists ε > 0 such
that the origin is a globally exponentially stable point also for
dynamics (9) for all ε < ε.

1We notice that other asymptotic properties of continuous time NR methods
are available in the literature, e.g., [51], [52].

2For the Jacobi descent, clearly min‖x‖=1 x
T diag

[
∇2f ′(x)

]
x =

minx∈{e1,...,en} x
T diag

[
∇2f ′(x)

]
x =

minx∈{e1,...,en} x
T∇2f ′(x)x ≥ min‖x‖=1 x

T∇2f ′(x)x = c, where ei
is the n-dimensional vector with all zeros except for a one in the i-th entry.

4

The previous lemma and theorems do not require h′(x) to be
differentiable. However, differentiability may be used to linearize the
system dynamics and obtain explicit rates of convergence. In fact,
the linearized dynamics around the origin is given by

F (0) :=
∂φNR(0)

∂x
= −h′(0)−1∇2f ′(0)− ∂h′(0)−1

∂x
∇f ′(0).

In particular, for the NR descent it holds that h′(x) = ∇2f ′(x). Thus
in this case F (0) = −I , since ∇f ′(0) = 0, and this says that the
linearized continuous time NR dynamics is ẋ = −x, independent of
the cost f ′(x) and whose rate of convergence is unitary and uniform
along any direction.

E. Stability of multi-agent NR dynamics

We now generalize (8) by considering N coupled dynamical
systems that, when starting at the very same initial condition, behave
like N decoupled systems (8). This novel dynamics is the core of
the slow-dynamics embedded in the main algorithm presented in
Section IV. In this section we also include additional assumptions
to show that the generalization of (8) presented here preserves global
exponential stability and some other additional properties.

To this aim we introduce some additional notation: let h′
i(x) :

Rn 7→ Rn×n, i = 1, . . . , N be defined according to one of the
possible three cases

h′
i(x) =

∇2f ′

i(x) (13a)

diag
[
∇2f ′

i(x)
]

(13b)

I (13c)

so that h′
i(x) = h′

i(x)
T for all x. Moreover let

h′(x) :=
[
h′
1

(
x1
)
, . . . , h′

N

(
xN
)]T RnN 7→ RnN×n

h′
(
x
)

:=
1

N

N∑
i=1

h′
i(xi) RnN 7→ Rn×n

h′
(
x
)

:=
1

N

N∑
i=1

h′
i

(
x
)

Rn 7→ Rn×n

be additional composite functions defined starting from the h′
i’s (re-

call that x :=
[
xT1 , . . . , xTN

]T ∈ RnN and that x := 1
N

∑N
i=1 xi ∈

Rn). Let moreover

g′i(x) := h′
i(x)x−∇f ′

i(x) Rn 7→ Rn (14)

and g′(x), g′(x), g′(x) be defined accordingly as for h′
i.

The definitions of h′
i and g′i are instrumental to generalize the NR

dynamics (8) to the distributed case. Indeed, let

ψ
(
x
)
:= h′(x)−1 g′(x) RnN 7→ Rn (15)

(with the existence of h′(x)−1 guaranteed by the following Assump-
tion 5). It is easy to verify that the previous functions satisfy the
following properties:

h′
(
x‖) = h′

(
x
)

(16a)

g′
(
x‖) = g′

(
x
)
= h′

(
x
)
x−∇f ′

(
x
)

(16b)

ψ
(
x‖) = x− h′

(
x
)−1∇f ′

(
x
)

(16c)

Consider then

ẋ = φPNR(x) := −x+ 1N ⊗ ψ(x), (17)

that can be also equivalently written as

ẋi = −xi + ψ(x), i = 1, . . . , N,

i.e., as the combination of N independent dynamical systems that are
driven by the same forcing term ψ(x).

As mentioned above, this dynamics embeds the centralized gener-
alized NR dynamics since, under identical initial conditions xi(0) =
x(0) ∈ Rn for all i, the trajectories coincide, i.e., xi(t) =
x(t), ∀i,∀t ≥ 0. Moreover, due to (16c),

ẋ = −x+ ψ(1N ⊗ x)

= −x+ x− h′
(
x
)−1∇f ′(x) = φNR(x),

(18)

i.e., we obtain dynamics (7), that is, thanks to Theorem 3 and the
assumption that h′(x) is invertible, globally exponentially stable.

The question is then whether dynamics (17) is exponentially stable
also in the general case where the xi(0)’s may not be identical. To
characterize this case we assume some additional global properties:

Assumption 5 (Global properties) The local costs f ′
1, . . . , f

′
N

in (1) are s.t. there exist positive scalars mg, ag, ah, aψ s.t., ∀x, x′ ∈
Rn and ∀x,x′ ∈ RnN ,

cI ≤ h′(x) ≤ mI (19a)∥∥g′(x)∥∥ ≤ mg (19b)∥∥g′i(x)− g′i(x
′)
∥∥ ≤ ag

∥∥x− x′
∥∥ (19c)∥∥h′

i(x)− h′
i(x

′)
∥∥ ≤ ah

∥∥x− x′
∥∥ (19d)∥∥ψ(x)− ψ(x′)

∥∥ ≤ aψ
∥∥x− x′∥∥ (19e)

with c and m from Assumption 1.

Note that Assumption 5 implies

∥∥g′(x)− g′(x′)
∥∥ ≤ ag

∥∥x− x′∥∥ (20a)∥∥h′(x)− h′(x′)
∥∥ ≤ ah

∥∥x− x′∥∥ (20b)∥∥g′(x)− g′(x′)
∥∥ ≤ ag

∥∥x− x′∥∥ (20c)∥∥h′(x)− h′(x′)
∥∥ ≤ ah

∥∥x− x′∥∥ (20d)

Using the previous assumptions we can now prove global stability
of dynamics (17):

Theorem 6 Under Assumptions 1 and 5, and for a suitable positive
scalar η,

a)

VPNR(x) := VNR(x) +
1

2
η‖x⊥‖2 = f ′(x) +

1

2
η‖x⊥‖2 (21)

is a Lyapunov function for (17);
b) there exist positive scalars b5, b6, b7, b8 s.t., ∀x ∈ RnN ,

b5I ≤ ∇2VPNR(x) ≤ b6I (22a)
∂VPNR

∂x
φPNR(x) ≤ −b7‖x‖2 (22b)

‖φPNR(x)‖ ≤ b8‖x‖. (22c)

As in Lemma 4, combining Theorem 6 with Theorem 2 it is
possible to claim that (17) and its discrete-time counterpart are
globally exponentially stable.

F. Multi-agent NR dynamics under vanishing perturbations

We now aim to generalize the dynamics φPNR(x) by considering
some perturbation term, that will be described by the variable χ. Let
then χy := (χy1 , . . . , χ

y
N) where χyi ∈ Rn, χz := (χz1, . . . , χ

z
N)

where χzi = (χzi)
T ∈ Rn×n, and χ := (χy,χz). We also define the

operator [·]c : RnN×n 7→ RnN×n, which indicates the component-
wise matrix-operation

[z]c =

 z1...
zN

c

:=

 z
′
1

...
z′N

 z′i =

zi if zi ≥

c

2
I

c

2
I otherwise.

(23)

5

Consider then the perturbed version of the multi-agent NR dynam-
ics (17),

ẋ = φx(x,χ) := −x−1N⊗x∗+
χy + 1N ⊗

(
g′(x) + h′(x)x∗

)[
χz + 1N ⊗ h′(x)

]
c

,

(24)
where the division is a Hadamard division, as recalled in Section II.
Direct inspection of dynamics (24) then shows that

φx(x,0) = φPNR(x). (25)

The next lemma provides perturbations interconnection bounds that
will be used in Theorem 12.

Lemma 7 Under Assumptions 1 and 5 there exist positive scalars
ax, a∆ s.t., for all x and χ,{

‖φx(x,χ)‖ ≤ ax
(
‖x‖+ ‖χ‖

)
(26a)

‖φx(x,χ)− φPNR(x)‖ ≤ a∆‖χ‖. (26b)

G. Multi-agent NR dynamics under non-vanishing perturbations

Let us now consider some additional properties of the flow (24)
for some specific non-vanishing perturbation. Consider then the
perturbations ξy ∈ Rn and ξz ∈ Rn×n, and their multi-agents
versions ξy = 1N ⊗ ξy , ξy = 1N ⊗ ξz . Consider also the shorthand
ξ = (ξy, ξz). The equilibrium points of the dynamics induced by
φx(x, ξ) are characterized by the following theorem:

Theorem 8 Let ξy ∈ Rn, ξz ∈ Rn×n, ξ = (ξy, ξz), ξy = 1N ⊗ ξy ,
ξz = 1N ⊗ ξz , ξ = (ξy, ξz), and consider the equation

φx(x, ξ) = 0,

defining the equilibrium points of the dynamics ẋ = φx(x, ξ). Then,
under Assumptions 1 and 5 there exist a positive scalar r > 0 and a
unique continuously differentiable function xeq : Br → RnN where
Br := {ξ | ‖ξ‖ ≤ r} such that

φx
(
xeq(ξ), ξ

)
= 0, xeq(0) = 0; (27)

Moreover, xeq(ξ) = 1N ⊗ xeq(ξ), with

xeq(ξ) =
(
h′
(
xeq(ξ)

)
+ ξz

)−1(
g′
(
xeq(ξ)

)
+ ξy − ξzx∗

)
. (28)

Theorem 8 allows to define

φ′
x(x, ξ) := φx

(
x+ 1N ⊗ xeq(ξ), ξ

)
(29)

and the corresponding dynamics

ẋ = φ′
x(x, ξ) (30)

which corresponds to the translated version of the original perturbed
system φx(x, ξ), which has now the property that the origin is an
equilibrium point, i.e., φ′

x(0, ξ) = 0,∀‖ξ‖ ≤ r.
To prove the global exponential stability of (30) we need the flow

φ′
x to satisfy a global Lipschitz condition:

Assumption 9 (Global Lipschitz perturbation) There exist posi-
tive scalars aξ and r such that, for all x ∈ RnN and ξ satisfying
‖ξ‖ ≤ r, ∥∥φ′

x(x, ξ)− φ′
x(x, 0)

∥∥ ≤ aξ‖ξ‖‖x‖.

With these assumptions we can prove that the origin is a globally
exponentially stable equilibrium for dynamics (30):

Theorem 10 Under Assumptions 1, 5 and 9,

a) VPNR(x) defined in (21) is a Lyapunov function for (30);
b) there exist positive scalars r, b′7, b′8 s.t., for all x ∈ RnN and
ξ satisfying ‖ξ‖ ≤ r,

∂VPNR

∂x
φ′
x(x, ξ) ≤ −b′7‖x‖2 (31a)

‖φ′
x(x, ξ)‖ ≤ b′8‖x‖. (31b)

Again, as in Lemma 4, combining Theorem 10 with Theorem 2
it is possible to claim that (30) and its discrete-time counterpart are
globally exponentially stable.

H. Quadratic Functions

Before presenting the main algorithm, we show that quadratic costs
satisfy all the previous assumptions. In fact, let us consider then

fi(x) =
1

2
(x− di)

TAi(x− di) + ei, Ai = ATi

Based on this definition we have the following result:

Theorem 11 Quadratic costs that satisfy

A :=
∑
i

Ai > 0

satisfy Assumptions 1, 5 and 9 for h′
i(x) = ∇2f ′

i(x).

IV. NEWTON-RAPHSON CONSENSUS

In this section we provide an algorithm to distributively compute
the minimizer of the function x∗ defined in (2). The algorithm will be
shown to converge to x∗ even if x∗ 6= 0. The proof of convergence
will be based on the results derived in the previous sections via
a suitable translation of the argument of the cost functions, which
basically reduces the problem to the special case x∗ = 0.

Consider then Algorithm 1, where g
(
x(−1)

)
= 0 and

h
(
x(−1)

)
= 0 in the initialization step should be intended as

initialization of suitable registers and not as operations involving the
quantity x(−1).

Algorithm 1 Newton-Raphson Consensus (NRC)
(storage allocation and constraints on the parameters)

1: xi(k), yi(k) ∈ Rn and zi(k) ∈ Rn×n for all k and i =
1, . . . , N ; ε ∈ (0, 1], c > 0
(initialization)

2: xi(0) = 0; yi(0) = gi
(
xi(−1)

)
= 0; zi(0) = hi

(
xi(−1)

)
= 0

(main algorithm)
3: for k = 1, 2, . . . do
4: for i = 1, . . . , N do
5: xi(k) = (1− ε)xi(k − 1) + ε [zi(k − 1)]−1

c yi(k − 1)

6: yi(k)=

N∑
j=1

pij
(
yj(k−1)+gj

(
xj(k−1)

)
−gj

(
xj(k−2)

))
7: zi(k)=

N∑
j=1

pij
(
zj(k−1)+hj

(
xj(k−1)

)
−hj

(
xj(k−2)

))
8: end for
9: end for

Intuitively, the algorithm functions as follows: if the dynamics of
the xi(k)s is sufficiently slow w.r.t. the dynamics of the yi(k)s and
zi(k)s, then the two latter quantities tend to reach consensus. Then,
the more these quantities reach consensus, the more the products
[zi(k)]

−1
c yi(k) exhibit these two specific characteristics: i) being

the same among the various agent; ii) representing Newton descent

6

directions. Thus, the more the yi(k)s and zi(k)s in Algorithm 1 are
sufficiently close, the more the various xi(k)s are driven by the same
forcing term, that makes them converge to the same value, equal to
the optimum x∗.

We now characterize the convergence properties of Algorithm 1.
Let us define

ξy :=
1

N

N∑
i=1

(
yi(0)− gi

(
xi(−1)

))
ξz :=

1

N

N∑
i=1

(
zi(0)− hi

(
xi(−1)

))
,

then we have the following theorem:

Theorem 12 Consider the dynamics defined by Algorithm 1 with
possibly nonzero initial conditions. If ξy = 0 and ξz = 0, then under
Assumptions 1 and 5 there exists a positive scalar ε > 0 such that
Theorem 2 holds, i.e., the algorithm can be considered a forward-
Euler discretization of a globally exponentially stable continuous
dynamics. Thus the local estimates xi(k) produced by the algorithm
exponentially converge to the global minimizer, i.e.,

lim
k→∞

xi(k) = x∗ ∀i = 1, . . . , N.

for all ε ∈ (0, ε) and xi(0) ∈ Rn.

Consider now that, due to finite-precision issues, the quantities
ξy and ξz may be non-null. Non-null initial ξy and ξz will make
the proposed algorithm converge to a point that, in general does not
coincide with the global optimum x∗. Nonetheless in this case the
computed solution, as a function of the initial conditions, is a smooth
function and thus small errors in the initial conditions do not produce
dramatic errors in the computation of the optimum:

Theorem 13 Consider the dynamics defined by Algorithm 1 with
possibly nonzero initial ξy and ξz but generic xi(0)’s. Under
Assumptions 1, 5 and 9 there exist positive scalars a, r, ε and a
continuously differentiable function Ψ : Rn×Rn×n 7→ Rn satisfying

‖Ψ(ξy, ξz)− x∗‖ ≤ a (‖ξy‖+ ‖ξz‖)

s.t. the local estimates exponentially converge to it, i.e.,

lim
k→∞

xi(k) = Ψ (ξy, ξz) ∀i = 1, . . . , N

for all ε ∈ (0, ε), initial conditions xi(0) ∈ Rn and
(‖ξy‖+ ‖ξz‖) ≤ r.

We notice that Theorem 13 ensures global convergence properties
w.r.t. the initial conditions xi(0)’s by requiring Assumptions 1, 5
and 9, while for the same convergence properties Theorem 12 requires
only Assumptions 1 and 5. The difference is that Theorem 13
considers a non-null perturbation ξ and Assumption 9 is needed to
cope with this additional perturbation term.

The Assumptions 1, 5 and 9 are not needed if only local con-
vergence is ought. In fact, local differentiability, and therefore local
Lipschitzianity, of the cost functions fi(x) at the minimizer x∗ is
sufficient to guarantee that Assumptions 5 and 9 are locally valid.
As so, the proof that the equilibrium point is a locally exponentially
stable point is exactly the same, with the difference that all bounds
and inequalities are local. This observation is summarized in the
following theorem.

Theorem 14 Consider the dynamics defined by Algorithm 1 with
possibly nonzero initial conditions. Under the assumptions that the
fi’s are C3 and that ∇2f(x∗) ≥ cI , there exist positive scalars a, r, ε
and a continuously differentiable function Ψ : Rn×Rn×n 7→ Rn s.t.

lim
k→∞

xi(k) = Ψ (ξy, ξz) ∀i = 1, . . . , N

and satisfying

‖Ψ(ξy, ξz)− x∗‖ ≤ a
(
‖ξy‖+ ‖ξz‖

)
for all ε ∈ (0, ε) and initial conditions

‖xi(0)− x∗‖ ≤ r,
∥∥yi − g(x∗)

∥∥ ≤ r,
∥∥∥zi − h(x∗)

∥∥∥ ≤ r∥∥gi(xi(−1))− g(x∗)
∥∥ ≤ r,

∥∥∥hi(xi(−1))− h(x∗)
∥∥∥ ≤ r.

Numerical simulations suggest that the algorithm is robust w.r.t. nu-
merical errors and quantization noise. We also notice that Theorem 12
guarantees the existence of a critical value ε but does not provide
indications on its value. This is a known issue in all the systems
dealing with separation of time scales. A standard rule of thumb is
then to let the rate of convergence of the fast dynamics be sufficiently
faster than the one of the slow dynamics, typically 2-10 times faster.
In our algorithm the fast dynamics inherits the rate of convergence
of the consensus matrix P , given by its spectral gap σ(P), i.e.,
its spectral radius ρ(P) = 1 − σ(P). The rate of convergence of
the slow dynamics is instead governed by (18), which is nonlinear
and therefore possibly depending on the initial conditions. However,
close to the equilibrium point the dynamic behavior is approximately
given by ẋ(t) ≈ −

(
x(t)− x∗

)
, thus, since xi(k) ≈ x(εk), then the

convergence rate of the algorithm approximately given by 1− ε.
Thus we aim to let 1− ρ(P) � 1− (1− ε), which provides the

rule of thumb
ε� σ(P) . (32)

which is suitable for generic cost functions. We then notice that,
although the spectral gap σ(P) might not be known in advance, it
is possible to distributedly estimate it, see, e.g., [53]. However, such
rule of thumb might be very conservative. In fact, if all the fi’s are
quadratic and are, w.l.o.g. s.t. ∇2fi ≥ cI , then one can set ε = 1
and neglect the thresholding [·]c, so that the procedure reduces to

x(k + 1) =
y(k)

z(k)
y(k + 1) = (P ⊗ In)y(k)
z(k + 1) = (P ⊗ In)z(k) .

(33)

where x(k) :=
[
xT1 (k) , . . . , x

T
N (k)

]T
, y(k) :=[

yT1 (k) , . . . , y
T
N (k)

]T
, z(k) := [z1(k) , . . . , zN (k)]T . Thus:

Theorem 15 Consider Algorithm 1 with arbitrary initial conditions
xi(0), quadratic cost functions fi = 1

2
(x− di)

T Ai (x− di) with
Ai > 0 and ε = 1. Then ‖xi(k)− x∗‖ ≤ α (ρ(P))k for all k, i and
for a suitable positive α.

Thus, if the cost functions are close to be quadratic then the overall
rate of convergence is limited by the rate of convergence of the
embedded consensus algorithm. Moreover, the values of ε that still
guarantee convergence can be much larger than those dictated by the
rule of thumb (32).

A. On the selection of the structure of h(x)

As introduced in Section III-D, by selecting different structures for
hi(x) one can obtain different procedures with different convergence
properties and different computational/communication requirements.
Plausible choices for hi are the ones in (13c), and the correspon-
dences are the following:

• hi(x) = ∇2fi(x) → Newton-Raphson Consensus (NRC): in this
case it is possible to rewrite the main algorithm and show that, for

7

sufficiently small ε, xi(k) ≈ x(εk), where x(t) evolves according
to the continuous-time Newton-Raphson dynamics

ẋ(t) = −
[
∇2f

(
x(t)

)]−1

∇f
(
x(t)

)
.

• hi(x) = diag
[
∇2fi(x)

]
→ Jacobi Consensus (JC):

choice hi(x) = ∇2fi(x) requires agents to exchange information
on O

(
n2
)

scalars, and this could pose problems under heavy
communication bandwidth constraints and large n’s. Choice hi(x) =
diag

[
∇2fi(x)

]
instead reduces the amount of information to be ex-

changed via the underlying diagonalization process, also called Jacobi
approximation3. In this case, for sufficiently small ε, xi(k) ≈ x(εk),
where x(t) evolves according to the continuous-time dynamics

ẋ(t) = −
(
diag

[
∇2f

(
x(t)

)])−1

∇f
(
x(t)

)
,

which can be shown to converge to the global optimum x∗ with a
convergence rate that in general is slower than the Newton-Raphson
when the global cost function is skewed.

• hi(x) = I → Gradient Descent Consensus (GDC): this choice is
motivated in frameworks where the computation of the local second

derivatives
∂2fi
∂x2m

∣∣∣∣
x

is expensive (with xm indicating here the m-th

component of x), or where the second derivatives simply might not
be continuous. With this choice the main algorithm reduces to a
distributed gradient-descent procedure. In fact, for sufficiently small
ε, xi(k) ≈ x(εk) with x(t) evolving according to the continuous-
time dynamics

ẋ(t) = −∇f
(
x(t)

)
,

which one again is guaranteed to converge to the global optimum x∗.

The following Table I summarizes the various costs of the previ-
ously proposed strategies.

Choice NRC,
hi(x) =
∇2fi(x)

JC,
hi(x) =
diag

[
∇2fi(x)

]GDC,
hi(x) =

I

Computational Cost O
(
n3

)
O (n) O (n)

Communication Cost O
(
n2

)
O (n) O (n)

Memory Cost O
(
n2

)
O (n) O (n)

Table I
COMPUTATIONAL, COMMUNICATION AND MEMORY COSTS OF NRC, JC,

GDC PER SINGLE UNIT AND SINGLE STEP.

We remark that ε in Theorem 12 depends also on the particular
choice for hi. The list of choices for hi given above is not exhaustive.
For example, future directions are to implement distributed quasi-
Newton procedures. To this regard, we recall that approximations of
the Hessians that do not maintain symmetry and positive definiteness
or are bad conditioned require additional modification steps, e.g.,
through Cholesky factorizations [56].

Finally, we notice that in scalar scenarios JC and NRC are
equivalent, while GDC corresponds to algorithms requiring just the
knowledge of first derivatives.

V. NUMERICAL EXAMPLES

In Section V-A we analyze the effects of different choices of ε
on the NRC on regular graphs and exponential cost functions. We
then propose two machine learning problems in Section V-B, used

3In centralized approaches, nulling the Hessian’s off-diagonal terms is a
well-known procedure, see, e.g., [54]. See also [55], [36] for other Jacobi
algorithms with different communication structures.

in Sections V-C and V-D, and numerically compare the convergence
performance of the NRC, JC, GDC algorithms and other distributed
convex optimization algorithms on random geometric graphs.

Notice that we will use cost functions that may not satisfy
Assumptions 1, 5 and 9 to highlight the fact that the algorithm seems
to have favorable numerical properties and large basins of stability
even if the assumptions needed for global stability are not satisfied.

A. Effects of the choice of ε

Consider a ring network of S = 30 agents that communicate only
to their left and right neighbors through the consensus matrix

P =

0.5 0.25 0.25
0.25 0.5 0.25

. . .
. . .

. . .
0.25 0.5 0.25

0.25 0.25 0.5

 , (34)

so that the spectral radius ρ(P) ≈ 0.99, implying a spectral gap
σ(P) ≈ 0.01. Consider also scalar costs of the form fi(x) =
cie

aix + die
−bix, i = 1, . . . , N, with ai, bi ∼ U [0, 0.2], ci, di ∼

U [0, 1] and where U indicates the uniform distribution.
Figure 1 compares the evolution of the local states xi of the

continuous system (43) for different values of ε. When ε is not
sufficiently small, then the trajectories of xi(t) are different even
if they all start from the same initial condition xi(0) = 0. As ε
decreases, the difference between the two time scales becomes more
evident and all the trajectories xi(k) become closer to the trajectory
given by the slow NR dynamics x(εk) given in (18) and guaranteed
to converge to the global optimum x∗.

0 200 400
−1.5

−0.5

0.5

k

x
i
(k
)

ε = 0.01

0 2000 4000

k

ε = 0.001

0 40000

k

ε = 0.0001

x∗

x(εk)

xi(k)

Figure 1. Temporal evolution of system (43) for different values of ε, with
N = 30. The black dotted line indicates x∗. The black solid line indicates
the slow dynamics x(εk) of Equation (18). As ε decreases, the difference
between the time scale of the slow and fast dynamics increases, and the local
states xi(k) converge to the manifold of x(εk).

In Figure 2 we address the robustness of the proposed algorithm
w.r.t. the choice of the initial conditions. In particular, Figure 2(a)
shows that if α = β = 0 then the local states xi(t) converge to
the optimum x∗ for arbitrary initial conditions xi(0). Figure 2(b)
considers, besides different initial conditions xi(0), also perturbed
initial conditions v(0), w(0), y(0), z(0) leading to non null α’s and
β’s. More precisely we apply Algorithm 1 to different random initial
conditions s.t. α, β ∼ U [−σ, σ]. Figure 2(b) shows the boxplots of
the errors xi(+∞)−x∗ for different σ’s based on 300 Monte Carlo
runs with ε = 0.01 and N = 30.

B. Optimization problems

The first problem considered is the distributed training of a
Binomial-Deviance based classifier, to be used, e.g., for spam-
nonspam classification tasks [57, Chap. 10.5]. More precisely, we
consider a database of emails E, where j is the email index,
yj = −1, 1 denotes if the email j is considered spam or not,

8

0 200 400
−2

−1

0

1

2

k

x
i
(k
)

x∗

x(εk)

xi(k)

(a) Time evolution of the local
states xi(k) with v(0) = w(0) =
y(0) = z(0) = 0 and xi(0) ∼
U [−2, 2].

10−5 10−4 10−3
−0.05

0

0.05

σ
x
i
(+
∞

)
−
x
∗

(b) Empirical distribution of the
errors xi(+∞) − x∗ under ar-
tificially perturbed initial condi-
tions α(0), β(0) ∼ U [−σ, σ]
for different values of σ.

Figure 2. Characterization of the dependency of the performance of
Algorithm 1 on the initial conditions. In all the experiments ε = 0.01 and
N = 30.

10−3 10−2 10−1 100
10−7

10−4

10−1

ε

M
SE

(4
0
)

NRC
JC
GDC

(a) Relative MSE at a given
time k as a function of the
parameter ε for classification
problem (35).

0 10 20 30 40
10−7

10−4

10−1

k (for ε = ε∗)

M
SE

(k
)

NRC
JC
GDC

(b) Relative MSE as a func-
tion of the time k, with the
parameter ε chosen as the best
from Figure 3(a) for classifica-
tion problem (35).

10−3 10−2 10−1 100
10−7

10−4

10−1

ε

M
SE

(4
0
)

NRC
JC
GDC

(c) Relative MSE at a given
time k as a function of the pa-
rameter ε for regression prob-
lem (36).

0 10 20 30 40
10−7

10−4

10−1

k (for ε = ε∗)

M
SE

(k
)

NRC
JC
GDC

(d) Relative MSE as a func-
tion of the time k, with the
parameter ε chosen as the best
from Figure 3(c) for regression
problem (36).

Figure 3. Convergence properties of Algorithm 1 for the problems described
in Section V-B and for different choices of hi(·). Choice hi(x) = ∇2fi(x)
corresponds to the NRC algorithm, hi(x) = diag

[
∇2fi(x)

]
to the JC,

hi(x) = I to the GDC.

χj ∈ Rn−1 numerically summarizes the n − 1 features of the j-th
email (how many times the words “money”, “dollars”, etc., appear).
If the E emails come from different users that do not want to
disclose their private information, then it is meaningful to exploit the
distributed optimization algorithms described in the previous sections.
More specifically, letting x = (x′, x0) ∈ Rn−1 × R represents a
generic classification hyperplane, training a Binomial-Deviance based
classifier corresponds to solve a distributed optimization problem
where the local cost functions are given by:

fi (x) :=
∑
j∈Ei

log
(
1 + exp

(
−yj

(
χTj x

′ + x0
)))

+ γ
∥∥x′∥∥2

2
.

(35)
where Ei is the set of emails available to agent i,
E = ∪Ni=1Ei, and γ is a global regularization parameter. In
the following numerical experiments we consider |E| = 5000
emails from the spam-nonspam UCI repository, available at
http://archive.ics.uci.edu/ml/datasets/Spambase,
randomly assigned to 30 different users communicating as in graph
of Figure 4. For each email we consider 3 features (the frequency
of words “make”, “address”, “all”) so that the corresponding
optimization problem is 4-dimensional.

The second problem considered is a regression problem
inspired by the UCI Housing dataset available at
http://archive.ics.uci.edu/ml/datasets/Housing.
In this task, an example χj ∈ Rn−1 is a vector representing some
features of a house (e.g., per capita crime rate by town, index of
accessibility to radial highways, etc.), and yj ∈ R denotes the
corresponding median monetary value of of the house. The objective
is to obtain a predictor of house value based on these data. Similarly
as the previous example, if the datasets come from different users
that do not want to disclose their private information, then it
is meaningful to exploit the distributed optimization algorithms
described in the previous sections. This problem can be formulated
as a convex regression problem on the local costs

fi (x) :=
∑
j∈Ei

(
yj − χTj x

′ − x0
)2∣∣yj − χTj x

′ − x0
∣∣+ β

+ γ
∥∥x′∥∥2

2
. (36)

where x = (x′, x∗0) ∈ Rn−1 × R is the vector of coefficient for the
linear predictor ŷ = χTx′ + x0 and γ is a common regularization
parameter. The loss function (·)2

|·|+β corresponds to a smooth C2

version of the Huber robust loss, a loss that is usually employed to
minimize the effects of outliers. In our case β dictates for which
arguments the loss is pseudo-linear or pseudo-quadratic and has
been manually chosen to minimize the effects of outliers. In our
experiments we used 4 features, β = 50, γ = 1, and |E| = 506 total
number of examples in the dataset randomly assigned to the N = 30
users communicating as in the graph of Figure 4.

In both the previous problems the optimum, in the following
indicated for simplicity with x∗, has been computed with a centralized
NR with the termination rule “stop when in the last 5 steps the norm
of the guessed x∗ changed less than 10−9%”.

Figure 4. Random geometric graph exploited in the simulations relative to
the optimization problem (35). For this graph ρ(P) ≈ 0.9338, with P the
matrix of Metropolis weights.

9

C. Comparison of the NRC, JC and GDC algorithms

In Figure 3 we analyze the performance of the three proposed
NRC, JC and GDC algorithms defined by the various choices for
hi(x) in Algorithm 1 in terms of the relative MSE

MSE (k) :=
1

N

N∑
i=1

‖xi(k)− x∗‖2/‖x∗‖2

for the classification and regression optimization problem described
above. The consensus matrix P has been by selecting the Metropolis-
Hastings weights which are consistent with the communication graph
[58]. Panels 3(a) and 3(c) report the MSE obtained at a specific
iteration (k = 40) by the various algorithms, as a function of ε.
These plots thus inspect the sensitivity w.r.t. the choice of the tuning
parameters. Consistently with the theorems in the previous section,
the GDC and JC algorithms are stable only for ε sufficiently small,
while NRC exhibit much larger robustness and best performance for
ε = 1. Panels 3(b) and 3(d) instead report the evolutions of the
relative MSE as a function of the number of iterations k for the
optimally tuned algorithms.

We notice that the differences between NRC and JC are evident but
not resounding, due to the fact that the Jacobi approximations are in
this case a good approximation of the analytical Hessians. Conversely,
GDC presents a slower convergence rate which is a known drawback
of gradient descent algorithms.

D. Comparisons with other distributed convex optimization algo-
rithms

We now compare Algorithm 1 and its accelerated version, referred
as Fast Newton-Raphson Consensus (FNRC) and described in detail
below in Algorithm 2), with three popular distributed convex opti-
mization methods, namely the DSM, the Distributed Control Method
(DCM) and the ADMM, described respectively in Algorithm 3, 4
and 5. The following discussion provides some details about these
strategies.

• FNRC is an accelerated version of Algorithm 1 that inherits
the structure of the so called second order diffusive schedules, see,
e.g., [59], and exploits an additional level of memory to speed up the
convergence properties of the consensus strategy. Here the weights
multiplying the gi’s and hi’s are necessary to guarantee exact tracking
of the current average, i.e.,

∑
i yi(k) =

∑
i gi
(
x(k − 1)

)
for all k.

As suggested in [59], we set the ϕ that weights the gradient and the

memory to ϕ =
2

1 +
√

1− ρ(P)2
. This guarantees second order

diffusive schedules to be faster than first order ones (even if this
does not automatically imply the FNRC to be faster than the NRC).
This setting can be considered a valid heuristic to be used when ρ(P)
is known. For the graph in Figure 4, ϕ ≈ 1.4730.

• DSM, as proposed in [30], alternates consensus steps on the
current estimated global minimum xi(k) with subgradient updates
of each xi(k) towards the local minimum. To guarantee the con-
vergence, the amplitude of the local subgradient steps should ap-
propriately decrease. Algorithm 3 presents a synchronous DSM
implementation, where % is a tuning parameter and P is the matrix
of Metropolis-Hastings weights.

• DCM, as proposed in [42], differentiates from the gradient
searching because it forces the states to the global optimum by
controlling the subgradient of the global cost. This approach views the
subgradient as an input/output map and uses small gain theorems to
guarantee the convergence property of the system. Again, each agents
i locally computes and exchanges information with its neighbors,
collected in the set Ni := {j | (i, j) ∈ E}. DCM is summarized
in Algorithm 4, where µ, ν > 0 are parameters to be designed to

Algorithm 2 Fast Newton-Raphson Consensus
1: storage allocation, constraints on the parameters and initialization

as in Algorithm 1
2: for k = 1, 2, . . . do
3: for i = 1, . . . , N do
4: xi(k) = (1− ε)xi(k − 1) + ε [zi(k − 1)]−1

c yi(k − 1)

5: ỹi(k) = yi(k− 1)+
1

ϕ
gi
(
xi(k− 1)

)
− gi

(
xi(k− 2)

)
−

1− ϕ

ϕ
gi
(
xi(k − 3)

)
6: z̃i(k) = zi(k− 1)+

1

ϕ
hi
(
xi(k− 1)

)
−hi

(
xi(k− 2)

)
−

1− ϕ

ϕ
hi
(
xi(k − 3)

)
7: yi(k) = ϕ

N∑
j=1

(
pij ỹj(k)

)
+ (1− ϕ)yi(k − 2)

8: zi(k) = ϕ

N∑
j=1

(
pij z̃j(k)

)
+ (1− ϕ)zi(k − 2)

9: end for
10: end for

Algorithm 3 DSM [30]
(storage allocation and constraints on parameters)

1: xi(k) ∈ Rn for all i. % ∈ R+

(initialization)
2: xi(0) = 0

(main algorithm)
3: for k = 0, 1, . . . do
4: for i = 1, . . . , N do

5: xi(k + 1) =

N∑
j=1

pij
(
xj(k)−

%

k
∇fj

(
xj(k)

))
6: end for
7: end for

ensure the stability property of the system. Specifically, µ is chosen

in the interval 0 < µ <
2

2maxi={1,...,N} |Ni|+ 1
to bound the

induced gain of the subgradients. Also here the parameters have been
manually tuned for best convergence rates.

Algorithm 4 DCM [42]
(storage allocation and constraints on parameters)

1: xi(k), zi(k) ∈ Rn, for all i. µ, ν ∈ R+

(initialization)
2: xi(0) = zi(0) = 0 for all i

(main algorithm)
3: for k = 0, 1, . . . do
4: for i = 1, . . . , N do
5: zi(k + 1) = zi(k) + µ

∑
j∈Ni

(
xi(k)− xj(k)

)
6: xi(k + 1) = xi(k) + µ

∑
j∈Ni

(
xj(k) − xi(k)

)
+

µ
∑
j∈Ni

(
zj(k)− zi(k)

)
− µ ν∇fi

(
xi(k)

)
7: end for
8: end for

• ADMM, instead, requires the augmentation of the system through
additional constraints that do not change the optimal solution but
allow the Lagrangian formalism. There exist different implemen-
tations of ADMM in distributed contexts, see, e.g., [7], [60], [12,

10

pp. 253-261]. For simplicity we consider the following formulation,

min
x1,...,xN

N∑
i=1

fi(xi)

s.t. z(i,j) = xi, ∀i ∈ N , ∀(i, j) ∈ E ,

where the auxiliary variables z(i,j) correspond to the different links
in the network, and where the local Augmented Lagrangian is given
by

Li(xi, k) := fi (xi)+
∑
j∈Ni

y(i,j)
(
xi−z(i,j)

)
+
∑
j∈Ni

δ

2

∥∥xi−z(i,j)∥∥2,
with δ a tuning parameter (see [61] for a discussion on how to tune
it) and the y(i,j)’s Lagrange multipliers.

Algorithm 5 ADMM [7, pp. 253-261]
(storage allocation and constraints on parameters)

1: xi(k), z(i,j)(k), y(i,j)(k) ∈ Rn, δ ∈ (0, 1)
(initialization)

2: xi(k) = z(i,j)(k) = y(i,j)(k) = 0
(main algorithm)

3: for k = 0, 1, . . . do
4: for i = 1, . . . , N do
5: xi(k + 1) = argmin

xi
Li(xi, k)

6: for j ∈ Ni do
7: z(i,j)(k+1) =

1

2δ

(
y(i,j)(k)+y(j,i)(k)

)
+

1

2

(
xi(k+

1) + xj(k + 1)
)

8: y(i,j)(k+1) = y(i,j)(k)+δ
(
xi(k+1)−z(i,j)(k+1)

)
9: end for

10: end for
11: end for

The computational, communication and memory costs of these
algorithms is reported in Table II. Notice that the computational and
memory costs of ADMM algorithms depends on how nodes minimize
the local augmented Lagrangian Li(xi, k). E.g., in our simulations
the step has been performed through a dedicated Newton-Raphson
procedure with associated O

(
n3
)

computational costs and O
(
n2
)

memory costs.

Choice DSM DCM ADMM

Computational Cost O (n) O (n) from O (n) to O
(
n3

)
Communication Cost O (n) O (n) O (n)
Memory Cost O (n) O (n) from O (n) to O

(
n2

)
Table II

COMPUTATIONAL, COMMUNICATION AND MEMORY COSTS OF DSM,
DCM, AND ADMM PER SINGLE UNIT AND SINGLE STEP.

Figure 5 then compares the previously cited algorithms as did in
Figure 3. The first panel thus reports the relative MSE of the various
algorithms at a given number of iterations (k = 40) as a function
of the parameters. The second panel instead reports the temporal
evolution of the relative MSE for the case of optimal tuning.

We notice that the DCM and the DSM are both much slower,
in terms of communications iterations, than the NRC, FNRC and
ADMM. Moreover, both the NRC and its accelerated version con-
verge faster than the ADMM, even if not tuned at their best. These
numerical examples seem to indicate that the proposed NRC might
be a viable alternative to the ADMM, although further comparisons
are needed to strengthen this claim. Moreover, a substantial potential

advantage of NRC as compared to ADMM is that the former can
be readily adapted to asynchronous and time-varying graphs, as
preliminary made in [62]. Moreover, as in the case of the FNRC, the
strategy can implement any improved linear consensus algorithm.

10−3 10−2 10−1 100
10−14
10−12
10−10
10−8
10−6
10−4
10−2

ε

M
SE

(4
0
)

NRC
FNRC

10−1 100 101 102

ρ

ADMM

10−3 10−2 10−1 100

%

DSM

10−2 10−1

µ

DCM

(a) Relative MSE at a given time k as a function of the algorithms parameters
for problem (35). For the DCM, ν = 1.7.

0 10 20 30 40
10−14

10−12

10−10

10−8

10−6

10−4

10−2

k

M
SE

(k
)

ADMM
NRC
FNRC

(b) Relative MSE as a function of the time k for the three fastest
algorithms for problem (35). Their parameters are chosen as the best
ones from Figure 5(a).

10−3 10−2 10−1 100
10−14
10−12
10−10
10−8
10−6
10−4
10−2

ε

M
SE

(4
0
)

NRC
FNRC

10−1 100 101 102

ρ

ADMM

10−3 10−2 10−1 100

%

DSM

10−2 10−1

µ

DCM

(c) Relative MSE at a given time k as a function of the algorithms parameters
for problem (36). For the DCM, ν = 1.7.

0 10 20 30 40
10−14
10−12
10−10
10−8
10−6
10−4
10−2

k

M
SE

(k
)

ADMM
NRC
FNRC

(d) Relative MSE as a function of the time k for the three fastest
algorithms for problem (36). Their parameters are chosen as the best
ones from Figure 5(c).

Figure 5. Convergence properties of the various algorithms for the problems
described in Section V-B.

11

VI. CONCLUSION

We proposed a novel distributed optimization strategy suitable for
convex, unconstrained, multidimensional, smooth and separable cost
functions. The algorithm does not rely on Lagrangian formalisms
and acts as a distributed Newton-Raphson optimization strategy by
repeating the following steps: agents first locally compute and update
second order Taylor expansions around the current local guesses and
then they suitably combine them by means of average consensus
algorithms to obtain a sort of approximated Taylor expansion of the
global cost. This allows each agent to infer a local Newton direction,
used to locally update the guess of the global minimum.

Importantly, the average consensus protocols and the local updates
steps have different time-scales, and the whole algorithm is proved
to be convergent only if the step-size is sufficiently slow. Numerical
simulations based on real-world databases show that, if suitably
tuned, the proposed algorithm is faster then ADMMs in terms of
number of communication iterations, although no theoretical proof is
provided.

The set of open research paths is extremely vast. We envisage
three main avenues. The first one is to study how the agents can
dynamically and locally tune the speed of the local updates w.r.t.
the consensus process, namely how to tune their local step-size εi.
In fact large values of ε gives faster convergence but might lead
to instability. A second one is to let the communication protocol
be asynchronous: in this regard we notice that some preliminary
attempts can be found in [62]. A final branch is about the analytical
characterization of the rate of convergence of the proposed strategies,
a theoretical comparison with ADMMs, and the extensions to non-
smooth convex functions.

REFERENCES

[1] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato,
“Newton-Raphson consensus for distributed convex optimization,” in
IEEE Conference on Decision and Control and European Control
Conference, Dec. 2011, pp. 5917–5922.

[2] ——, “Multidimensional Newton-Raphson consensus for distributed
convex optimization,” in American Control Conference, 2012.

[3] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.
Springer-Verlag, 1985.

[4] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and
Optimization. Athena Scientific, 2003.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[6] J. N. Tsitsiklis, “Problems in decentralized decision making and
computation,” Ph.D. dissertation, Massachusetts Institute of Technology,
1984.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, 1997.

[8] D. P. Bertsekas, Network Optimization: Continuous and Discrete
Models. Belmont, Massachusetts: Athena Scientific, 1998.

[9] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed
simplex algorithm for degenerate linear programs and multi-agent
assignments,” Automatica, vol. 48, no. 9, pp. 2298 – 2304, 2012.

[10] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods. Boston, MA: Academic Press, 1982.

[11] M. R. Hestenes, “Multiplier and gradient methods,” Journal of
Optimization Theory and Applications, vol. 4, no. 5, pp. 303–320,
1969.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Stanford Statistics Dept., Tech. Rep., 2010.

[13] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast
Consensus by the Alternating Direction Multipliers Method,” IEEE
Transactions on Signal Processing, vol. 59, no. 11, pp. 5523–5537,
Nov. 2011.

[14] B. He and X. Yuan, “On the O(1/t) convergence rate of alternating
direction method,” SIAM Journal on Numerical Analysis (to appear),
2011.

[15] W. Deng and W. Yin, “On the global and linear convergence of the gen-
eralized alternating direction method of multipliers,” DTIC Document,
Tech. Rep., 2012.

[16] E. Wei and A. Ozdaglar, “Distributed Alternating Direction Method of
Multipliers,” in IEEE Conference on Decision and Control, 2012.

[17] J. a. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed ADMM for
Model Predictive Control and Congestion Control,” in IEEE Conference
on Decision and Control, 2012.

[18] D. Jakovetić, J. a. Xavier, and J. M. F. Moura, “Cooperative convex
optimization in networked systems: Augmented lagrangian algorithms
with directed gossip communication,” IEEE Transactions on Signal
Processing, vol. 59, no. 8, pp. 3889 – 3902, Aug. 2011.

[19] V. F. Dem’yanov and L. V. Vasil’ev, Nondifferentiable Optimization.
Springer - Verlag, 1985.

[20] B. Johansson, “On Distributed Optimization in Networked Systems,”
Ph.D. dissertation, KTH Royal Institute of Technology, 2008.

[21] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized
Gossip Algorithms,” IEEE Transactions on Information Theory / ACM
Transactions on Networking, vol. 52, no. 6, pp. 2508–2530, June 2006.

[22] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless
communication and networking,” IEEE Transactions on Signal
Processing, vol. 58, no. 12, pp. 6369 – 6386, Dec. 2010.

[23] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for
nondifferentiable optimization,” SIAM Journal on Optimization, vol. 12,
no. 1, pp. 109–138, 2001.

[24] A. Nedić, D. Bertsekas, and V. Borkar, “Distributed asynchronous
incremental subgradient methods,” Studies in Computational
Mathematics, vol. 8, pp. 381–407, 2001.

[25] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM Journal on Optimization,
vol. 19, no. 4, pp. 1757 – 1780, 2008.

[26] K. C. Kiwiel, “Convergence of approximate and incremental subgradient
methods for convex optimization,” SIAM Journal on Optimization,
vol. 14, no. 3, pp. 807–840, 2004.

[27] D. Blatt, A. Hero, and H. Gauchman, “A convergent incremental
gradient method with a constant step size,” SIAM Journal on
Optimization, vol. 18, no. 1, pp. 29–51, 2007.

[28] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” Journal of optimization theory and
applications, vol. 129, no. 3, pp. 469 – 488, 2006.

[29] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Incremental stochastic
subgradient algorithms for convex optimzation,” SIAM Journal on
Optimization, vol. 20, no. 2, pp. 691–717, 2009.

[30] A. Nedić and A. Ozdaglar, “Distributed Subgradient Methods for
Multi-Agent Optimization,” IEEE Transactions on Automatic Control,
vol. 54, no. 1, pp. 48–61, 2009.

[31] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked systems,”
SIAM Journal on Optimization, vol. 20, no. 3, pp. 1157–1170, 2009.

[32] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent
optimization with state-dependent communication,” Mathematical
Programming, vol. 129, no. 2, pp. 255 – 284, 2011.

[33] A. Nedić, “Asynchronous Broadcast-Based Convex Optimization over
a Network,” IEEE Transactions on Automatic Control, vol. 56, no. 6,
pp. 1337 – 1351, June 2010.

[34] E. Ghadimi, I. Shames, and M. Johansson, “Accelerated Gradient
Methods for Networked Optimization,” IEEE Transactions on Signal
Processing (under review), 2012.

[35] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A Distributed Newton
Method for Network Optimization,” in IEEE Conference on Decision
and Control. IEEE, 2009, pp. 2736–2741.

[36] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
Dual Descent for Network Optimization,” in American Control
Conference, 2011.

[37] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A Distributed Newton Method
for Network Utility Maximization,” in IEEE Conference on Decision
and Control, 2010, pp. 1816 – 1821.

[38] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact newton
methods,” SIAM Journal on Numerical, vol. 19, no. 2, pp. 400–408,
1982.

[39] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained Consensus
and Optimization in Multi-Agent Networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922–938, Apr. 2010.

[40] M. Zhu and S. Martínez, “On Distributed Convex Optimization Under
Inequality and Equality Constraints,” IEEE Transactions on Automatic
Control, vol. 57, no. 1, pp. 151–164, 2012.

12

[41] C. Fischione, “F-Lipschitz Optimization with Wireless Sensor Networks
Applications,” IEEE Transactions on Automatic Control, vol. 56, no. 10,
pp. 2319 – 2331, 2011.

[42] J. Wang and N. Elia, “Control approach to distributed optimization,”
in Forty-Eighth Annual Allerton Conference, vol. 1, no. 1. Allerton,
Illinois, USA: IEEE, Sept. 2010, pp. 557–561.

[43] N. Freris and A. Zouzias, “Fast Distributed Smoothing for Network
Clock Synchronization,” in IEEE Conference on Decision and Control,
2012.

[44] I. Necoara and V. Nedelcu, “Distributed dual gradient methods and error
bound conditions,” arXiv preprint arXiv:1401.4398, 2014.

[45] F. Garin and L. Schenato, A survey on distributed estimation and
control applications using linear consensus algorithms. Springer,
2011, vol. 406, ch. 3, pp. 75–107.

[46] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2001.
[47] A. Nedic and A. Olshevsky, “Distributed optimization over time-varying

directed graphs,” in Decision and Control (CDC), 2013 IEEE 52nd
Annual Conference on. IEEE, 2013, pp. 6855–6860.

[48] F. Fagnani and S. Zampieri, “Randomized consensus algorithms
over large scale networks,” IEEE Journal on Selected Areas in
Communications, vol. 26, no. 4, pp. 634–649, May 2008.

[49] A. D. Domínguez-García, C. N. Hadjicostis, and N. H. Vaidya,
“Distributed Algorithms for Consensus and Coordination in the
Presence of Packet-Dropping Communication Links Part I : Statistical
Moments Analysis Approach,” Coordinated Sciences Laboratory,
University of Illinois at Urbana-Champaign, Tech. Rep., 2011.

[50] P. Kokotović, H. K. Khalil, and J. O’Reilly, Singular Perturbation
Methods in Control: Analysis and Design, ser. Classics in applied
mathematics. SIAM, 1999, no. 25.

[51] K. Tanabe, “Global analysis of continuous analogues of the
Levenberg-Marquardt and Newton-Raphson methods for solving
nonlinear equations,” Annals of the Institute of Statistical Mathematics,
vol. 37, no. 1, pp. 189–203, 1985.

[52] R. Hauser and J. Nedić, “The Continuous Newton-Raphson Method Can
Look Ahead,” SIAM Journal on Optimization, vol. 15, pp. 915–925,
2005.

[53] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters of a
graph: A distributed algorithm,” Automatica, vol. 48, no. 1, pp. 15–24,
Jan. 2012.

[54] S. Becker and Y. Le Cun, “Improving the convergence of back-
propagation learning with second order methods,” University of Toronto,
Tech. Rep., Sept. 1988.

[55] S. Athuraliya and S. H. Low, “Optimization flow control with Newton
like algorithm,” Telecommunication Systems, vol. 15, pp. 345–358,
2000.

[56] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed. John
Hopkins University Press, 1996.

[57] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. New York:
Springer, 2001.

[58] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, no. 1, pp. 33–46, Jan. 2007.

[59] S. Muthukrishnan, B. Ghosh, and M. H. Schultz, “First and
Second Order Diffusive Methods for Rapid, Coarse, Distributed Load
Balancing,” Theory of Computing Systems, vol. 31, no. 4, pp. 331 –
354, 1998.

[60] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in
Ad Hoc WSNs With Noisy Links - Part I: Distributed Estimation
of Deterministic Signals,” IEEE Transactions on Signal Processing,
vol. 56, pp. 350–364, Jan. 2008.

[61] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “On the Optimal
Step-size Selection for the Alternating Direction Method of Multipliers,”
in Necsys, 2012.

[62] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato,
“Asynchronous Newton-Raphson Consensus for Distributed Convex
Optimization,” in Necsys 2012, 2012.

[63] L. Kudryavtsev, Encyclopedia of Mathematics. Springer, 2001, ch.
Implicit Fucntion.

APPENDIX

Proof (of Theorem 2) proof of a): integrating (5a) twice implies

1

2
a1‖x‖2 ≤ V (x) ≤ 1

2
a2‖x‖2

that, jointly with (5b), immediately guarantee global exponential
stability for (4) [46, Thm. 4.10].

proof of b): consider

∆V
(
x(k)

)
:= V

(
x(k + 1)

)
− V

(
x(k)

)
. (37)

To prove the claim we show that ∆V (x(k)) ≤ −d‖x(k)‖2 for some
positive scalar d. To this aim, expand V

(
x(k + 1)

)
with a second

order Taylor expansion around x(k) with remainder in Lagrange
form, to obtain

V
(
x+ εφ(x)

)
= V (x) + ε

∂V

∂x
φ(x) +

1

2
ε2φT (x)∇2V (xε)φ(x)

with xε = x+ ε′φ(x) for ε′ ∈ [0, ε]. Using inequalities (5) we then
obtain

∆V (x(k)) = V (x(k + 1))− V (x(k))
≤ −εa3‖x(k)‖2 + 1

2
ε2a2a

2
4‖x(k)‖2

= −ε(a3 − ε 1
2
a2a

2
4)‖x(k)‖2.

Thus, for all ε < ε = 2a3
a2a

2
4

the origin is globally exponentially stable.

Proof (of Theorem 3) proof of a): Assumption 1 guarantees that
VNR(0) = 0 and VNR(x) > 0 for x 6= 0. Moreover, for x 6= 0,

∂VNR

∂x
φNR(x) = −

(
∇f ′(x)

)T
h′(x)−1∇f ′(x)

= −
∥∥∥h′(x)−

1
2 ∇f ′(x)

∥∥∥2 < 0.

proof of b): Assumption 1 guarantees that (11a) is satisfied with
b1 = c and b2 = m. To prove (11c) we start by considering that (11a)
guarantees c‖x‖ ≤ ‖∇f ′(x)‖ ≤ m‖x‖. This in its turn implies

‖φNR(x)‖ =

∥∥∥∥h′
−1

(x)∇f ′(x)

∥∥∥∥ ≤ 1

c

∥∥∇f ′(x)
∥∥ ≤ m

c
‖x‖ = b4‖x‖.

To prove (11b) eventually consider then that (11c) implies

∂VNR

∂x
φNR(x) = −

(
∇f ′(x)

)T
h′(x)−1∇f ′(x)

≤ − c
2

m
‖x‖2 = −b3‖x‖2.

Proof (of Theorem 6) In the interest of clarity we analyze the case
where the local costs f ′

i are scalar, i.e., n = 1. The multivariable
case is indeed a straightforward extension with just a more involved
notation. We also recall the following equivalences:

x = x‖ + x⊥,
(
x⊥)T x‖ = 0,

‖x‖2 =
∥∥∥x‖

∥∥∥2 + ∥∥x⊥∥∥2 = N |x|2 +
∥∥x⊥∥∥2 .

proof of a): VPNR(0) = 0 and VPNR(x) > 0 for x 6= 0 follow
immediately from the fact that VNR(0) = 0 and VNR(x) > 0 for
x 6= 0. V̇PNR < 0 is instead proved by proving (22b).

proof of inequality (22a): given (21),

∂2VPNR(x)

∂x2
=
∂2
(
VNR(x) +

1
2
η
∥∥x⊥∥∥2)

∂x2
.

Since 0 ≤
∥∥x⊥∥∥2 ≤ ‖x‖2 and

∂2VNR(x)

∂x2
=

1

N2
11

T∇2VNR(x),

thanks to (11a) it follows immediately that (22a) holds with

b5 := min

{
b1
N
, η

}
, b6 := max

{
b2
N
, η

}
.

proof of inequality (22c): since the origin of f ′ is a minimum, it
follows that ∇f ′(0) = 0, and thus g′(0) = 0 (cf. (14)). Thus also

13

ψ(0) = 0, that in turn implies ‖ψ(x)‖ ≤ aψ‖x‖ by Assumption 5.
Therefore

‖φPNR(x)‖ ≤ ‖x‖+N‖ψ(x)‖ ≤ (1 +Naψ)‖x‖ = b8‖x‖.

proof of inequality (22b): since

∂x

∂x
=

1

N
1
T
N ,

∂x⊥

∂x
= I − 1

N
1N1

T
N =: Π,

it follows that

∂VPNR

∂x
φPNR(x) =

(
∂VPNR

∂x

∂x

∂x
+
∂VPNR

∂x⊥
∂x⊥

∂x

)
φPNR(x)

=

(
∂VNR(x)

∂x

1

N
1
T
N + η(x⊥)TΠ

)
φPNR(x).

Considering then (17), the definition of x and x⊥, and the fact that
Π1N = 0, it follows that

∂VPNR

∂x
φPNR(x) =

∂VNR(x)

∂x

(
− x+ ψ(x)

)
+ η(x⊥)T (−x⊥)

Adding and subtracting
∂VNR(x)

∂x
ψ(x‖), and recalling definition (7)

and equivalence (16c), since
(
−x+ψ(x‖)

)
= φNR(x) it then follows

that
∂VPNR

∂x
φPNR(x) =

∂VNR(x)

∂x
φNR(x)− η‖x⊥‖2+

+
∂VNR(x)

∂x

(
ψ(x)− ψ(x‖)

)
≤ −b3x2 − η‖x⊥‖2 + b2

∣∣x∣∣aψ‖x− x‖‖
= −b3x2 − η‖x⊥‖2 + b2aψ|x|‖x⊥‖

≤ − b3 + η

2

(
|x|2 + ‖x⊥‖2

)
≤ − b3 + η

2

(
N |x|2 + ‖x⊥‖2

)
= − b3 + η

2N
‖x‖2 = −b7‖x‖2

where for obtaining the various inequalities we used the various

assumptions and where the second inequality is valid for η >
b22a

2
ψ

b3
.

Proof (of Lemma 7) proof of (26a): notice that φx(x,χ) is glob-
ally defined since [·]c ensures that the matrix inverse exists. Also
note that, since h′(x) ≥ cI > c

2
I by Assumption 5, then there exists

r > 0 such that, for ‖x‖+ ‖χ‖ ≤ r,

φx(x,χ) = −x− 1N ⊗ x∗ +
χy + 1N ⊗

(
g′(x) + h′(x)x∗

)
χz + 1N ⊗ h′(x)

.

The differentiability of the elements defining φx, plus the fact that [·]c
acts as the identity in the neighborhood under consideration implies
that φx is locally differentiable in ‖x‖ + ‖χ‖ ≤ r. In addition to
this local differentiability, also observe that φx(0,0) = 0, therefore
there must exist a1 > 0 s.t.

‖φx(x,χ)‖ ≤ a1(‖x‖+ ‖χ‖), ∀(‖x‖+ ‖χ‖) ≤ r. (38)

To extend the linear inequality (38) for (x,χ) s.t. (‖x‖+‖χ‖) ≥ r
we then prove that φx(x,χ) cannot grow more than linearly globally.
In fact,

‖φx(x,χ)‖ ≤
≤ ‖x‖+N‖x∗‖+ 2

c

∥∥χy + 1⊗
(
g′(x) + h′(x)x∗

)∥∥
≤ ‖x‖+N‖x∗‖+ 2

c
‖χ‖+ 2N

c

(
‖g′(x)‖+ ‖x∗‖‖h′(x)‖

)
≤ ‖x‖+N‖x∗‖+ 2

c
‖χ‖+ 2N

c
ag‖x‖+

+ 2N
c
‖x∗‖

(
ah‖x‖+ ‖h′(0)‖

)
≤ a2 + a3 (‖x‖+ ‖χ‖) , ∀x,χ

(39)

where we used Assumption 5 and where a2, a3 are suitable positive
scalars. In particular inequality (39) is valid for (‖x‖ + ‖χ‖) > r.
As depicted in Figure 6, inequalities (38) and (39) define two cones,
one affine (shifted by a2) and one proper.

−r 0 r

‖φx(x,χ)‖ ≤ a1(‖x‖+ ‖χ‖)
‖φx(x,χ)‖ ≤ a2 + a3(‖x‖+ ‖χ‖)

Figure 6. Inequality (38) represents a proper cone defined in the neighbor-
hood of radius r, while inequality (39) represents an improper cone defined
in the whole domain.

Therefore, combining the geometry of the two cones leads to an
inequality that is defined in the whole domain. In other words, it
follows that

‖φx(x,χ)‖ ≤ ax
(
‖x‖+ ‖χ‖

)
∀x,χ

where
ax := max

{
a1,

a2 + a3r

r

}
.

proof of (26b): Let ∆(x,χ) := φx(x,χ) − φPNR(x), with φPNR
as in (17). Then there exists a positive scalar r > 0 such that, for all
‖χ‖+ ‖x‖ ≤ r,

∆(x,χ) =

= −1N ⊗ x∗ +
χy + 1N ⊗

(
g′(x) + h′(x)x∗

)
χz + 1N ⊗ h′(x)

− 1N ⊗ ψ(x)

=
χy + 1N ⊗

(
g′(x) + h′(x)x∗

)
χz + 1N ⊗ h′(x)

−
1N ⊗

(
g′(x) + h′(x)x∗

)
1N ⊗ h′(x)

.

Considerations similar to the ones that led us claim the differentiabil-
ity of φx in the proof of Lemma 7 imply that ∆(x,χ) is continuously
differentiable for ‖χ‖+‖x‖ ≤ r. Moreover, since ∆(x,0) = 0, then
there exists a positive scalar a4 > 0 s.t.

‖∆(x,χ)‖ ≤ a4‖χ‖ ‖χ‖+ ‖x‖ ≤ r. (40)

By using (19a) and (19b) we can then show that ∆(x,χ) cannot
grow more than linearly in the variable χ, since

‖∆(x,χ)‖ =

=

∥∥∥∥∥χy + 1N ⊗
(
g′(x) + h′(x)x∗

)[
χz + 1N ⊗ h′(x)

]
c

− 1N ⊗
(
x∗ +

g′(x)

h′(x)

)∥∥∥∥∥
≤ 2

c

(
‖χ‖+ 2N‖g′(x)‖+N‖x∗‖‖h′

(x)‖
)
+N‖x∗‖

≤ a5 + a6‖χ‖, ∀x,χ
(41)
for suitable positive scalars a5 and a6. Repeating the same geomet-
rical arguments used above we then obtain

‖∆(x,χ)‖ ≤ a∆‖χ‖, ∀x,χ

with
a∆ := max

{
a3,

a5 + a6r

r

}
.

Proof (of Theorem 8) For notational brevity we omit the depen-
dence on ξ, i.e., let xeq = xeq(ξ) and xeq = xeq(ξ).

We start by assuming that there exists a xeq(ξ) satisfying (27) for
‖ξ‖ ≤ r and prove that xeq(ξ) must satisfy xeq(ξ) = 1N ⊗ xeq(ξ)
and (28). Consider then r sufficiently small. Then, since h′(x) > cI
by Assumption 1,[
ξz + 1N ⊗ h′(x)

]
c
= ξz + 1N ⊗ h′(x) = 1N ⊗

(
h′(x) + ξz

)
.

14

This implies that for ‖ξ‖ ≤ r we have

φx(x
eq, ξ) = −xeq

−1N ⊗
(
x∗ −

(
ξz + h′(xeq)

)−1(
ξy + g′(xeq) + h′(xeq)x∗

))
Therefore φx(xeq, ξ) = 0 if and only if

xeqi = −x∗ +
(
ξz + h′(xeq)

)−1(
ξy + g′(xeq) + h′(xeq)x∗

)
.

Since the right-hand-side is independent of i, this implies both that
the xeq(ξ) satisfying (27) must satisfy xeq = 1 ⊗ xeq , and that its
expression is given by (28) (indeed (28) can be retrieved immediately
from the equivalence above since −x∗ =

(
ξz+h′(xeq)

)−1(−ξzx∗−
h′(xeq)x∗

)
).

We now prove (27) by exploiting the Implicit Function Theorem
[63]. If we indeed substitute the necessary condition xeq = 1N⊗xeq
into the definition of φx(xeq, ξ), we obtain the parallelization of N
equivalent equations of the form

xeq + x∗ =
(
h′(xeq) + ξz

)−1 (
g(xeq) + ξy + h′(xeq)x∗

)
where we used properties (16a) and (16b) that lead to h′

(
1N ⊗x

)
=

h′
(
x
)

and g′
(
1N ⊗ x

)
= g′

(
x
)
.

Moreover, Assumption 5 ensures that h′(x∗) ≥ cI . Thus, for the
continuity assumptions in Assumption 1, there exists a sufficiently
small r > 0 s.t. if ‖ξz‖ ≤ ‖ξ‖ ≤ r then h′(x∗)+ξz is still invertible.
Therefore

g′
(
xeq
)
+ ξy + h′

(
xeq
)
x∗ = h′

(
xeq
)
(xeq + x∗) + ξz(xeq + x∗).

Exploiting now the equivalence g′
(
xeq
)

= h′
(
xeq
)
xeq −

∇f ′
(
xeq
)
, it follows that xeq must satisfy the following condition:

∇f ′(xeq)− ξy + ξz(xeq + x∗) = 0.

Given Assumption 1, the left-hand side of the previous inequality is
a continuously differentiable function, since

∂
(
∇f ′(xeq)− ξy + ξz(xeq + x∗)

)
∂xeq

= ∇2f ′(xeq) + ξz.

Notice moreover that if r is sufficiently small (i.e., ‖ξz‖ is sufficiently
small) then the differentiation is an invertible matrix, since once again
∇2f ′(x∗) ≥ cI by assumption. Therefore, by the Implicit Function
Theorem, xeq(ξ) exists, is unique and continuously differentiable.

Proof (of Theorem 10) proof of a): VPNR(0) = 0 and VPNR(x) > 0
for x 6= 0 have been proved before. V̇PNR < 0 is instead proved by
proving (31a).

proof of b): as for (31a), consider that, ∀x ∈ RnN ,

∂VPNR

∂x
φ′
x(x, ξ) =

=
∂VPNR

∂x
φ′
x(x, 0) +

∂VPNR

∂x

(
φ′
x(x, ξ)− φ′

x(x, 0)
)

≤ ∂VPNR

∂x
φPNR(x) +

∥∥∥∥∂VPNR

∂x

∥∥∥∥∥∥φ′
x(x, ξ)− φ′

x(x, 0)
∥∥

≤ −b7‖x‖2 + b6‖x‖aξ‖ξ‖‖x‖
≤ −(b7 − b6aξr)‖x‖2 ≤ −b′7‖x‖2.

Notice that this inequality is meaningful for r < b7
b6aξ

.
As for (31b), consider that, ∀x ∈ RnN ,

‖φ′
x(x, ξ)‖ ≤

∥∥φ′
x(x, 0)

∥∥+ ∥∥φ′
x(x, ξ)− φ′

x(x, 0)
∥∥

≤ (b8 + aξr)‖x‖ ≤ b′8‖x‖.

Proof (of Theorem 11) The miminizer of the global cost function is
easily seen to be x∗ =

(∑
iAi

)−1 (∑
iAidi

)
from which it follows

that f ′(x) = 1
N
xTAx. Clearly f(x) satisfies Assumption 1 since

∇2f(x) = 1
N
A > 0 is independent of x. Considering then h′

i(x) =
∇2f ′

i(x) = Ai it follows after some suitable simplifications that:

h′(x) =
1

N
A

g′i(x) = Aix−Ai(x+ x∗ − di) = Ai(di − x∗)

g′(x)− g′(x′) = 0

g′(x) =
1

N

(∑
i

Aidi −
∑
i

Aix
∗

)
= 0

h′(x)− h′(x′) = 0

ψ(x) = h
−1

(x)g(x) = 0

xeq(ξ) =

(
1

N
A+ ξz

)−1

(ξy − ξzx∗)

φ′
x(x, ξ) = φ′

x(x, 0) = −x

where in the last equivalence we exploited definition (28). Thus also
the other assumptions are satisfied.

Proof (of Theorem 12) The proof considers the system as an au-
tonomous singularly perturbed system, and proceeds as follows: a)
show that x∗ is an equilibrium; b) perform a change of variables;
c) construct a Lyapunov function for the boundary layer system; d)
construct a Lyapunov function for the reduced system; e) join the two
Lyapunov functions into one, and show (by cascading the previously
introduced Lemmas and Theorems) that the complete system (43)
converges to x∗ while satisfying the hypotheses of Theorem 2. By
doing so it follows that (42), i.e., Algorithm 1, is exponentially stable.

For notational simplicity we let x∗ := 1N ⊗ x∗. We also use all
the notation collected in Section II.

• Discrete to continuous dynamics) The dynamics of Algorithm 1
can be written in state space as

v(k) = g
(
x(k − 1)

)
w(k) = h

(
x(k − 1)

)
y(k) = P

[
y(k − 1) + g

(
x(k − 1)

)
− v(k − 1)

]
z(k) = P

[
z(k − 1) + h

(
x(k − 1)

)
−w(k − 1)

]
x(k) = (1− ε)x(k − 1) + ε

y(k − 1)

[z(k − 1)]c

(42)

with suitable initial conditions. (42) can then be interpreted as the
forward-Euler discretization of

εv̇(t) = −v(t) + g
(
x(t)

)
εẇ(t) = −w(t) + h

(
x(t)

)
εẏ(t) = −Ky(t) + (I −K)

[
g
(
x(t)

)
− v(t)

]
εż(t) = −Kz(t) + (I −K)

[
h
(
x(t)

)
−w(t)

]
ẋ(t) = −x(t) +

y(t)

[z(t)]c

(43)

with null initial conditions, where ε is the discretization time interval
and K := I − P . Notice that, as for P , if n is the dimension
of the local costs then P = P ′ ⊗ In with P ′ a doubly-stochastic
average consensus matrix. Nonetheless for brevity we will omit the
superscripts ′.

• b) let
v′ := v − g(x)
w′ := w − h(x)
y′ := y − v′ − 1N ⊗ g(x)

z′ := z −w′ − 1N ⊗ h(x)
x′ := x− x∗

15

and

φg(x
′) :=

∂g

∂x′ − 1N ⊗ ∂g

∂x′

φh(x
′) :=

∂h

∂x′ − 1N ⊗ ∂h

∂x′

φx(x
′, χ) := −x′(t)− x∗+

+
y′(t) + v′(t) + 1N ⊗ g

(
x′(t) + x∗)[

z′(t) +w′(t) + 1N ⊗ h
(
x′(t) + x∗

)]
c

with χ := (v′,w′,y′,z′), so that (43) becomes

εv̇′(t) = −v′(t)− ε
∂g

∂x′ ẋ
′(t)

εẇ′(t) = −w′(t)− ε
∂h

∂x′ ẋ
′(t)

εẏ′(t) = −Ky′(t) + εφg(x
′)ẋ′(t)

εż′(t) = −Kz′(t) + εφh(x
′)ẋ′(t)

ẋ′(t) = φx(x
′,χ)

(44)

with initial conditions
v′(0) = v(0)− g

(
x(0)

)
w′(0) = w(0)− h

(
x(0)

)
y′(0) = y(0)− v(0) + g⊥

(
x(0)

)
z′(0) = z(0)−w(0) + h⊥(x(0))
x′(0) = x(0)− x∗

where g⊥ (x) := g(x)− 1N ⊗ g(x) (equivalent definition for h⊥).
Notice that (44) has the origin as an equilibrium point. Moreover this
dynamics exploits the function φx defined in (24), with χy = y′+v′,
and χz = z′ +w′.

The next step is to exploit the structure of K (more precisely,
the fact that it contains an average consensus matrix) to reduce the
dynamics, i.e., to eliminate the dynamics of the average since the
latter does not change in time. To this aim, we analyze the behavior
of the average of the y′is, i.e., the behavior of

(
1TN ⊗ In

)
ẏ′. To this

point, consider the third equation in (44). Recalling that (A⊗B)(C⊗
D) = AB ⊗CD, and exploiting the fact that 1TNP

′ = 0, we notice
that

(
1TN ⊗ In

)
K = 0. Moreover, from the definitions of g and g,(
1
T
N ⊗ In

) ∂g(x′)

∂x′ = N
∂g(x′)

∂x′ .

Since N = 1TN1N , it follows also that(
1
T
N ⊗ In

)
φg
(
x′) = 0

for all t ≥ 0, i.e., 1Ty′(t) = 1Ty′(0) ≡ 0. Similarly it is possible
to show that z′(t) ≡ 0. This eventually implies that

y′‖(t) = 0 z′‖(t) = 0 ∀t

that means, recalling that y′ = y′‖ + y′⊥ and z′ = z′‖ + z′⊥,
that (44) can be equivalently rewritten as

εv̇′(t) = −v′(t)− ε
∂g

∂x′ φx(x
′,χ′)

εẇ′(t) = −w′(t)− ε
∂h

∂x′ φx(x
′,χ′)

εẏ′⊥(t) = −Ky′⊥(t) + εφg(x
′)φx(x

′,χ′)

εż′⊥(t) = −Kz′⊥(t) + εφh(x
′)φx(x

′,χ′)
ẋ′(t) = φx(x

′,χ′)

(45)

where now χ′ :=
(
v,w,y′⊥,z′⊥) and where the novel initial

conditions for the changed variables are{
y′⊥(0) = y⊥(0)− v⊥(0) + g⊥

(
x(0)

)
z′⊥(0) = z⊥(0)−w⊥(0) + h⊥(x(0))

• c) the boundary layer of (45) is computed by setting x′(t) = x′.
Since a constant x′ implies ẋ′ = φx = 0, this boundary layer reduces

to a linear system globally exponentially converging to the origin.
Notice that this implies that, in the original coordinates system,

v = g(x), w = h(x), y = 1N ⊗ g(x), z = 1N ⊗ h(x).

In the novel coordinates system we thus consider, as a Lyapunov
function, 1

2
‖χ′‖2.

• d) the reduced system of (45) is computed by plugging χ′ = 0
into the equations (i.e., by setting v′(t) = 0, w′(t) = 0, y′⊥(t) = 0,
z′⊥(t) = 0). Defining then

f ′
i(x

′) := fi(x
′ + x∗), h′

i(x
′) := hi(x

′ + x∗),

we obtain

ẋ′(t) = −x′(t)− x∗ + 1N⊗
g′
(
x′(t)

)
h′
(
x′(t)

)
= −x′(t)− x∗ + 1N⊗

h′
(
x′(t)

)(
x′(t) + x∗)−∇f ′

(
x′(t)

)
h′
(
x′(t)

)
= −x′(t) + 1N ⊗

h′
(
x′(t)

)
x′(t)−∇f ′

(
x′(t)

)
h′
(
x′(t)

)
= −x′(t) + 1N ⊗ ψ

(
x′(t)

)
= φPNR(x′)

where ψ and φPNR are the functions defined in (15) and (17),
respectively. Thus the reduced system, thanks to Theorem 6, admits
x∗ as a global exponentially stable equilibrium, and admits VPNR

in (21) as a Lyapunov function.
• e) we now notice that the interconnection of the boundary

layer and reduced systems maintains the global stability, since their
Lyapunov functions are quadratic type. Thus (see [46, pp. 453])
the global system is asymptotically globally stable. To check that
forward-Euler discretizations of the system preserve these stability
properties we then consider as a global Lyapunov function the
function

V
(
x′,χ′) = (1− d)VPNR(x

′) + d
1

2
‖χ′‖2,

that is clearly positive definite for every d ∈ (0, 1), and prove that
inequalities (5) of Theorem 2 are satisfied.

proof that (5a) holds: from (22a) and the structure of V it follows
immediately that

((1− d) b5 + d) I ≤ ∇2V
(
x′,χ′) ≤ ((1− d) b6 + d) I.

proof that (5c) holds: applying (20) and (26a) to (45) it follows
that (5c) holds with

a4 = aV := max {1 + 2εagax, 1 + 2εahax, ax} .

proof that (5b) holds: the part relative to the slow dynamics
is already characterized by (31a). For the part relative to the fast
dynamics, since ∂ 1

2
‖χ‖2

∂χ
= χT to check that (5b) corresponds to

check the negativity of the terms

−v′Tv′ − εv′T ∂g
∂x′ φx(x

′,χ′)
−w′Tw′ − εw′T ∂h

∂x′ φx(x
′,χ′)

−
(
y′⊥)T Ky′⊥+ εy′⊥Tφg(x

′)φx(x
′,χ′)

−
(
z′⊥)T Kz′⊥+ εz′⊥Tφh(x

′)φx(x
′,χ′)

These terms can then be majorized using (20) and (26a). E.g., the
third term can be majorized with

−σ(P)‖y′⊥‖2 + 2εagax‖y′⊥‖ (‖x‖+ ‖χ‖)

where σ(P) is the spectral gap of P . Applying similar concepts also
to the other terms it follows that (5b) holds with

a3 = min {σ(P)− 2εagax, σ(P)− 2εahax} .

16

Proof (of Theorem 13) The proof is identical to the one of The-
orem 12 with the exception that the substitution is now x′′ =
x − x∗ − 1N ⊗ Ψ(ξy, ξz). Indeed one can prove the stability of
the novel system using the same Lyapunov function of Theorem 12.
Notice that we are ensured that there exists a sufficiently small
neighborhood of the origin for which the function Ψ exists due to
the smoothness conditions in Assumption 1.

Proof (of Theorem 14) The proof is the local version of the one in
Theorem 13. Indeed the local versions of Assumptions 1, 5 and 9
always hold, i.e., they hold when considering x s.t. ‖x‖ ≤ r′, and
one can thus repeat that reasonings using local perspectives.

Proof (of Theorem 15) Consider for simplicity the scalar case. Let

y∗ := 1
N

∑
iAidi and z∗ := 1

N

∑
iAi, so that x∗ =

y∗

z∗
. Since

y(k+1) = Py(k) and z(k+1) = Pz(k), given the assumptions on
P , there exist positive αy, αz independent of x(0) s.t. |yi(k)−y∗| ≤
αy (ρ(P))k and |zi(k)− z∗| ≤ αz (ρ(P))k. The claim thus follows
considering that xi(k) = yi(k)

[zi(k)]c
and that, since the elements of P

are non negative, all the zi(k) are non smaller than c for all k ≥ 0
(i.e., the operator [·]c is always performing as the identity operator).

Damiano Varagnolo received the M.S. degree in au-
tomation engineering and the Ph.D. degree in infor-
mation engineering from the University of Padova,
Italy, respectively in 2005 and 2011. He worked as
a research engineer at Tecnogamma S.p.A., Treviso,
Italy during 2006-2007 and visited UC Berkeley as
a scholar researcher in 2010. From March 2012 to
December 2013 he worked as a post-doctoral scholar
at KTH, Royal Institute of Technology, Stockholm.
Currently he is Associate Senior Lecturer at LTU,
Luleå University of Technology. His interests in-

clude distributed optimization, distributed estimation, identification and con-
trol of HVAC systems.

Filippo Zanella was born in Valdobbiadene (Tre-
viso, Italy) in 1983. He received his B.S. and M.S.
degree in Automation Engineering from the Univer-
sity of Padova, Italy, in 2005 and 2008 respectively.
In 2013 he completed the Ph.D. In Information En-
gineering at the University of Padova. His research
interests are in wireless cameras/sensors networks
and mobile networks with emphasis on distributed
control, estimation and optimization. He has been a
Visiting Student Researcher at UC Berkeley in 2011
and at UC Santa Barbara in 2012. Dr. Zanella is

Member of IEEE since 2006 and he has been Staff Member of the IEEE
Student Branch of the University of Padova from 2006 to 2008.

Angelo Cenedese (M’12) received the M.S. and
the Ph.D. degrees from the University of Padova,
Italy, in 1999 and 2004. He is currently an Assis-
tant Professor with the Department of Information
Engineering and member of the Human Inspired
Tecnologies Research Center and the Research Cen-
ter on Fusion. He has been and he is currently
involved in several projects on distributed systems
(sensor and actor networks, camera networks), con-
trol of complex systems (adaptive optics systems,
fusion devices), funded by European and National

government institutions and industries, with different roles of participant
and/or principal investigator. He coauthored more than 90 papers and holds
three patents in the area of sensor/actor networks and videosurveillance. His
research interests include system modeling, control theory and its applications,
sensor and actuator networks, home automation systems.

Gianluigi Pillonetto was born on January 21,
1975 in Montebelluna (TV), Italy. He received the
Doctoral degree in Computer Science Engineering
summa cum laude from the University of Padova in
1998 and the PhD degree in Bioengineering from
the Polytechnic of Milan in 2002. In 2000 and 2002
he was visiting scholar and visiting scientist, respec-
tively, at the Applied Physics Laboratory, University
of Washington, Seattle. In 2005, he became Assistant
Professor of Control and Dynamic Systems at the
Department of Information Engineering, University

of Padova where he currently serves as an Associate Professor. His research
interests are in the field of system identification and machine learning. Dr.
Pillonetto is an Associate Editor of Automatica and Systems and Control
Letters.

Luca Schenato received the Dr. Eng. degree in elec-
trical engineering from the University of Padova in
1999 and the Ph.D. degree in Electrical Engineering
and Computer Sciences from the UC Berkeley, in
2003. He held a post-doctoral position in 2004 and
a visiting professor position in 2013-2014 at U.C.
Berkeley. Currently he is Associate Professor at the
Information Engineering Department at the Univer-
sity of Padova. His interests include networked con-
trol systems, multi-agent systems, wireless sensor
networks, smart grids and cooperative robotics. Luca

Schenato has been awarded the 2004 Researchers Mobility Fellowship by the
Italian Ministry of Education, University and Research (MIUR), and the 2006
Eli Jury Award in U.C. Berkeley and the EUCA European Control Award in
2014. He served as Associate Editor for IEEE Trans. on Automatic Control
from 2010 to 2014 and he is Senior Member of IEEE.

