
Human Motion Prediction for

Navigation of a Mobile Robot

eingereichte
MASTERARBEIT

von

cand. ing. Klaus Schmiedhofer

geb. am 12.01.1986

wohnhaft in:
Türkenstrasse 52

80799 München
Tel.: 0176 99478790

Lehrstuhl fur
STEUERUNGS- und REGELUNGSTECHNIK

Technische Universität München

Univ.-Prof. Dr.-Ing./Univ. Tokio Martin Buss
Univ.-Prof. Dr.-Ing. Sandra Hirche

Professor: Prof. Luca Schenato
Betreuer: Dipl.-Ing. Betreuer Daniel Althoff

Dipl.-Ing. Betreuer Roderick de Nijs
Beginn: 18.10.2010
Ende: 18.04.2011

Abstract

Human motion prediction is an important feature to improve the path planning of
mobile robots. An exact prediction of the pedestrian trajectory allows not only to
avoid them safely but to induce also socially acceptable motions.
In this thesis we introduce a procedure to model social rules, which guide pedestrians
through crowded human-lived environments. Human motion is always driven by a
future destination and is influenced by the distance to other pedestrians and static
obstacles. All this parameters are included to estimate the most probable trajectory,
selected from a predefined set of human-like trajectories, the so called pedestrian
ego-graph (PEG).

Zusammenfassung

Die exakte Prädiktion einer Fußgänger-Trajektorie ist für mobile Roboter von großer
Bedeutung. Sie ermöglicht nicht nur Personen frühzeitig zu umgehen, sondern auch
deren Bewegungsmuster zu imitieren. Der hier präsentierte Lösungsvorschlag ist in
zwei Teilen realisiert. Zuerst erstellen wir offline ein Set von realistischen Trajekto-
rien und speichern diese in einem sogenannten “Pedestrian Ego-Grap”(PEG).
Um dann die bestmögliche Trajektorie aus einem PEG auszuwählen, berechnen wir
für jede eine Kosten-funktion. Diese hängt von den vorher genannten Eigenschaften
und der Veranlagung eines jeden Fußgängers ein Ziel zu verfolgen, ab. Am Ende
werden all diese Faktoren kombiniert und die wahrscheinlichste Trajektorie des Ego-
graphs ausgewählt.

2

CONTENTS 3

Contents

1 Introduction 5

2 Related Work 7

3 Approach 11

3.1 Markov Decision Process . 12
3.1.1 Inverse Reinforcement Learning 14
3.1.2 IRL from sampled trajectories 15

3.2 Ego-graph . 16
3.2.1 Probabilistic Ego-graph . 16
3.2.2 Trajectory Clustering . 16
3.2.3 Probability framework . 19

3.3 Description of Human Behavior . 21
3.3.1 Spatial Effects . 22
3.3.2 Human Interaction . 23

3.4 Goal Definition . 25
3.4.1 Configuration Space . 26
3.4.2 Visibility-graph . 28

3.5 Most probable future trajectories . 32

4 Implementation 35

4.1 Generation of the PEG . 36
4.1.1 Probabilistic Ego-graph . 36
4.1.2 Clustering . 37
4.1.3 Positioning of the ego-graph 41

4.2 Goal Analysis . 43
4.2.1 Goal-Clustering . 44
4.2.2 Generation of Configuration Space 45
4.2.3 Localization of the Goal . 45
4.2.4 Visibility-check for the Goal 46

4.3 Cost function . 49
4.3.1 Distance function . 49
4.3.2 Steering function . 49

4 CONTENTS

4.3.3 Obstacle function . 50
4.4 Estimation of the Optimal trajectories 52
4.5 Inverse Reinforcement Learning . 53
4.6 Update-algorithm . 55

5 Simulation and Results 57

5.1 Simulation . 57
5.1.1 Steps of the Algorithm . 57
5.1.2 Invisible goal solution . 60
5.1.3 Special cases . 62

5.2 Results . 64
5.2.1 Confront with State of the Art 64
5.2.2 Consideration Simulation Time 65

6 Conclusions and Future Work 67

6.1 Conclusions . 67
6.2 Future work . 67

A Implementation 73

A.1 Dijkstra Algorithm . 73
A.2 Dataset . 75

A.2.1 Description . 75
A.2.2 Analysis and Preparation of the Dataset 76

B Simulation 79

B.1 Single pedestrian . 79
B.1.1 Single cost function . 79
B.1.2 Combined cost function . 82

B.2 Multiple pedestrians . 84

5

Chapter 1

Introduction

Autonomous navigation through real-world scenarios is a demanding challenge for
today’s mobile robots. They should be able to navigate among static and moving
obstacles to guarantee safe and efficient navigation, but also to follow human-like
trajectories.
An important example is the IURO (Interactive Urban Robot). This city explorer
has the objective to reach a predefined target in a unknown environment without
localization tools like maps and GPS. The only method to obtain information is to

Figure 1.1: IURO: Interactive Urban Robot

interact with humans. Therefore it is necessary that a robot is able to understand
human behavior.
Pedestrian consider always, mostly unconscious, the surrounding environment. They
keep a comfortable distance to static obstacles and start the avoidance of other hu-
mans long time before a collision. Every motion is driven from a future destination,
because pedestrians never walk around randomly.
The objective of this thesis is to model these social rules and spatial effects to esti-
mate the most probable trajectory.
The solution is separated in two parts. First we generate human-like trajectories
and collect them in a pedestrian ego-graph (PEG). After we use all the informations
about human behavior to select the most probable trajectory from the PEG.
To obtain realistic results we train the prediction algorithm on a real dataset.

6 CHAPTER 1. INTRODUCTION

7

Chapter 2

Related Work

Human motion prediction is a difficult challenge because it depends on intentions
which cannot be directly measured. Many methods are suited only in indoor envi-
ronments or only for one person. We define some criteria to compare the different
approaches.

• Human motion prediction for multiple persons including interaction

• Application to dynamic environments

• Generating multiple probabilistic solutions

• Computational efficient

A suitable method for human motion prediction should fulfill these four criteria. In
the following common approaches are evaluated with respect to these criteria.

In [28] an approach for estimating human behavior and the goal position of the
pedestrian is presented. The idea is to calculate a trajectory between the goal and
the pedestrians current position. They do not use a straight line, but introduce
sub-goals. The position of the sub-goals is based on geographical information, the
location of obstacles, the current direction and position of the agent in the scene.
Evaluating all the sub-goals, they obtain the most likely trajectory.
The major disadvantages are the missing simulation of human behavior, the inter-
action between multiple pedestrians as well as the general behavior of pedestrians
in outdoor environments.

Another problem is the assumption of a static environment. For example [27] mod-
els the structure of the environment with a Hidden Markov model (HMM). The
states represent particular locations in the environment and the transition matrix,
describes the possibility to pass from one state to the other. The HMM is not re-
newable.
When the environment changes, it is possible to update only the transition matrix

8 CHAPTER 2. RELATED WORK

but not the states. Therefore is necessary to create a new HMM for each alteration
of the environment.
This operation has a high computational effort and the information about the pre-
vious state configuration is thereby lost.

Simon Thompson’s idea [29] is to predict trajectories following way-points which
describes particular positions in a indoor place. Way-points are locations where
persons pass very often, like doors or the cooker in the kitchen.
The algorithm generates realistic results, only if the surrounding environment is
know and the model of way points was previously trained on it. This property ex-
clude the possibility to react on changes of the environment.

The estimation method of [32] is based on a goal directed human motion model. A
grid map of the environment is generated and for each cell we calculate the distance
to all the possible goals.
This first information is used to determine the most probable direction to reach a
target and is combined with a constant velocity model. At this point we have a
set of trajectories directed to a certain goal. The procedure is repeated for all the
possible goals.
To estimate the most probable trajectory we calculate the proportion of the number
of trajectories directed to a goal respect to the total number of trajectories and
select the best result.
The limitation for this solution is that, no human behavior and information about
the environment are included. Therefore the algorithm cannot avoid collisions with
other pedestrians and static obstacles.

The social force model presented by Lewin has the drawback, to determine only one
possible trajectory and not a probabilistic output for more possible paths [33].
The interesting part of this implementation is the simulation of human behavior.
They model social forces with potential fields, like the distance between pedestrians
and obstacles. In our approach we include this two forces, but model them like in
[5]. Pedestrians are modeled as Gaussian bumps and the interaction between two
humans is modeled as a energy function influenced by this Gaussians.

In [1] is described a method to formulate a model for the human motion. It is called
spatial behavior cognition model and simulates the internal states of persons. This
method allow to generate a probabilistic output considering the interaction between
different pedestrians and the method is able to react to fast environment changes.
Also is introduce the concept of pedestrian ego-graph(PEG). A PEG is a set of pre-
defined pedestrian-like trajectories used to rapidly predict human paths.

This last construction is the start base for our approach, but we change it in two
significant parts. First of all we create multiple PEGs. For each different initial

9

velocity we generate a new one. Therefore the prediction in time will be more exact,
because in each PEG are stored only trajectories with similar velocities.
Another improvement is based on [28]. The paper presents a method to estimate
subgoals based on the environment. The property that pedestrian are driven by a
specified goal is modeled in our approach by selecting only the trajectories of the
PEG oriented to the goal. A reduction of the computational effort is a important
consequence.

Summarizing we use a set of predefined trajectories depending on the initial velocity
of the pedestrian and select the trajectories oriented to a known target. The most
probable trajectory is estimated by the evaluation of the influence of the different
social forces on the trajectories.

In the following paragraph we explain how the thesis is structured and list all the
methods used to solve the problem:
In chapter 3 are presented all the theoretic fundamentals to implement the prediction
algorithm. A Markov decision process is introduce in (3.1), the definition of PEG
(3.2) and the human behavior (3.3) are presented. In the last part (3.4) we explain
the theory necessary to reduce the PEG.
In chapter (4) we introduce the implementation part. All the functions and methods
to implement the prediction algorithm are presented.
The results and simulations are shown in (5). We compare the results with other
implementations and show the application of the prediction algorithm in different
real scenes.
Finally in (6) we present our conclusions.

10 CHAPTER 2. RELATED WORK

11

Chapter 3

Approach

The human motion prediction is a complex challenge and its main goal is the esti-
mation of the most probable future trajectories of a pedestrian.
Human motion is influenced by different parameters and variables like the environ-
ment, spatial effects and the human behavior.
A Markov decision process (MDP) is presented to model all this different influences
and to solve the optimization problem.

The states of the MDP are modeled with a pedestrian ego-graph (PEG) [1]. It is
a local motion approach used in the field of mobile robots. We use it to represent
possible pedestrian trajectories.

Clustering algorithms associate indirectly the transition probability to each trajec-
tory of the PEG and therefore we obtain a PEG of policies. The generation of the
PEG is done offline to reduce the computational effort of the prediction algorithm.

In the online part we will determine the set of the most probable trajectories. Two
factors influence this decision.
The first, is the effect of a goal on human behavior. We select only the set of tra-
jectories leading to the goal of the pedestrian, assuming that the goal is known for
every pedestrian.
The second factor models different internal and external factors (spatial effects) by
cost functions representing influences like the comfortable distance between pedes-
trians and obstacles and the disposition to choose the shortest way.
Both factors are summarized in the reward function of the MDP.
All the components of the Markov decision process are presented except one, the
weightings of the cost functions.

To estimate realistic values we solve a “Inverse Reinforcment Learning“-problem.
All the policies of the PEG are compared with a trajectory from a real dataset, and
the combination of weightings, that generates the minimum distance error between
them is the optimal combination.
At this point we are able to solve the optimization problem of the MDP and estimate
a set of most probable trajectories.

12 CHAPTER 3. APPROACH

3.1 Markov Decision Process

The basic modeling paradigm underlying the MDP [11] is that of a decision maker
who interacts with an external environment by taking actions. The sequential de-
cision problem is formulated as a set of states, each of which models a particular
situation in the decision problem.
A crucial assumption made in the MDP model is that the evolution of the states
is a Markov process, meaning the distribution of the future states is conditionally
independent of the past, given perfect knowledge of the current state.
The desirability of a state is determined by a reward. The goal of the agent is to
choose actions such that it maximizes its longterm reward.
The transition from one state to the next is governed by probability distribution
that reflects the uncertainty in the outcome decision. The first definition is the
discounted optimality framework:

Definition 1. A discrete Markov decision process M = (S,A, P a
ss′, λ, R

a
ss′) is defined

by a finite set of discrete states s ∈ S, a finite set of actions A = {a1, ..., at}, a
transition model P a

ss′, specifying the distribution over future states s′ when an action
a is performed in state s, a corresponding reward model R, specifying a scalar cost
or reward and a discount factor λ ∈ (0, 1).

Abstractly, a value function is a mapping S → R . Given a policy π : S → A
mapping states to actions, its corresponding value function V π specifies the expected
long-term sum of rewards received by the agent in any given state s when actions
are chosen using the policy π.

Definition 2. The long-term discounted value associated with a state under a fixed
policy is defined as:

V π(s) = Eπ(rt + λrt+1 + λ2rt+2 + ...|s = st)

where Eπ indicates the conditional expectation that the process begins in the initial
state s. Actions are chosen at each step using policy π, and rt is the reward received
at the time step t.

To any policy π we can associate a value function Vπ which is the fixed point operator
T π.

Definition 3. Given any deterministic policy π, the operator T π is defined as

T π(V)(s) =
∑

s′∈S

P
π(s)
ss′ (R

π(s)
ss′ + λV (s′)).

3.1. MARKOV DECISION PROCESS 13

It can be shown that V π(s) is a fixed point of Tπ, that is

T π(V π)(s) = V π(s).

Definition 4. The optimal value function V ∗ of a MDP is defined as

V ∗(s) ≡ V ∗(s) ≥ V π(s) ∀π, s ∈ S,

where the optimal policy π∗ is defined as

π∗(s) ∈ argmaxa(Rsa + λ
∑

s′

P a
ss′V

∗(s′)).

where, Rsa =
∑

s′∈S P
a
ss′R

a
ss′

In general the optimal policy π∗ is not unique. However, any optimal policy π∗

defines the same unique optimal value function. The optimal value function can be
shown to be a fixed point of another operator T ∗, defined as follows.

Definition 5. The fixed point operator T ∗ for a MDP is defined as

T ∗(V)(s) = maxa(Rsa + λ
∑

s′∈S

(P a
ss′V (s′))

It can be shown that the optimal value is a fixed point of T ∗, that is

T ∗(V ∗)(s) = V ∗(s), ∀s ∈ S.

Action-value functions are mappings from S × A → R and represent a convenient
reformulation of the value function.

Definition 6. The optimal action value Q∗(x, a) is defined as the long-term value
of the non stationary policy performing action a first, and then acting optimally,
according to V ∗:

Q∗(s, a) ≡ E(rt+1 + λmaxa′Q
∗(st+1, a

′)|st = s, at = a),

where V ∗(s) = maxaQ
∗(s, a).

where rt+1 is the actual reward received at the next time step, and st+1 is the state
resulting from executing action a in state st. The corresponding Bellman equation
for Q∗(x, a) is given as

Q∗(s, a) = Rsa + λ
∑

s′

P a
ss′maxa′Q

∗(s′, a′).

This formulation allows to solve the standard MDP-problem of the optimal action-
value function with two types of methods: The exact and the approximation method.

14 CHAPTER 3. APPROACH

An example for the first is the Value-Iteration-method, where the algorithm com-
putes the next approximation V t+1 by iteratively ”backing up” the current approx-
imation:

V t+1(s) = T ∗(V t)(s) = maxa(Rsa + λ
∑

a

P a
ss′V

t(s′)).

The approximation methods retain the restriction of representing functions exactly,
but require only sample transitions (st, at, rt, s

′
t) instead of true knowledge of the

MDP. Such methods can be generically referred to as simulation-based methods
and used in various areas including reinforcement learning.
A well note method is the Monte-Carlo method, which is based on the idea that
the value of a particular state V π(s) associated with a particular policy π can be
empirically determined by ”simulating” the policy π on a given MDP, and averaging
the sum of rewards received. As a statistical procedure, they have the attractive
property of being unbiased estimators of the true value.

However to solve our problem we need the inverse reinforcement learning method.
For this we introduce the formal definition of the IRL-problem and show an appli-
cation on sampled trajectories.

3.1.1 Inverse Reinforcement Learning

Inverse reinforcement learning(IRL) deals with the inversion problem to that of an
MDP [8]:

Given a policy πi and the Markov decision model (X,A, P, λ), IRL seeks to deter-
mine a reward function R∗ such that πi is an optimal policy for the MDP (X,A, P,R∗, λ)

In the previous section we introduced the Markov decision process and different
solution methods. We suppose to know all the parameters and variables, except the
reward function. To solve this problem we use the inverse reinforcement learning
algorithm [7]. This method is able to estimate the reward function,based on known
different policies π. The general IRL-algorithm generates a set of all reward functions
for which a given policy is optimal. The definition of the solution set is:

Definition 7. Let a finite state space S, a set of actions A = {a1, ..., ak}, transition
probability matrices Pa, and a discount factor λ ∈ (0, 1) be given. Then the policy
π given by π(s) ≡ a1 is optimal if and only if, for all a = a2, ..., ak, the reward R

satisfies

(Pa1 −Pa)(I− λPa1)
−1P � 0

is necessary and sufficient for π = a1 to be unique optimal policy.

The optimal policies had two problems: First, R = constant is always a solution,
when we use the same reward function, no matter what action we take, then any

3.1. MARKOV DECISION PROCESS 15

policy, including π = a1 is a optimal solution. Second, for most MDPs, there are
many choices of R that meet the criteria. To reduce the number of optimal policies
we use another equation for R, a more restrict one, which favor solutions that make
any single step deviation from π as costly as possible. We seek to maximize the sum
of the differences between the quality of the optimal action and the quality of the
next best action.

∑

s∈S

(Qπ(s, a1)−maxa∈A\a1Q
π(s, a)) (3.1)

Another improvement is to use a penalty term −λ|R|, is a adjustable coefficient
that balances between having small reinforcements and of maximizing the previous
function (3.1). Combining all this terms and equations we obtain the following
optimization problem:

maximize
N
∑

i=1

min{a∈{a2 ,...,ak}}{(Pa1(i)−Pa(i))(I− λPa1)
−1R} − λ ‖ R1 ‖

s.t.(Pa1 −Pa)(I− λPa1)
−1R ∀a ∈ A a1

|Ri| ≤ Rmax, i = 1, ..., N

3.1.2 IRL from sampled trajectories

We reformulate the IRL problem for a special case of sampled trajectories [7], where
we have access to the policy π only through a set of actual trajectories in the state
space and not through the combination of transition matrix and state matrix.
The reward is defined as Ri(s) = w1

iφ1(s) + w2
iφ2(s) + w3

i φ
3(s) + w4

i φ4(s) a linear
combination of four weighted functions.
We first execute m Monte Carlo trajectories under the policy π and for each of them
we estimate all the possible value function

V ∗
i π(s0) = Ri(s0) + λRi(s1) + λ2Ri(s2) + ...

for the linear combinations of wl
i l = 1, .., 4.

We consider a set of {πj} j = 1, ...k policies and suppose that the optimal policy
πp is given. After this considerations we recall the formulation of the general IRL-
problem and introduce the following IRL optimization problem:

max
∑

s0∈X0

∑

j

(V πj(s0)− V πp(s0))− λwi (3.2)

s.t. λ ≥ 1, (3.3)

0 < wi ≤ wmax, (3.4)

V πj(s0) ≥ (V πp(s0)) (3.5)

The optimization can be solved iteratively or with a linear programming algorithm.

16 CHAPTER 3. APPROACH

3.2 Ego-graph

The approach ego-graph is a local motion planning method used in the field of mobile
robots [6], especially for the robots with motion constraints. In our case we adapt
this method and use it for the generation of the trajectories of a pedestrian[1].
The creation of a pedestrian ego-graph is divided in different steps.
Randomly trajectories, limited by human and dynamic constraints, are generated.
Different clustering algorithms are then presented to extract the most human-like
trajectories, which define the pedestrian ego-graph (PEG) and associate indirectly
the transition probability to the states.

3.2.1 Probabilistic Ego-graph

Every trajectory is composed by states s of the MDP. The PEG is modeled with
the Constant Acceleration Model:

px(t) = px(t− 1) + (vx(t− 1) +
1

2
ax(t)∆t)∆t (3.6)

py(t) = py(t− 1) + (vy(t− 1) +
1

2
ay(t)∆t)∆t (3.7)

px and py are the position of the state s = (px, py), vx and vy are the velocities of
the states, respectively in the x-direction and y-direction, and ax and ay are the
accelerations. ∆t is the time interval between two sequential states. The different
trajectories are obtained with a fixed initial velocities and uniform random acceler-
ations.
Pedestrian have a large range of velocities. To model all of them we separate this
range and determine a new ego-graph with the respective initial velocity for each of
them. Human tend to maintain their velocity constant during a walk [15], but it is
also important to model braking and accelerated trajectories. To combine all this
factors, we use the initial velocity as a reference parameter and fix a maximal and
minimal velocity for each ego-graph

3.2.2 Trajectory Clustering

Cluster analysis or clustering is the assignment of a set of observations into subsets
(called clusters) so that observations in the same cluster are similar according tra-
jectories similarities and distance metric.

The idea is to extract the most probable trajectories from the probability ego-
graph. We create spatial partition-sets and cluster there all the trajectories. A
linear regression mixture clustering method is utilized to estimate the parameters
characterizing every partition-set [16]. The special property of this method is to
estimate the general description, assuming to have trajectories which is a function

3.2. EGO-GRAPH 17

of the known variable. In our case we consider the trajectories yj of length nj of the
ego-graph depending on the time x (regression model).
The dependency on another variable is the reason why standard algorithm like the
K-means algorithm are not applicable

Mixture model

Before we define the regression model we introduce a mixture model, which allows
to model the dependency of a trajectory to belong to a cluster k.

• Set of different trajectories yj

• Every trajectory yj is assigned to a cluster k with probability wk,
∑K

k=1wk = 1,
where K is the number of clusters.

• Given that a trajectory yj belongs to cluster k, the respective density function
is fk(yj|θk), where θk are the parameters of the cluster k.

and the observed density is a mixture model:

P (yj|θ) =
K
∑

k

fk(yj|θk)wk (3.8)

Thus, if we observe the yj, and we assume a particular functional form of fk compo-
nents, we can try to estimate from the data the most likely values of the parameters
θk and the weights wk, characterizing the cluster k. To estimate the maximum
likelihood is possible to use the EM-algorithm [23].

Mixture of Regression Model

We generalize this mixture model to a mixture’s of regression model. Every trajec-
tory yj is a function of the known x. We assume the standard regression relationship
between x and y,

y = gk(x) + e (3.9)

where e is a zero-mean Gaussian with standard deviation σk (we consider a constant
noise model for all trajectories) and gk(x) is a deterministic function of x.
We assume the case of a Gaussian noise and the new conditional density result
fk(y|x, θk) depending now also on x. In words, given trajectory yj it belongs to clus-
ter k with mean gk(x) and standard deviation σk. Here θk includes both parameters.
Furthermore we segment the density function of every trajectory yj in the density
function for every state yj(i):

fk(yj(i)|xj(i), θk)

18 CHAPTER 3. APPROACH

All this assumption result in the following equation:

P (yj|xj , θk) =

nj
∏

i

fk(yj(i)|xj(i), θk) =

K
∑

k

fk(yj|xj , θk)wk (3.10)

The first notation is justified by the standard regression assumption that the noise
is independent at different states yj(i) along the trajectory. The second step is moti-
vated, considering that we don’t know which component generated which trajectory.
Solving other steps to generalize the result we obtain the log-likelihood, necessary
to implement the EM-algorithm to estimated the cluster parameter θk:

L(θ|S) =
M
∑

j

log

K
∑

k

wk

nj
∏

i

fk(yj(i)|xj(i), θk) (3.11)

EM Algorithm for Mixture of Regression Models

A EM algorithm is the simplest way to estimate the group behavior of a statistical
model, but only if is known to which group each trajectories belongs.
This information is not available and we must implement a more complex procedure
to solve the EM-problem. To be exact we use the common approach for dealing
with hidden data the extended version of the EM-algorithm[25].
The idea is to assume to know the hidden data. Then we work out the simpler prob-
lems like the expectation and maximization step and re-estimate the hidden data
again using the current answers that we just computed. This procedure is repeated
until the algorithm converge to a stable value. The convergence is guaranteed by
the convergence of the EM algorithm.
Solving different equation and introducing the new variable zjk, the probability that
the trajectory j belongs to cluster k.
The result is the division of the membership probability wk from the rest of the
functions.

E[L(θ|S, Z)] =
M
∑

j

K
∑

k

hjklogwk +
M
∑

j

K
∑

k

nj
∑

i

hjklogfk(yj(i)|xj(i), θk) (3.12)

where hjk = E[zjk] and corresponds to the posterior probability that the trajectory
was generated by component k. It is important to note that for every trajectory is
valid

∑K

k wk = 1. We adapt our notation of Eq.(3.12) to fit the multidimensional
data in this framework. The equations changes a follows:

Yj = Xjβk + ek, (3.13)

with Yj = [1 yj(1) ... yj(nj)]
′,

3.2. EGO-GRAPH 19

Xj =

1 xj(1) xj(1)
2 ... xj(1)

p

1 xj(2) xj(2)
2 ... xj(2)

p

...
...

...
...

...
1 xj(nj) xj(nj)

2 ... xj(nj)
p

Yj is a vector with all the trajectory observations and Xj is a nj by p+1 matrix, with
the corresponding time instant for every observation. p is the order of the regression
model. ek is a vector consisting of zero-mean Gaussian with variance σ2

k, and βk is
a vector of regression coefficients. To collect this result with the mixture model, we
equal the conditional density to a Gaussian with mean Xjβk and covariance matrix
diag(σ2

k) = ek. Considering now that we start with a randomly initialization for
the membership probability we solve the maximization step of the EM algorithm
(Eq.(3.14)). To obtain the parameters θk = {wk, βk, σ

2
k} we solve the weighted least

squares problem [24]. The regression coefficients are:

β̂k = (X ′HkX)−1X ′HkY (3.14)

σ̂2
k =

(Y −Xβ̂k)
′Hk(Y −Xβ̂k)

∑M

j hjk

(3.15)

ŵk =
1

M

M
∑

j

hjk (3.16)

All this steps lead to the following EM algorithm for mixtures of linear regression
models:

1. Randomly initialize the membership probabilities hjk

2. Calculate new estimates for β̂k, σ̂
2
k, and ŵk from the weighted least squares

solutions, using the current membership probabilities as weights.

3. Compute the new membership probabilities using Eq.(3.7) and the newly com-
puted parameter estimates from the previous step.

4. Loop to step 2 until the log-likelihood stabilizes.

3.2.3 Probability framework

The number of clusters k for every partition-set is fixed. So far we considered
k = 1, but thereby a partition-set containing one or 1000 trajectories has always
the same number of cluster in the pedestrian ego-graph. Hence we introduce a
hierarchal method to augment the number of cluster k for every partition-set till
some conditions are not accomplished.
The main condition is the mean squared error between all the trajectories and the

20 CHAPTER 3. APPROACH

cluster representation for a partition-set. Every cluster is divided in two new cluster
till the condition is not satisfied.
Another condition is the number of trajectories, should those drop under a fixed
limit, then the ”segmentation” is interrupted.
All the obtained trajectories are then stored in the final pedestrian ego-graph and
an example Ego-graph is shown in Figure (3.1).

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

[m]

[m
]

Figure 3.1: Pedestrian Ego-Graph

From now on, when we talk about pedestrians trajectories, we mean a policy. This
is not completely correct, because as yet we have not introduced any definition for
an action a. But indirectly we have modeled the transition probability P a

ss′, to pass
from state s to state s′ with the action a with the considerations about the number
of clusters and the introduction of the mixture regression model.

3.3. DESCRIPTION OF HUMAN BEHAVIOR 21

3.3 Description of Human Behavior

The idea of the cost functions is not only to avoid all possible collisions but also
to help the robot to move and drive following human behviors. The pedestrian
behaviors are based on internal states of the persons. In [33] the idea that behavioral
changes are guided by social fields is described. The following figure explains the
theory.
A sensory stimulus is noticed by the pedestrian. Combining this perception with

Figure 3.2: Schematic representation of processes leading to behavioral changes [33]

the personal aim, a set of different probable decisions can be generated. The optimal
decision induce then a certain behavioral reaction. Evaluating this concept, we define
different social forces, following [3]:

• Reaching a certain goal location as comfortable as possible:

– Shortest way: Distance cost function : Cdist

– Straightest way: Steering cost function : Cstr

• Keeping a certain distance to borders : Static obstacle cost function : Cobs

To describe the interaction between different pedestrians we use the definition of
personal space explained in [5]. The idea is to model the area around a person with
two Gaussian functions and retrieve from them the cost function Cpers.

22 CHAPTER 3. APPROACH

The next step is to combine all this cost functions for every state of the MDP. The
total cost function is written as a linear combination of these four components with
different weights.

Ctotal(si) = wdistCdist(si) + wstrCstr(si) + wobsCobs(si) + wpersCpers(si) (3.17)

si is the pedestrian state in time step i. Every state is composed by a x-coordinate
px and y-coordinate py.
Ctotal(si) is the reward function for the MDP when we consider the transition from
state si−1 to si following the policy π.
In the following paragraphs the singular cost functions are explained.

3.3.1 Spatial Effects

Distance Function

This cost functions represents the social rule of humans to use always the shortest
way to reach a goal. To simulate this behavior we calculate the euclidean distance
between two states in the MDP.

Cdist(si) = dist(si − si−1)

Steering Function

The objective of every person is to reach a goal as comfortable as possible. Normally
the persons try to reach the goal on the straightest way, but if there are obstacles
in the space between the person and the goal, the pedestrian must avoid them. In
this case the person try to steer as minimum as possible. In mathematical terms it
means that we penalize the following steering variation:

Cstr(si) = (steering(si)− steering(si−1))
2 (3.18)

Static obstacle

The static obstacle function modeled the relation between the pedestrian and a
static obstacles with the repulsive forces[3].
The objective of this cost function is to model the influence of static obstacles to
human motion behavior. To create this function we calculate the distance map for
the person respect to the closest obstacle. The following formula converts the map
to an energy function. This means that a cell close to the obstacle has a value close
to 1, and a energy function of a cell far away tend to 0.

Cobs(si) = exp(−0.5
dist(si)

2

σ2
d

) exp(−0.5
dist(si)

2

σ2
w

) (3.19)

3.3. DESCRIPTION OF HUMAN BEHAVIOR 23

The first term has the function to penalize states near to a obstacle. In contrast the
second models the distance of influence of an object. Obstacles farther away then
σw are not considered. This second term is not originally used in [1] but found in
the article [2] and considered as a useful constrain for the energy function.

3.3.2 Human Interaction

The human interaction cost function is based on the personal space theroy [5] and
explains the behavior between pedestrians. The goal is like in the previous sections
to find a mathematical description of this spatial human behavior. The description
of the pedestrian cost function is based on the definition of the personal space.
Edward Hall [4] introduced this notation to describe the different space areas around
a person. The theory is based on the characteristic of persons, that they hold
unconsciously a shape surrounding him like bubbles. The shape of the personal

Figure 3.3: Definition of the Personal Space [5]
.

space is affected by four parameters: face orientation, distance, gender and age.
The last two parameters are neglected, because at the current state of the art, it
is impossible to determine the gender and age of pedestrians in a certain distance.
Hence the personal space depends only from two variables: Face orientation and
distance between two pedestrians.
To describe the personal space we follow the steps of [4]. We create a new local
coordinate system in which the person is the origin p. The x-axis is oriented along
the face and the y-axis along the sight direction. The personal space around the
person can then be defined as a function Φp which has the maximum at p and

24 CHAPTER 3. APPROACH

decreases with the increase of the distance to p. This can be represented by a
two-dimensional Gaussian function Φp with covariance matrix Σ and centered at p.

Φp(q) = exp(−0.5(q − p)tΣ−1(q − p))

where q = (xq, yq) is a second person and Σ is a diagonal matrix, which changes if
a person is in front (Σf) or on the side (Σs) of the principal pedestrian:

Σf =

(

σ2
xx 0
0 σ2

yy

)

Σs =

(

σ2
xx 0
0 σ2

xx

)

The value σ depends from the dimension of the personal space of the pedestrian.
These theoretical considerations allow us now to define the cost function between
the person k, whose trajectory we try to predict, and another pedestrians j in the
scene:

Cpers(s
k
i) =

∑

j

Cjk =
∑

j

exp(−0.5(sji − ski)
tΣ−1(sji − ski)) (3.20)

and we use Σf if j is in front of k and Σs if j is on the side of k.

3.4. GOAL DEFINITION 25

3.4 Goal Definition

An important feature of the human motion prediction is the definition of a target
or goal for a pedestrian. The objective is to reduce the number of trajectories in the
ego-graph, to decrease the computational effort.
We suppose that every human try to reach a particular geographical goal. Recent
psychological studies shows that pedestrian behaviour is always influenced by a goal.
Also if a human is not following intentionally a goal [26].
This information we will include in our model. Obviously this implicates that every
pedestrian must have associated a goal, but we suppose this as a external input for
our algorithm.
The idea is to define a subgoal inside the maximum range of the PEG and cluster
around the trajectories.
To define a subgoal we have to check different characteristics:

Goal

Generate configuration space

Is the goal visible?

Generate Visibility graph

Min-Path from origin to goal

Extract first visible subgoal

Is the goal in the PEG?

Translate goal in the PEG

Subgoal

26 CHAPTER 3. APPROACH

In the following we introduce the theoretical basis to realize this procedure.
To solve all this problems we need to introduce the configuration space , a visibility
graph and the Dijkstra-algorithm to determine the shortest path.

3.4.1 Configuration Space

The notion of configuration space derives from the physics. A configuration space
is the space of possible states that a physical system may attain, possibly subject
to external constraints.
In robotics this notation is useful to avoid collisions between robots and obstacles.
The idea is to sum the shape of the obstacle and the robot in every point and create
so a collision free space, called configuration space.
Obviously the idea is also applicable between pedestrian and obstacles and we con-
sider the description between the shape of a human and the obstacles of the envi-
ronment.
Following the explanation of [17] we define a obstacle region in a plane, model a
pedestrian as a rigid body with circular shape and present the formulation of con-
figuration space.

Suppose that the world W ⊂ R2 contains an obstacle region, O ⊆ W . Assuming
that a pedestrian shape is defined as a rigid body and more in detail as a circle
A ⊂ W .
Let q ∈ C denote the configuration of A, in which q = (xt, yt) for W ∈ R2.
The obstacle region, C obs ⊆ C , is defined as

C obs = {q ∈ C |A(q) ∩O 6= ∅},

which is the set of all configurations, q, at which A(q), intersects the obstacle region
O . Since O and A(q) are closed sets in W , the obstacle region is a closed set in
C .
The leftover configurations are called the free space, which is defined and denoted
as C free = C \C obs. Since C is a topological space and C obs is closed, C free must
be an open set. This implies that the pedestrian can come arbitrarily close to the
obstacles while remaining in C free. If A ”touches” O ,

int(O) ∩ int(A(q)) = ∅ and O ∩A(q) 6= ∅

(int is the interior operation) then q ∈ C obs. The condition above indicates that
only their boundaries intersect.

The next step is to define how it is possible to generate the obstacle space. The
simplest case for C obs is when C ⊂ R2 and the pedestrian is again modeled as a
circle shape and the motion is restricted to rotation and translation. Under these

3.4. GOAL DEFINITION 27

conditions, C obs can be expressed as a type of convolutions. For any two sets
X, Y ⊂ R2 let their Minowski sum be defined us:

X ⊕ Y = {x+ y ∈ R2|x ∈ X and y ⊂ Y }

in which x + y is just vector addition on R2. In terms of the Minowski sum we
obtain, C obs = O ⊕ A and recalling C free = C \ C obs the configuration space is
defined.

Figure 3.4: Configuration space (white) of a obstacle map

28 CHAPTER 3. APPROACH

3.4.2 Visibility-graph

The visibility graph is a graph of inter visible locations, typically for a set of points
and obstacles in the euclidean plane. Each node in the graph represents a point
location and each edge a visible connection between them. A connection is visible
if the line of sight connecting two locations does not cross any obstacle.
The start vertex of the visibility graph is the actual position of the pedestrian and
the end vertex is his goal. The other vertexes are the corner of the configuration
space.
In the section, Delaunay Triangulation is used to estimate all the visible edges
between the vertex of the visibility graph.
In the last section, the Dijkstra-algorithm permits to estimate the shortest path
through the visibility graph.

Delaunay Triangulation

The Delaunay triangulation DT(P) [18] is used to find all the visible edges between
a set of independent points P. More in detail generates triangle between the points
such that no point is inside the circumcircle of any triangle in DT(P).

Figure 3.5: Delaunay triangulation and the circumcircles.

At the begin we want introduce the definition for a general triangulation in a Eu-
clidean plane:

Definition 8. Let A be a point configuration in two dimensional space, with set of
labels J. A collection J of affinely independent subsets of J is a triangulation of A
if it satisfies the following conditions:

• If B ∈ J and F ⊂ B, then F ∈ J as well. (Closure Property)

3.4. GOAL DEFINITION 29

Figure 3.6: A Delaunay triangulation and the dual Voronoi diagrams.

•
⋃

B∈J conv(B) = conv(A). (Union Property)

• If B 6= B′ are two cells in J , then relint(B) ∩ relint(B′) = ∅ (Intersection
Property)

A particular type of a regular triangulation in 2D is the Delaunay Triangulation:

Definition 9. The Delaunay subdivision of a point configuration A is the regular
subdivision obtained by the choice of lifting heights given by ω(p) = ‖p‖2. A De-
launay triangulation is any triangulation that refines it. We want to annotate that
ω(p) = ‖p‖2 is the associated height function to the point set A and ω : A → R2.

Planar subdivision is the subdivision of a plane into a set of non-overlapped regions
that cover the whole plane. A important construction property is the ”empty-
sphere” characterization:

Definition 10. Let A ⊂ R2 be a finite point set, with the label set J. let B ⊂ J be
a subset of its elements. Then B labels a cell in the Delaunay subdivision of A if
and only if there is a circle with no points of A in its interior and with exactly the
points of A labeled by B on its boundary.

A interesting note is the dual part of the Delaunay triangulation is the Voronoi
Diagram. Every Voronoi cell is the origin for the circumcircle for every Delaunay
subdivision. A theoretic definition describes this fact as following:

Definition 11. The dual graph of the Voronoi diagram of a point configuration A

consists precisely of the edges of the Delaunay subdivision.

The implementations to construct a complete Delaunay triangulation are various.
The most intuitive approach is the flipping technique. In the image (3.7) is shown
an example.
We consider two triangles ABD and BCD with the common edge BD. We check

if the two triangles meet the Delaunay condition presented in Def.9. In the middle

30 CHAPTER 3. APPROACH

Figure 3.7: Flipping method for Delaunay Triangulation.

image it is obvious that th condition is not met, because both circumcircle contain
another vertex. Flipping the common edge we obtain the last configuration and two
Delaunay subdivision which respect the condition.
Considering a general set of points A, the Flip-algorithm generates all the possi-
ble triangulations, checks which triangle does not meet the condition (Def.9) and
flips the edge. These procedure is repeated till all triangles meets the “empty
sphere“condition.
The approach has a computational effort of O(n2) where n is the number of points
in the set A.
Another approach is the Incremental-algorithm, which permits to reduce the com-
putational effort to O(n log(n)) [19].
One vertex after the other is added and after every insertion is checked if all edges
meet the Delaunay property. But it is important to choose the new vertex always
randomly otherwise the computational complexity will be still O(n2).

Dijkstra-Algorithm

The Dijkstra-algorithm is a method to estimate the shortest path for a graph with
non-negative edge path costs [22]. Given a start vertex the algorithm determine the
minimum cost-paths to every other vertex. The computational complexity in the
worst case, using a Fibonacci heap, is O(|E|+ |V |log|V |), where |E| is the number
of edges an |V | the number of vertexes. In the following we show a sequence with
the steps to determine a minimum path from vertex a to vertex b.

3.4. GOAL DEFINITION 31

Figure 3.8: Example of a Dijkstra-Algorithm

32 CHAPTER 3. APPROACH

3.5 Most probable future trajectories

In the previous section all the necessary elements of the Markov decision process
were introduced.

• Ego-graph → Policies

• Cost functions → Reward function

However the reward function is introduced with one variable, the weightings of the
cost function wdist, wdstr, wobs, wpers:

Ctotal(si) = wdistCdist(si) + wstrCstr(si) + wobsCobs(si) + wpersCpers(si) (3.21)

to estimate them we have to solve the IRL-problem. Following the procedure intro-
duced in the section(3.1.1) and the definition of reward function of section(3.3) we
consider the value function V πj with the discount factor λ ∈ (0, 1)

V πj(s0) = Ctotal(s0) + λCtotal(s1) + λ2Ctotal(s2) + ...

by the fixed policies πj extracted from the PEG and maximizes the difference of
quality between the observed optimal policy πp and other policies πj :

max
∑

s0∈X0

∑

j

(V πj(s0)− V πp(s0))− λwi

s.t. λ ≥ 1,

0 < wi ≤ wmax,

V πj(s0) ≥ (V πp(s0)

where wi, i = 1, 2, 3, 4 are the weightings of the cost function.

Therefore we can start with the estimation of a the most probable policies. Later
on we will extend the method to a set of optimal policies.
To find the optimal policy we evaluate the value function for the policies of the PEG
πj with the optimal values for the weightings and search the minimum:

V π∗

(s0) = min
j

V πj(s0)

where s0 is the start state of the policy πj and V π∗

(s0) is value function associated
to the optimal policy π∗.

The estimation of a set of the most probable policies is simple. We must only
eliminate the optimal policy from the set of value functions {V πj}j=1...nopt

after
every calculation.

3.5. MOST PROBABLE FUTURE TRAJECTORIES 33

A set of nopt optimal policies is presented in the following formula, where V π∗

set (s0) is
a set of nopt optimal value functions:

V π∗

set (s0) = {V π∗

1 (s0) V π∗

2 (s0) ... V π∗

nopt
(s0)}

and the single elements of the set are defined as:

V π∗

l (s0) = min
j

V πj(s0) \ {V
π∗

m (s0)}m=1...l−1, l = 1, ..., nopt

The set of the most probable policies is:

π∗
set = {π∗

1 π∗
2 ... π∗

nopt
}

34 CHAPTER 3. APPROACH

35

Chapter 4

Implementation

The aim is to create a human motion prediction algorithm with the following char-
acteristics. Input values are the initial positions and velocities and target of all the
pedestrians in the same frame. Furthermore, we need an image of the environment
to extract the informations of the obstacles.
All this factors are used to generate the desired output value: a set of most probable
pedestrian trajectories

The algorithm is separated in two significant parts. The first part is the offline part
with the generation of a pedestrian ego-graph (PEG). In this section we describe the
method of [1] and our improvements . Uniform randomly trajectories are generated
respecting motion and human constraints.
A spatial clustering method separates the most probable trajectories in different
partition-sets and a curve-cluster-algorithm is used to estimate a general description
of each of them.
After the determination of the optimal number of clusters we store the obtained
trajectories in the pedestrian ego-graph. An important note is ,that we create a
new ego-graph for each different initial velocities of the pedestrians. This allows
a more exact determination of the future trajectory and has no influence on the
computational effort, because the generation is done offline.
In the online part, we show methods to reduce the ego-graph and define cost func-
tions representing the spatial behavior of human in common environments.
These two contributions are combined by calculating a cost function for every tra-
jectory of the ego-graph, to estimate the optimal trajectory.
We introduce also a method to characterize the targets of the pedestrians necessary
to select only the trajectories oriented to a goal.

Every single cost function is weighted and to obtain human-like values we train the
model with a real dataset. The Inverse reinforcement learning algorithm is imple-
mented to solve the estimation of the optimal combinations of the weights.

36 CHAPTER 4. IMPLEMENTATION

4.1 Generation of the PEG

We use the ego-graph to store all the possible trajectories of a pedestrian. The
creation is separated in the following steps:

• Probabilistic ego-graph

• Clustering method

• Positioning of the final PEG

In the first part we create a set of probabilistic trajectories. With the clustering
algorithms explained after we accumulate trajectories in predefined partition-sets
and estimate then the regression model for each of them.
The number of clusters for this method is not fixed and we introduce a method to
estimate the optimal number. At this point we have a complete pedestrian ego-
graph. The last step is to shift and orient the PEG in the desired initial position.

4.1.1 Probabilistic Ego-graph

The objective of the probabilistic ego-graph is to cover the area in front of a hu-
man. An origin is defined where all the trajectories starts. The generation is done
with uniform randomized accelerations, but limited by different human and motion
constraints, listed below:

• acceleration boundaries

• time constraint

• initial velocity

We create the trajectories described by a Constant Acceleration model:

px(t) = px(t− 1) + (vx(t− 1) +
1

2
ax(t)∆t)∆t (4.1)

py(t) = py(t− 1) + (vy(t− 1) +
1

2
ay(t)∆t)∆t (4.2)

These equations are used to generate all the trajectories of the ego-graph. The ac-
celeration changes every 0.5 [s]. To create all the possible trajectories we use two
uniform random values for the accelerations in the respective x and y direction. So
at the end we obtain a Ego-graph covering all states in front of a pedestrian.

Pedestrian normally tend to maintain there velocity in magnitude constant. A
maximum-velocity-limit is implemented to guarantee this characteristic, but with a

4.1. GENERATION OF THE PEG 37

variance. We will include in our model also changes of the velocities over a trajectory.
So we fix the limit at

vlimit = co+ vinitial = co+ (
√

vx(0)2 + vy(0)2)

where co = 0.6 is a parameter determined from the real dataset described in section
(A.2). The exact values are reported in the table(4.1). We evaluated the velocities
of the different pedestrian trajectories and estimated a mean-variation of 0.6[m/s].
We include no minimum constraint for the velocity, because it is a common behavior
that pedestrian reduce their velocity to avoid obstacles.
A constant acceleration over the sampling period is assumed and permits to use the
equations for constant accelerated motion.
The sample time is assumed to be 50 ms over a interval of 3 [s] (tsimu). Both values
are chosen heuristically. The sample time has to guarantee a good balance, between
a to fast sampling and high computational effort. A high sample rate induce very
accurate values but a large data set which causes a slow algorithm. In contrast a to
slow sample rate generates few information and not a high precision in the predic-
tion but a faster computation.
The simulation time is set to 3 [s]. Longer simulations are not necessary, because
the whole motion prediction is continuously updated.

Pedestrians velocities cover a broad range. In [14] is presented a listing of the range
of human-walk-velocities: Elderly people walks normally with a velocity of 0.5[m/s]
in contrast to younger persons having a maximum velocity of 2.4[m/s]. Include all
this velocities in only one ego-graph is difficult. For this and to attain a more precise
prediction we generate a new Ego-graph for every different initial velocity. To cover
all those velocities we decide to sample the interval with 0.2 [m/s] steps. The result
are eleven different Ego-graphs.
It is not a problem to generated so much PEGs because they are calculated offline
and so we have no increase of the computational effort.

Summarizing we have created eleven probabilistic Ego-graphs with different initial
velocities. The number of trajectories is at the moment around 50000 for each Ego-
graph. Obviously this are to much for a online algorithm, but we need them to
implement our clustering algorithm described in the next section.
In the following table (4.1) are shown all the parameters for the different probabilistic
ego-graphs.

4.1.2 Clustering

In this section we describe a method to extract the most realistic trajectories from
the probabilistic ego-graph. At the end we want to have a reduced one with around
200 trajectories to allow a fast online scoring and estimation of the optimal trajec-

38 CHAPTER 4. IMPLEMENTATION

PEG Cluster

vinitial [m/s] vlimit [m/s] lmax [m] 1.Layer [m] 2.Layer [m] 3.layer [m]
0.4 1 2.48 0.3 0.54 0.96
0.6 1.2 3.23 0.43 0.81 1.53
0.8 1.4 3.91 0.58 1.08 2.04
1.0 1.6 4.47 0.75 1.41 2.61
1.2 1.8 5.03 0.94 1.66 3.17
1.4 2.0 5.69 1.09 1.93 3.69
1.6 2.2 6.27 1.25 2.21 4.27
1.8 2.4 6.93 1.41 2.48 4.81
2.0 2.6 7.55 1.56 2.76 5.40
2.2 2.8 8.12 1.72 3.04 5.95
2.4 3.0 8.68 1.73 3.31 6.55

Table 4.1: Probabilistic ego-graphs

tory. The theoretical fundamentals for the procedure are described in the section
(3.2). To implement this procedure we follow the successive steps:

• Generate a set of partitions over three layers

• Create all the possible partition combinations

• Use mixture of regression models to estimate a general description for every
partition-set (k variable)

• Determination of the number of clusters

Spatial-Clustering

This method is useful to select sets of realistic trajectories from the probabilistic-
ego-graph. The range of the ego-graph is segmented in three layers with a constant
radius. Each of them is then split another time in different partitions. The dimen-
sion and positions for those are token from [1]. In this paper they captured real
trajectories from different dataset. Segmented them in pieces of 7-9[m] and shifted
all of them in a common origin. A partition-constellation like described as before is
overlapped. A set of three partitions from three different layers are called partition-
set the trajectories are clustered in this different sets.. Only those one with a certain
number of trajectories are considered the others are neglected.
Our ego-graphs has different dimensions. Therefore we use only the information
about the proportion of the positions and the radius of the layers respect to the
length of the trajectories. Analyzing the data, we estimated that the layers lie at
78% 44% 20% of the maximum length of the trajectories. Defined the spatial de-
limiter, we have partitions separated over three layers. The next step is to calculate

4.1. GENERATION OF THE PEG 39

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

[m]

[m
]

Figure 4.1: Intervals of the spatial-cluster

all the possible combination of partition-sets,a combination of three partitions each
in a different layer. All the trajectories are associated to one of the partition-sets.
In the next section we present a method to estimate a general representation for
each partition-set.

Estimation of Regression Model

Reassuming we have the trajectories of the probability ego-graph separated in dif-
ferent partition-sets and will estimate now a general representation for every set. To
perform this step we use the method introduced in section (3.2.2) and we obtain two
coefficients for every partition-set (βk, ek). The first βk is the regression coefficient
and ek is the covariance matrix. Combining this values over the simulation time,
we estimate the x-and y-position for a trajectory at every time instant. For our
implementation we have to extend the Eq.(3.13) because we have two dimensions,
the x and y direction, and so the equation becomes:

[

y
(1)
j (i) y

(2)
j (i)

]

=
[

1 xj(i) xj(i)
2
]

∗

[

β1
k0 β2

k0

β1
k1 β2

k1

]

+
[

e1k e1k
]

where xj(i) are the different discretization step of the simulation time i = 1, ..., tsimu

and y
(1)
j is the x -value of the j-trajectory of the PEG and y

(2)
j the respective y-

direction.
It is important to annotated that we solve the problem for a fixed number of clusters
k = 1 for every partition-set.
How it is possible to see in the figure(4.3) the trajectory obtained with the regression
model is not a element of the PEG. To avoid this problem we have to estimate the
median. Medians are representative objects of a data set whose average dissimilarity
to all the objects in the cluster is minimal. The difference between the mean and the
median is, that a median is always a member of the data set. In the figures below
are presented the regression models and a PEG containing the respective medians.

40 CHAPTER 4. IMPLEMENTATION

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

[m]

[m
]

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

7

8

[m]

[m
]

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

7

8

[m]

[m
]

Figure 4.2: Spatial clusters (top left), collection of trajectories in a partition-set
(top-right), regression model for a partition-set (bottom)

Determination Number of Cluster

As yet we have a ego-graph composed by the medoids estimated from the partition-
sets with one cluster. Henceforth we will include in the ego-graph also the factor of
how many trajectories belongs to one partition-set and the mean-squared error of
them to the regression model.
The ideas is to augment the number of cluster for every set till two constraints are
not satisfied.

• Mean-squared error between the trajectories and the regression model < 0.1
[m]

• Number of trajectories per set > 30

We use a kind of hierarchal clustering. Starting from a partition-set described by
one cluster, we separate those in two parts and reestimate which trajectories belongs
to which cluster. Then we check another time the constraints. If for example only
the first subset exceeds the constraints then we stop the segmentation for this set,
pass to the second subset and repeat the procedure.

The limits are determined heuristically. During the simulations we note that if the
number of trajectories is lower then around 30, then single outliers influence a lot

4.1. GENERATION OF THE PEG 41

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

[m]

[m
]

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

[m]

[m
]

Figure 4.3: Regression-trajectories (left) and the PEG with median (right)

the regression model.
The mean-squared error is fixed at 0.1[m]. We calculated them as the mean over
the squared error at each sample-time. The value selected guarantees a covering of
the space in front of the pedestrian with a new trajectory every 0.1[m]. As we see
in the following the PEG is enough exact to produce good results.

At the end when all the partition-sets are separated and all the limits exceeded, we
estimate the medians and store them in the final pedestrian ego graph. Obviously
this procedure is repeated for all the different ego-graphs.

4.1.3 Positioning of the ego-graph

Before we can weight the trajectories of the PEG s = (px, py) and estimate the
optimal one, we must collocate the PEG in the environment. The input values
position pintitial = (pxinitial

, pyinitial) and velocity vinitial = (vx, vy) allow to fine the
position and orientation in the environment.
The translation is the simple part, we sum only the value of the initial position to all
the states of the PEG. However the orientation is extracted form the initial velocity.
From the x-and y-value we obtain:

θ = arctan(
vy
vx

)

The inverse tangent function is defined arctan : R2 → (−π
2
, π
2
) but we need a angle

over [0, 2π]. We divide the definition space in to parts. If the velocity in the x-
direction is negative we sum π to the angle:

θ =

{

θ, if vx ≥ 0

θ + π, if vx < 0

42 CHAPTER 4. IMPLEMENTATION

we must sum π to the angle if the x-velocity < 0.
To rotated the pedestrian ego-graph around this angle θ we introduce the notation
of rotation matrix for the euclidean space:

R =

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

where θ indicates the angle of orientation of the pedestrian.
Combining the information of rotation and translation we obtain the final positions
for the PEG:

[

pxrot

pyrot

]

=

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

] [

px
py

]

+

[

pxinitial

pyinitial

]

and define the new state s = (pxrot
, pyrot) utilized in the resting sections.

A special case is vinitial = 0, a stationary pedestrian. The equations are still valid
and we obtain:

[

pxrot

pyrot

]

=

[

pxinitial

pyinitial

]

but lost the information about the direction of the pedestrian. To avoid this problem,
we treat the pedestrian like an obstacle. A pedestrian is modeled as a circular shape,
like described in the section(configuration space). The pedestrian is then included
in the obstacle map as a static obstacle.

4.2. GOAL ANALYSIS 43

4.2 Goal Analysis

Every pedestrian is always directed to a goal.We want to use this characteristic of
the human motion to reduce the ego-graph, to decrease the computational effort.
In this thesis we assume always that a goal is available. This input data is extracted
from the environment. For example a pedestrian on a sidewalk normally wants to go
straight or he enters in some door. Different techniques of computer vision evaluates
this information and determine a target.
The idea is to cluster the trajectories around the goal inside the ego-graph.
The problem is that very often a goal is behind an obstacle or farther away then
the maximum range of the pedestrian ego-graph. All the possible sceneries and the
necessary solution steps are listed in the understanding schedule:

• Goal inside the Ego-graph: Clustering around this goal

• Goal is farther away:

– (1) Between goal and pedestrian is no obstacle:

∗ We calculate a line between the target and the origin of the pedestrian

∗ Draw a circle with a radius close to the maximum range of the ego-
graph

∗ Calculate the intersection and use the solution closer to the target

∗ Cluster the trajectories around this subgoal

– (2) Between goal and pedestrian is an obstacle:

∗ Create a visibility graph between target and origin

∗ Calculate the minimum path between origin and target with Dijkstra

∗ Then we check if the first subgoal of the set is inside or outside of
the ego-graph. If it’s inside we cluster directly around the subgoal,
otherwise we invoke the previous step(1).

After the solution of all this functions and issues we obtain first a subgoal inside the
ego-graph and then a reduced ego-graph utilized in the following sections to solve
the online algorithm. Below we explain the implemented techniques to solve this
problem and all the special cases which we found on the way.

44 CHAPTER 4. IMPLEMENTATION

4.2.1 Goal-Clustering

The first step is to present a clustering algorithm to select the trajectories directed
to a goal. We assume to be in the situation with the goal (or subgoal) inside the
ego-graph.
The algorithm is based on a cell around the subgoal. The dimension depends on the
maximum length and so from the initial velocity of the ego-graph. It is defined at
0.2[m] for a initial velocity of 2 [m/s]. In general we fix it at:

rcell = vPEG ∗ 0.1 [m]

Then we start a research of all the trajectories of the PEG which belongs to the cell.
Those were saved in a new reduced PEG and are the base for all the considerations
in the following sections.

−3

−2

−1

0

1

2

3

4

−4−20246810

Reduced Ego−Graph

[m
]

[m]

Figure 4.4: Reduced Ego-Graph

4.2. GOAL ANALYSIS 45

4.2.2 Generation of Configuration Space

In the theory part we presented the definition of configuration space. We recall that
it determine the area where a pedestrian can pass without a collision with static
obstacles. In other words is the sum of the pedestrians area and the obstacle area.
In robotics a pedestrian is modeled with a circular space with radius around 0.36[m],
but after different simulations we noted that pedestrian in the used dataset pass
much closer obstacles. For this we decide to fix the value at 0.15[m] A solution for
this issue is the implementation of a padding algorithm. It is the realization of the
Minowski sum between the pedestrian shape and the obstacle space. The obstacle
space is obtained with a “border search”-algorithm and a corner-detection.

Configuration space

[m]

[m
]

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Figure 4.5: Configuration Space

4.2.3 Localization of the Goal

The objective of this section is to determine if a goal lies in or outside the ego-graph.
The ego-graph has a specific form and if we generate a convex hull of only straight
lines around the ego-graph, the resulting geometric figure is a rhombus and repre-
sents our constraint.
To determine if a goal is inside or outside this constraint, we generate a Delaunay
triangulation between all the corners of the constraint and the goal. In the case
that the goal is inside we have 4 edges laying in the inner part of the ego-graph.
Otherwise some of this are outside. For every goal we check if this condition is
satisfied. The following two images (Figure(4.6)) shows the two cases:

46 CHAPTER 4. IMPLEMENTATION

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

[m]

[m
]

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

[m]

[m
]

Figure 4.6: Location of the goal: In the PEG (left) or outside of the PEG (right)

4.2.4 Visibility-check for the Goal

Checked if a pedestrians target lies in or outside we pass to the second case. Is the
goal visible from pedestrians origin?
An object, a position or a person is visible if on the line of sight between the origin
and the other element are no obstacles.
To verify the visibility we use the Delaunay triangulation. We implement this func-
tion over the corners of the configuration space, the origin of the PEG and the
target. Then we calculate the minimum-cost-path from the origin to the target with
the Dijkstra-Algorithm. If the distance is equal to the length of the line of sight,
then we know that the goal is visible. In other words there is no corner which forces
the minimum path to avoid a corner and so an obstacle in the middle.

Figure 4.7: Visible and Invisible goal

4.2. GOAL ANALYSIS 47

Visible Goal

In the case of a visible goal we have only to shift it over the line of sight in the
ego-graph.
The position of the subgoal is the intersection point between the line of sight

y = mx+ q (4.3)

m =
ytarget − yorigin
xtarget − xorigin

(4.4)

q = yorigin −
ytarget − yorigin
xtarget − xorigin

xorigin (4.5)

and a circle drawn around the origin.

(x− xorigin)
2 + (y − yorigin)

2 = r2

The value for the radius is fixed at 77% of the maximum range of the ego-graph.
The solution for the intersection is a quadratic equation. The start equations are:

(x− xorigin)
2 + (y − yorigin)

2 = r2 (4.6)

y = mx+ q (4.7)

and at the end we obtain two solutions. Of interest is only the solution between the
target and origin the other one is neglected. The solution is our subgoal and used
to reduce the ego-graph with the clustering algorithm described in section(4.2.1).

Invisible Goal

A invisible goal, is one behind an obstacle. The theory presented in the section(3.4.2)
allows to solve this problem.
The first step is to generate the triangulation between all the corners of the obstacle
in the configuration space, the origin of the pedestrian and the target. Also the
triangulation inside of a obstacle are created.
We introduce the information of the form of the obstacles and neglect all the edges
inside or crossing those and obtain all the visible edges.
The last step is the implementation of the Dijkstra algorithm. The shortest path is
found and we have a ordered set of all the visible corners necessary to pass to reach
the goal.
We extract the second node of the estimated path. For the structure of the imple-
mentation we are sure that exists a visible edge between this point and the origin.
At this point we are again in the situation for visible goal. Repeating the check
of localization of the subgoal explained in the previous paragraph we estimate a
subgoal inside the ego-graph.
In the following image is shown a invisible goal and applied solution procedure.
An image with all the different steps of this implementation is shown in section
(5.1.2).

48 CHAPTER 4. IMPLEMENTATION

[m]

[m
]

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Figure 4.8: Invisible goal and the proposed solution (green points are the subgoals)

4.3. COST FUNCTION 49

4.3 Cost function

The next step for our procedure is to define cost functions to describe the human
behavior. We implement the four functions defined in the section (3.3), and calculate
the value for every state of the MDP.
We prevent some assumption before the implementation is introduced. The costs are
calculated separately for every observation. The total cost for each is then estimated
as a weighted sum of the four elements.

Ctotal(si) = wdistCdist(si) + wstrCstr(si) + wobsCobs(si) + wpersCpers(si) (4.8)

The functions are described in detail in the following subsections.

4.3.1 Distance function

The objective is to calculate the distance between two sequential states of the ego-
graph. We use the definition of the euclidean distance.

Cdist(si) =
√

(px(i)− px(i− 1))2 + (py(i)− py(i− 1))2

We can calculate this cost function offline, during the generation of the ego-graph.
This characteristic implicates a reduced computational effort and allows to calculate
the next cost function.

4.3.2 Steering function

We recall the definition of section 3.3.1:

Cstr(si) = (str(si)− str(si−1))
2 (4.9)

str(si) is the angle between the states si+1 and si, to estimate this value, we use the
definition of the cosine-function.
The triangle, in figure 4.9, is defined by two observations and the resulting point
to generate a right-triangle. The hypotenuse is the distance between the two states
si+1 and si. The adjacent leg is represented by the difference of the x-values of the
states px(i+ 1) and px(i).
Applying the inverse cosines-function the steering-value str(i) is obtained.
The same operation we repeat for the states si and si−1 to estimate str(i − 1).
The steering difference is computed subtracting str(i) from str(i − 1) and square
it, because it is not important to know the direction but only the amplitude of the
angle.

str(i− 1) = arccos (
px(i)− px(i− 1)

dist(i)
) (4.10)

str(i) = arccos(
px(i+ 1)− px(i)

dist(i+ 1)
) (4.11)

=⇒ Cstr(si) = (str(i)− str(i− 1))2 (4.12)

50 CHAPTER 4. IMPLEMENTATION

Figure 4.9: Steering calculation

4.3.3 Obstacle function

This is the most important cost function. Is composed by two parts. One is the
function obtained by static obstacles and the other by the dynamic, which are the
other pedestrians in the scene.

Static obstacle

The implementation is based on a distance map of the current environment. From
an image we extract the dimension of the map and the position of the obstacles the
exact procedure is described in Appendix A.2.
Then we use an algorithm to calculate iteratively the distance for every cell to the
closest obstacle. We evaluate the cells, beginning by the border of the obstacles and
insert a new distance value, only if the it is smaller that the previous one [9]. The
algorithm works only for convex obstacles.
Estimated this grid map we calculate the obstacle function with the following equa-
tion:

Cobs(si) = exp(−0.5
dist(si)

2

σ2
d

) exp(−0.5
dist(si)

2

σ2
w

)

The first term is the mathematical description of the comfortable distance of a
person. Pedestrians keep always a certain distance to objects. This behavior is
specified in this exponential function with the parameter σd = 0.361[m]. The value
is found empirically from [2]. They trained this amount over more then 600 tracks
of pedestrians in different scenes. The dist(si) is the distance of the person in state
si to the closest obstacle and extracted from the distance grid map.
The second term simulates the radius of influence of an obstacle. Farther then
σw = 2.088[m] the human behavior is not influenced by an obstacle.

4.3. COST FUNCTION 51

[m]

[m
]

3 6 9 12 15 18

9

8

7

6

5

4

3

2

1

[m]

[m
]

3 6 9 12 15 18

9

8

7

6

5

4

3

2

1

Figure 4.10: Obstacle map and the real environment

Person obstacle

The theory for this cost function is defined in section (3.3.2). In [5] they analyzed the
distance between walking persons in indoor and outdoor places, between different
gender and different ages. The results are reported in the following table:

Indoor Outdoor

Sex Combination Adult Teenage Child Adult Teenage Child
M-M 83 83 63 83 75 62
M-F 71 63 58 79 68 58
F-F 75 62 59 75 73 67

We are interested only in outdoor places. The problem is that the determination
of the gender and the age of pedestrians in open space is difficult. So we decide to
calculate the mean over all this values.

dist = 0, 71[m] =⇒ σxx = 0.356[m] and σyy = 2σxx

52 CHAPTER 4. IMPLEMENTATION

4.4 Estimation of the Optimal trajectories

Finished all the previous operations, we have selected a set of trajectories from the
ego-graph directed to a goal. All the trajectories are described with the exact coordi-
nates and the associated cost functions. To estimate the most probable trajectories
we have to estimate the trajectories with the lowest cost function.
The first step is to sum the four cost values for every state si

Ctotal(si) = wdistCdist(si) + wstrCstr(si) + wobsCobs(si) + wpersCpers(si)

To estimate the cost function over a whole trajectory we calculate the value function:

V π(s0) = Ctotal(s0) + λCtotal(s1) + λ2Ctotal(s2) + ... (4.13)

λ ∈ (0, 1) is a discount factor and has the mission to weight the costs over time. It
means that a cost function far away, and not only in distance sense but also in time
sense, is less important then the value in the surrounding of the person.
The best trajectory is defined as the minimum value function of all trajectories:

V π∗

(s0) = min
j

V πj(s0)

and V π∗

(s0) is the optimal cost function of the most probable trajectory π∗ of the
pedestrian.

For a set of most probable trajectories the procedure described in the section 3.5
is implemented. An algorithm estimates the most probable trajectory, eliminates
those from the list and the procedure is repeated. At the end we obtain a set of the
most probable trajectories.

4.5. INVERSE REINFORCEMENT LEARNING 53

4.5 Inverse Reinforcement Learning

In this section we describe the method used to optimize the weights of the different
cost functions. The dataset utilized for the realization is the University-video de-
scribed in the Appendix A.2.

The theory on which is based the algorithm is described in section 3.1.
For the solution of this linear program problem we adapt a iterative approach.
We fix a range for the five unknown parameters. The four weightings of the cost
function and the discount factor λ:

wi wmax wmin woptimal

wdist 10 0.01 0.6
wstr 10 0.01 1.2
wstat 10 0.01 7.1
wmove 10 0.01 3.4
λ 1 0.85 0.98

The idea is to estimate the optimal combination of these five factors. The presented
solution below is based on the IRL-method and the objective is to solve

max
∑

s0∈X0

(V π∗

(s0)− V πreal

(s0))− λwi (4.14)

s.t. λ ≥ 1, (4.15)

0 < wi ≤ wmax, (4.16)

V πj(s0) ≥ (V πp(s0) (4.17)

We separate this procedure in different steps. First we estimate the most probable
trajectory π∗(s0) with the prediction algorithm presented in the previous sections.
The optimal value function and so the reference function of the IRL-procedure
is the value function calculated over the real trajectory from the dataset πreal =
{st0, st1, ...stt}:

V πreal

(s0) = Ctraj(so) + λCtraj(s1) + λ2Ctraj(s2) + ... + λtCtraj(st) + ...

where
Ctraj = wdistCdist + wstrCstr + wobsCobs + wpersCpers

Then we start with the estimation of all the value function V πj of the trajectories
πj stored in the PEG

V πj(s0) = Ctraj(so) + λCtraj(s1) + λ2Ctraj(s2) + ... + λtCtraj(st) + ...

and calculate the most probable trajectory of the PEG.

V π∗

(s0) = min
j

V πj(s0)

54 CHAPTER 4. IMPLEMENTATION

To compare the two value functions

(V πj (s0)− V πreal

(s0))

we decided to use a indirect calculation. We do not calculate explicit the value
function for the real trajectory, but we estimate the euclidean distance at the same
time instant between the trajectory πreal and the most probable trajectory π∗ and
compare the mean-squared error for each state s of the trajectory at the same time
instant.
This procedure is repeated for each trajectory of the dataset and solve

max
∑

s0∈X0

∑

j

(V πj(s0)− V πreal

(s0))

Summarizing we have now estimated an error representing the whole dataset for one
combination of the weightings. To determine the optimal combination we have to
repeat this method for all the possible combinations. The optimal combination is
then those with the minimum error over the whole dataset.

When we calculate the error between the real and the PEG trajectory we consider
the relative error at every time instant and not the absolute one. Otherwise one
single factor is amplified to much.

4.6. UPDATE-ALGORITHM 55

4.6 Update-algorithm

In this section we describe a first introduction about how it is possible to re invoke
the prediction-algorithm at constant updates intervals.
For the experiments we fixed the call time at 0.4[s], because the states of the dataset
are given at this time steps. We invoke the algorithm, start the normal prediction
procedure. At the next call we recalculate with the new initial position and velocity,
the most probable trajectories. Obviously all the considerations about the environ-
ment and the pedestrian in the same scene are updated.

In the section (5.2) is shown how the error, diminish rapidly. But this is not the
main objective of this implementation. Because it is important to deliver a pre-
diction over a longer range of time. This information is then used to improve the
performance of the robot navigation. If we are able to predict exactly the trajec-
tory of the pedestrian over some meters, the robot can start the avoidance of the
pedestrian much earlier, as if the pedestrian is considered as a static obstacle or as
a constant velocity model without any considerations about the environment and
other pedestrian in the scene.

Some considerations for the implementation are listed in the following :

• Update only if the error exceeds a certain error limit

• Update only the changes of the environment map [10]

• Set the update time in base of the environment (crossings shorter times then
on sidewalks)

56 CHAPTER 4. IMPLEMENTATION

57

Chapter 5

Simulation and Results

In the following two sections we present the evaluation of our human motion predic-
tion. In the simulation part we show visually the predicted trajectories in different
real scenes.
In the result part is introduced the procedure followed to compare our implementa-
tion with other approaches.

5.1 Simulation

In this section we present the simulations realized in Matlab. All the functions
utilized to solve the problem are presented before. The objective is to show the
improvements and differences of our implementation visually.
In the first part we show all the necessary steps of a standard prediction in a real
image.
Later on we present special scenes like collision avoidance or a situation in which
our algorithm decided a wrong direction.

In the appendix are presented simulations where we show how the different cost
functions work and extend the case to a multiple set of goals.

5.1.1 Steps of the Algorithm

In this first simulations we show the different steps of our prediction algorithm.
The algorithm starts with the initialization of the pedestrian ego-graph. From the
dataset we know exactly the position and orientation of the pedestrian, those tra-
jectory we want predict.
Another decision token at the beginning is the dimension of the PEG and is based
on the initial velocity of the pedestrian.

58 CHAPTER 5. SIMULATION AND RESULTS

Pedestrian ego−graph

[m]

[m
]

1 2 3 4 5 6 7

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure 5.1: Initialization of the Pedestrian Ego-Graph

After the initialization we reduce the ego-graph. The goal for the pedestrian is
known and we have only to shift it into the ego-graph. The special case, that the
goal is invisible is shown in section (5.1.2).

Reduced PEG

[m]

[m
]

1 2 3 4 5 6 7

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure 5.2: Selection of the trajectories oriented to the target

5.1. SIMULATION 59

At this point we invoke the online algorithm to select the most probable trajectories
of the reduced ego-graph in base of the different human behaviors.

Set of most probable trajectories

[m]

[m
]

1 2 3 4 5 6 7

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure 5.3: Set of most probable trajectories

The last step is the estimation of the most probable trajectory and compare it with
the real trajectory from the dataset.

Most probable trajectory

[m]

[m
]

1 2 3 4 5 6 7

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure 5.4: Most probable trajectory

60 CHAPTER 5. SIMULATION AND RESULTS

5.1.2 Invisible goal solution

In our implementation we pretend always to know the goal for a trajectory. Some-
times it is possible that the goal is invisible. We recall that a goal is invisible if
between the origin of the pedestrian and the goal is an obstacle and the obstacle is
out of range of the ego-graph.
If we are in this case we follow the procedure described in section (4.2).
The obstacle is out of the maximum range of the PEG and so it has no influence of
the prediction in our algorithm. A wrong prediction is the result:

[m]

[m
]

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Figure 5.5: Erroneous prediction

5.1. SIMULATION 61

To solve the issue, we define first the configuration space between pedestrian and the
obstacles of the environment. In the following we invoke the Delaunay triangulation

Configuration space

[m]

[m
]

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Figure 5.6: Location of the goal: In the PEG (left) or outside of the PEG (right)

and obtain all the visible edges between the origin of the pedestrian and the target.
The Dijkstra algorithm estimates the minimum path and so the set of subgoals to
follow. We extract the first and shift it in to the PEG. At this point the normal
prediction algorithm is called and the most probable trajectory is estimated.
It is important to note, that our algorithm is the unique to take in consideration

[m]

[m
]

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Figure 5.7: Location of the goal: In the PEG (left) or outside of the PEG (right)

this case. All the other implementations, not only the simple like constant velocity
or goal directed, but also [1] and [2] fails and produces a wrong estimation.

62 CHAPTER 5. SIMULATION AND RESULTS

5.1.3 Special cases

In this section we show different cases, where our approach generates better or in
some case also worse results.
Our algorithm is able to avoid early pedestrians (red) and simulate well human
behaviors. The constant velocity model (white) has the drawback to ignore all the
human behavior and steers straightly in a collision. Sometimes the implemented

Constant velocity vs. Our Approach

[m]

[m
]

1 2 3 4 5 6

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure 5.8: Constant velocity vs. Our approach

prediction produces wrong estimations. For example if we consider pedestrians
walking in groups. The cost function of comfortable distances generates always
elevated values and force the pedestrians to disperse.
By way of comparison, the constant velocity model predict the trajectory exactly.

Pedestrian walking in groups

[m]

[m
]

1 2 3 4 5 6 7

3.5

3

2.5

2

1.5

1

Figure 5.9: Pedestrian walking in groups

5.1. SIMULATION 63

Safely collision avoidance is one of the most important features of our prediction.
In this figure we show, how not only the constant velocity model (white) produces
a large error, but also the goal oriented algorithm (magenta). The two last men-
tioned algorithms do not consider any human behavior, neither they consider the
surrounding environment and finish so to collide with and obstacle or to estimate a
completely wrong trajectory.

Obstacle avoidance

[m]

[m
]

5.2 5.4 5.6 5.8 6 6.2 6.4

1.5

2

2.5

3

3.5

Figure 5.10: Static obstacle avoidance

64 CHAPTER 5. SIMULATION AND RESULTS

5.2 Results

5.2.1 Confront with State of the Art

The analysis of the performance of our algorithm is based on the estimation of
the prediction error between real trajectories and our estimation. The results are
compared with other methods like the Constant Velocity model (CV), the Linear
Trajectory Avoidance [2] and the Pedestrian Ego-graph model (PEG) [1]. The val-
ues of all the other implementations are taken from [1]. In the following we explain
how we evaluate the predicted trajectories.
First it is important to notice that the evaluation is realized on a second dataset,
the video showing the scene in front of the Hotel, and not on the same as used for
the trainings procedure.

The idea is to calculate the absolute error between the real trajectory of the dataset
and the respective predicted pedestrian trajectory with the optimal weightings com-
bination. Therefore we synchronize the initial position and velocity of the different
trajectories with the prediction algorithm. The algorithm is started and we repeat
this procedure for each trajectory of the dataset. It is important to calculate always
the distance between positions at the same time instant. The time information of
the dataset was extracted like described in the section (Appendix A.2).

To have a comparison with [1] we must estimate the mean squared error of the
prediction respect to the real trajectory at a fixed metric interval.
We compare the results at 1−2−3−4[m]. The error is calculated over 80 randomly
choosen trajectories from the dataset. It is important to note, that our approach
and the PEG [1] consider not only the optimal trajectory, but the trajectory, from
a set of (10) most probable trajectories, with the smallest error.

Method 1 [m] 2 [m] 3 [m] 4 [m]
CV 0.037 0.122 0.221 0.363

LTA [2] 0.054 0.128 0.212 0.285
PEG [1] 0.030 0.074 0.100 0.105
OURs 0.031 0.072 0.097 0.099

Table 5.1: Statistical results: Average error

5.2. RESULTS 65

Method 1 [m] 2 [m] 3 [m] 4 [m]
CV 0.042 0.155 0.259 0.388

LTA [2] 0.043 0.092 0.145 0.204
PEG [1] 0.026 0.057 0.067 0.083
OURs 0.028 0.055 0.063 0.079

Table 5.2: Statistical results: Standard deviation

The improvement of our approach respect to the [1] is based on the introduction of
different pedestrian ego-graphs for different initial velocities. This implementation
method allows to generate more specific trajectories for each situation. For example
the ego-graph in [1] is composed by 248 trajectories. We generate a PEG of 180
trajectories for each initial velocity.

The introduction of the reduced ego-graph has no influence on the results. The
dimension of the subgoal-cluster was chosen so that we never exclude the optimal
trajectory from the prediction. But the most important consequence of this im-
provement is the reduction of the computational effort which is explained in the
next section.

The problem of invisible goal and the proposed solution has less influence on this
results. But only because the goals for this dataset were defined accurately and so
it was never necessary to invoke this method.

We want to introduce a short note about the updated algorithm. The error decreases
rapidly. In a simulation we calculated the mean of the error for all the predictions.
We estimated a value of 0.025[m]. This improvement is obvious because, after
each 0.4[s] we recalculate the trajectory. Considering that the maximum velocity is
2.4[m/s], the maximum possible distance is 0.96[m] and lies so in the worst case at
the same value as estimated in the first column of table (5.1).

5.2.2 Consideration Simulation Time

The computational effort of the algorithm is variable. The main parameters which
influence directly the simulation time are:

• Dimension of the cluster for the selection of the goal oriented trajectories

• Number of pedestrians in the scene

• Sample time of the trajectory

An exact analysis is difficult to formulate. In the following we describe the different
influences:

66 CHAPTER 5. SIMULATION AND RESULTS

The first influence is based on the dimension of the cluster for the goal orientation.
How we mentioned in section (4.2.1) we fix it at 10% of the value of the initial
velocity for the respective ego-graph. We compared the results also with a larger
value for the cluster dimension, but the improvement was not relevant.
However another reduction of this parameter, to improve the computational effort,
is not possible without a increase of the prediction error.
The computational effort is highly depending from the density of pedestrian in the
scene, but it not depends directly from the number of pedestrian in a scene The
most calculation time is necessary when two trajectories cross.
For example, we predict a trajectory for a pedestrian with other 5 humans and the
algorithm requires only 3.7[s]. On the other hand, the prediction for a pedestrian
with 3 ”neighbors” requires 5.2[s]. With this examples we want to show how the
computational effort is heavily dependent from the surrounding environment and
the pedestrian in the scene.

The last factor is the sample time of the trajectory. Our value was selected em-
pirically and fixed at 0.05[s]. The experimental results show that this decision was
a realistic proportion between the computational effort of the algorithm and a low
prediction error.
Obviously an increase of the sample time reduce the computational effort. The two
values are direct proportional. In future if we want to predict longer trajectories or
have a faster algorithm and need not a so high accuracy then we can augment the
sample time.

67

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have proposed an approach able to predict a human trajectory. The different
cost functions allow to react to changes of the environment and to avoid collisions
with other pedestrians. The introduction of the Markov decision process makes it
possible to have a probabilistic result. In other words we predict not only the most
probable trajectory but a set of trajectories.
The experimental results show that our algorithm allows to predict an accurate tra-
jectory. The prediction estimates the exact 2D-position in the Cartesian space, but
provides also the exact prediction in time.
The last factor is improved respect to other methods with the introduction of dif-
ferent PEGs for different initial velocities.

To solve different special cases we implemented features like the detection of invis-
ible goals. This improvement, had no influence on the results in this thesis for the
special property of the dataset.
But for a city explorer like the IURO it will be important. We have always given a
set of goals and often, they are defined generally. For example if a pedestrian walks
on a sidewalk, the goal is indicated somewhere in front. But obstacles like flower-
pots and billboards stand around. To avoid them early and safely it is necessary to
invoke our algorithm.

6.2 Future work

There are still some open problems. For example the prediction algorithm produces
wrong estimation when pedestrians are walking in groups. This case is shown in
section 5.1.3..
A future work could be the introduction of a group-detection algorithm and the

68 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

consideration of a group as a single object with larger dimensions. This eliminates
not only the problem of a wrong estimation, but decreases also the computational
effort, because we have to invoke our algorithm for less times.

Another possible improvement is the segmentation of the outdoor environment in
different classes.
During the trainings-phase it was difficult to estimate the optimal combination for
the cost-function-weights able to produce realistic results for different scenes.
The solution will be the introduction of classes like, sidewalks, crossings, and open
spaces. This idea is based on the property of pedestrians to change their behavior
with different environments.
Created finally an accurate prediction algorithm we need a dynamic path planner.
The difference to standard planner is, that it must be able to consider the pedestrian
as a trajectory and not only as a static object. Without this improvement a planner
is not able to exploit all the informations provided by our prediction algorithm.

BIBLIOGRAPHY 69

Bibliography

[1] Shu-Yun Chung and Han-Pang Huang “A Mobile Robot that Understands Pedes-
trian Spatial Behaviors“. IEEE/RSJ International Conference on Intelligent
Robots and Systems,2010.

[2] S.Pellegrini,A.Ess,K.Schindler,L. van Gool “You’ll Never Walk Alone: Modeling
Social Behavior for Multi-target Tracking“. Proc.IEEE Int.Conf.on Computer
Vision, Kyoto, Japan,pp 261-268,2009.

[3] Dirk Helbing and Peter Molnar “Social force model for pedestrian Dynamics“,
Physical Review E. 51(5):4282-4286,1995.

[4] E.T. Hall “The Hidden Dimension“. Man’s use of Space in public and Private,
Anchor Books, Re-issue,1990.

[5] Thositaka Amaoka, Hamid Laga, Suguru Saito, and Masayuki Nakajima ‘Per-
sonal Space Modeling for Human-Computer Interaction“.Proc. 8th Int.Conf. on
Entertainment Computing,Paris, France,pp. 60-71,2009.

[6] A.Lacaze,Y.Moscovitz,N.DeClaris,and K.Murphy “Path Planning for Au-
tonomous Vehicles Driving over Rough Terrain “. Proc.IEEE Int.Sym. on In-
telligent Control,Gaithersburg,MD,USA,pp.50-55,1998.

[7] Andrew Y.Ng, and Stuart Russell “Algorithms for Inverse Reinforce-
ment Learning“. Proc.of the 17th Int. Conf. on Machine Learning,
Standford,CA,USA,pp.663-670,2000.

[8] José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag “Machine
Learning and Knowledge Discovery in Databases“European Conference,ECML
PKDD 2010, Part II, Springer Verlag Berlin ,2010.

[9] G.Albers,J. Mitchell, L. Guibas, T.Roos “Voronoi Diagrams of moving points“.
International Journal of Computational Geometry and Applications,1995.

[10] Boris Lau, Christoph Sprunk, and Wolfram Burgard “Improved Updating of Eu-
clidean Distance Maps and Voronoi Diagrams“. Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taipei, Taiwan
2010.

70 BIBLIOGRAPHY

[11] Sridhar Mahadevan ”Learning Representation and Control in Markov Decision
Processes: New Frontiers”. Foundation and Trends in Machine Learning, vol 1,
no 4, pp 403-565, 2008

[12] J.C. Baxter “Interpersonal Spacing in Natural Settings”. Sociometry 33(4), pp
444-456, 1970

[13] D.B. Henson “ Visual Fields “ Oxford: Oxford University Press, 1993.

[14] W. Angenendt, and M.Wilken “ Gehwege mit Benutzungsmoeglichkeiten fuer
Radfahrer “ In Schriftenreihe Forschung Strassenbau und Strassenverkehrstech-
nik, Heft Nr. 737, Bonn 1997

[15] Osama Masoud and Nikolaos Papanikolopoulos “ A Novel Method for Tracking
and Counting Pedestrians in Real-Time Using a Single Camera“ IEEE Transac-
tions on vehicular technology, VOL.50, NO.5, September 2001

[16] Scott Gaffney and Padhraic Smyth “ Trajectory Clustering with Mixtures of
Regression Models“ Technical Report No. 99-15 Department of Information and
Computer Science, University of California,Irvine. Mrch 1999

[17] Steven M. La Valle “ Planning Algorithms“ Cambridge University Press,2006

[18] Jesus A.De Loera, Jorg Rambau and Francisco Santos “ Triangulations:
Sturctures for Algorithms and Applications“ Springer-Verlag Berlin Heidelberg,
2010

[19] Peter Su and Robert L.Scot Drysdale “A Comparison of Sequential Delaunay
Triangulation Algorithms“ Springer-Verlag Berlin Heidelberg, 2010

[20] L.Guibas,D.Knuth, and M.Sharir “Randomized incremental construction of De-
launay and Voronoi diagrams“ Algorithmica 7: 381-413,1992

[21] M. de BErg, O.Cheong, M.van Kreveld and M.Overmars “Computational Ge-
ometry: Algorithms and Applications“ Springer-Verlag Berlin Heidelberg, 2008

[22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
“ Introduction to Algorithms“ Second Edition. MIT Press and McGraw-Hill, 2001

[23] Shannon, C.E. ”A Mathematical Theory of Communication”, Bell System Tech-
nical Journal, vol. 27, pp. 379–423, 623–656, July, October, 1948

[24] N.R. Draper and H. Smith ”Applied Regression Analysis”, New York: John
Wiley and Sons, 2nd Edition, 1981

[25] G.J. McLachlan and T.Krishnan ”The EM Algorithm and Extensions”, New
York: John Wiley and Sons, 1997

BIBLIOGRAPHY 71

[26] Gergely Csibra, Gyorgy Gergely, Szilvia Biro, Orsolya Koos and Margaret
Brockbank ”Goal attribution without agency cues: the perception of ”pure rea-
son” in infancy” Elsevier, Cognition 72(1999) 237-267, 1999

[27] Maren Bennewitz “Mobile Robot Navigation in Dynamic Environments “.Phd-
thesis, University of Freiburg,2004.

[28] Hannah Dee, and David Hogg ”Detecting inexplicable behavior ”. In British
Machine Vision Conference, volume 477,pp.486,2004.

[29] Simon Thompson, Takehiro Horiuchi, and Satoshi Kagami ”A probabilistic
Model of Human Motion and Navigation Intent for Mobile Robot Path Planning
”. In autonomous Robots and Agents,2009.

[30] Jur van Berg, Stephen J. Guy,Ming Lin, and Dinesh Manocha ”Reciprocal
n-body Collision Avoidance ”.International Symposium on Robotics Research
(ISRR), Sep. 2009.

[31] Reginald G.Golledge ”Defining the criteria used in path selection ”. Technical
Report, University of California,Transportation Center,1995.

[32] H.C.Yen,H.P.Huang, and S.Y.Chung “Goal-directed pedestrian model for long-
term motion prediction with the application to robot motion planning “.IEEE
International Conference on, pages 216-219, August 1990.

[33] K Lewin “Field Theory in Social science “.New York: Harper & Row,1951.

[34] F.Hoeller,D.Schulz,M.Moors, and F.E Schneider “Accompanying persons with a
mobile robot using motion prediction and probabilistic road maps “.In intelligent
Robots and Systems, 2007.

72 BIBLIOGRAPHY

73

Appendix A

Implementation

A.1 Dijkstra Algorithm

The pseudo code is presented in the following figure:

1 function Dijkstra(Graph, source):

2 for each vertex v in Graph: // Initializations

3 dist[v] := infinity ; // Unknown distance function

// from source to v

4 previous[v] := undefined ; // Previous node in optimal path

// from source

5 end for ;

6 dist[source] := 0 ; // Distance from source to source

7 Q := the set of all nodes in Graph ;

// All nodes in the graph are unoptimized - thus are in Q

8 while Q is not empty: // The main loop

9 u := vertex in Q with smallest dist[] ;

10 if dist[u] = infinity: \\

11 break ; // all remaining vertices

// are inaccessible from source

12 fi ;\\

13 remove u from Q ;\\

14 for each neighbor v of u: // where v has not yet been

// removed from Q.

15 alt := dist[u] + dist-between(u, v) ;

16 if alt < dist[v]: // Relax (u,v,a)

17 dist[v] := alt ;

18 previous[v] := u ;

19 fi ;

20 end for ;

74 APPENDIX A. IMPLEMENTATION

21 end while ;

22 return dist[] ;

23 end Dijkstra.

We use the algorithm to find only the shortest path from the pedestrians actual
position to a specific target. So the algorithm can be interrupted at line 13 with the
condition if(target = u).

A.2. DATASET 75

A.2 Dataset

A.2.1 Description

In this thesis we consider two datasets. Both are provided by the ETH Zurich. One
represent the scene in front of the entrance of the main building of the university
and the other a city scene filmed from the roof of a hotel in the center of Zurich.
We consider first the University-video: A typical city situation is shown (Figure
(4.11)). Humans walk straight on a sidewalk or turn to the university entrance,
other pedestrian leaves the building.
In the other video (Figure(4.12)), is shown a tram-station and the entrance of a

[m]

[m
]

1 2 3 4 5 6

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure A.1: Environment in front of the ETH Zürich

hotel and therefore really crowded. Another difference to the previous video are four
static obstacles in the middle of the scene (trees and a banquette).
In the following section we describe the details how we elaborate this videos and

[m]

[m
]

1 2 3 4 5 6 7

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure A.2: Environment in front of a hotel

what information we can get from them. All this notations are valid for both.

76 APPENDIX A. IMPLEMENTATION

A.2.2 Analysis and Preparation of the Dataset

The most significant information for a pedestrian trajectory are:

• Position in the euclidean space

• Time associated to every position

• Target of the trajectory

• Obstacles and other pedestrians in the same scene

All this data are presented as a numerical description for the videos. Our objective
is to combine all the relevant informations.
The (x,y)-positions and the velocity (vx, vy) are represented in world coordinates.
In general all the calculations are done in this coordinate system ,with exception of
the obstacle map which is explained later on.
The problem is that the positions are ordered in sequence of time. It means all
the pedestrian in the same frame are presented one after the other. But with the
identify-number of every pedestrian it is simple to summarize all the positions of
one trajectory.
The next step is the extraction of the time associated to every position. It is given
indirectly through the frame number. We know, the frame-rate of the video (2.5fps)
and the difference of the frame number between two following positions. So it is
simple to estimate the time-difference.

The obstacle map is given as a png-image of the scene and to handle with it easier
during the different operations we convert it in a matrix. White (obstacle) is 255

[m]

[m
]

1 2 3 4 5 6 7

5

4

3

2

1

Figure A.3: Obstacle map extracted from a video and the respective energy map
(hotel video)

and black (free space) 0 indicates if in a cell is an obstacle or not. The positions of
the obstacles are introduced in the image-coordinates.

A.2. DATASET 77

To combine this environment factor with the other informations we must convert
the map with the homography matrix H in the world coordinates.

We need another information of the obstacle maps. The corner of each obstacles are
necessary to create the configuration space and to determine the Delaunay triangu-
lations. This step solved with a corner-detection-algorithm.
The last information is the target of every pedestrian. For the University-video we
have four and for the other sixteen targets for all the trajectories. The association
of the exact goal to every trajectory is realized with a geometrical algorithm. We
consider the direction of the pedestrian, described by the angle between the initial
and end position of the trajectory, and the direction to all the different goals. The
target with the most similar direction of the pedestrian is chosen as the exact one.
Finally applying all this different algorithms we estimated 360 different pedestrian
trajectories for the university-video and 390 for the hotel-video.

A last consideration is done about the length of the trajectories. For the learn
algorithm it is not helpful to choose too short trajectories (< 1m) or completely
static pedestrian. How explained before this pedestrian are modeled as a static
obstacle. Also we must eliminate pedestrian which walks in groups, because in
this case the standard considerations about the personal space and other human
behaviors are not satisfied. This assumption is a common rule applied also in all
the previous mentioned papers [1],[2] [28].

78 APPENDIX A. IMPLEMENTATION

79

Appendix B

Simulation

In the first part we predict the most probable trajectories only for one pedestrian
in the scene. After we simulated a scene with two pedestrians and include also the
interactions between them. The obstacles, the initial velocity and initial position
are determined artificially.

B.1 Single pedestrian

In the first simulations we check if all the different cost functions are exactly imple-
mented. We simulate a scene with multiple pedestrians, but they are all considered
as static obstacles. It means that we do not use the formula (3.8) to describe the
human behavior but only (3.7). So the person are considered as a static obstacle.
In the first paragraph we check the different cost functions. Then we examine the
implementation for only one pedestrian and in the last section for multiple pedes-
trians.
It is important to note, that in this cases we used the first realization for the ego-
graph. The field of view was reduced to 120 degrees and the accelerations in the
y-direction was only positive.

B.1.1 Single cost function

We calculate separate the single cost function function. For this we use the following
cost weight combinations:

80 APPENDIX B. SIMULATION

wstr = 10 all the other weights are reseted to zero.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Steering function

Decimeter

D
ec

im
et

er

Figure B.1: Minimum-steering-path

wdist = 10 all the other weights are reseted to zero.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Distance function

Decimeter

D
ec

im
et

er

Figure B.2: Minimum-distance-path

B.1. SINGLE PEDESTRIAN 81

wobs = 10 all the other weights are reseted to zero.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Obstacle function

Decimeter

D
ec

im
et

er

Figure B.3: Minimum-cost-path considering only the static obstacles

82 APPENDIX B. SIMULATION

B.1.2 Combined cost function

In this section we show the different steps of the implementation:
Generation of the ego-graph:

Figure B.4: Ego-graph

Clustering of the ego-graph:

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4
Clustered Trajectories

Meter

M
et

er

Figure B.5: Clustered trajectories

B.1. SINGLE PEDESTRIAN 83

Combination of cost functions and Ego-graph:

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Obstacle Map and Clustered Trajectories

Decimeter

D
ec

im
et

er

Figure B.6: Clustered trajectories over the obstacle map

Determination of the minimum cost trajectory:

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Trajectories with Minimum Cost Function

Decimeter

D
ec

im
et

er

Figure B.7: Minimum-cost-path

84 APPENDIX B. SIMULATION

B.2 Multiple pedestrians

In this scene two pedestrians are considered. We generate two ego-graphs and imple-
ment the cost function (3.8) to model the human interaction between pedestrians.
Ego-graph generated for two pedestrians:

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Ego−graphs for pedestrians

Meters

M
et

er
s

Figure B.8: Scene with two pedestrians

Clustered trajectories for different trajectories:

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

Obstacle Map and Clustered Trajectories

Decimeter

D
ec

im
et

er

Figure B.9: Clustered trajectories for the different goals

B.2. MULTIPLE PEDESTRIANS 85

Best trajectories for the two pedestrians:

5 10 15 20 25 30 35 40 45 50 55 60

5

10

15

20

25

30

35

40

Obstacle Map and Clustered Trajectories

Decimeter

D
ec

im
et

er

Figure B.10: Minimum-cost-path

