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Introduction

The understanding of how multi-cells systems (such as
tissues and organs) are spatially and temporally orga-
nized and how they react to external stimuli orches-
trating responses as a whole, requires the comprehen-
sion of regulatory mechanisms both at the single-cell
level and at the cell-to-cell communication level.

In this work, we describe a simple fate decision
regulatory module working at single-cell level and
show how macroscopic behaviour of the system as a
whole changes depending on cell-to-cell and/or cell-
environment communication.

Methods

An essential single cell model

The model we adopt to describe fate-decision in a dif-
ferentiation process at the single cell level is taken from
[2]. In this work the authors describe the minimal
network and dynamical model for central nervous sys-
tem differentiation using a set of stochastic differential
equations. Here we focus only on the first fate-decision
step, regulated by the sub-network reported in Figure
1. The sub-network consists of two mutually inhibit-
ing genes, Mash 1 and Hes 5. In mature cells dif-
ferentiated to neurons, Mash 1 is over-expressed with
respect to Hes 5 whereas in mature cells differentiated
to glia, Hex 5 is over-expressed with respect to Mash
1. The remaining gene, Pax 6, that promotes both the
other genes transcriptions, is used in [2] to control the
stage of the differentiation: large levels of Pax 6 keep
the cell in the undifferentiated stage, while decreasing
it enforces differentiation and hence the prevalence of
one of the competing genes on the other.
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Figure 1: Network for the one step fate-decision pro-
posed in [2] for glia-neuron differentiation.

The stochastic equations of the network are:

Pax 6: 9x1 = −γx1 + ξ1 (1)

Mash 1: 9x2 = a
xn1

1 + xn1 + xn3
− kx1 + ξ2 (2)

Hes 5: 9x3 = a
xn1

1 + xn1 + xn2
− kx3 + ξ3, (3)

where x1, x2 and x3 denotes the concentration of Pax
6, Mash 1 and Hes 5 respectively, while γ = 0.02, n =
4, a = 4, k = 1 are fixed parameters taken from [2].
ξ1(t), ξ2(t), ξ3(t) are mutually independent Gaussian
white noises with variance D = 0.005.

Notice that the Gaussian white noise component in
(1)-(3) makes the final fate not deterministic and hence
different from cell to cell even if the initial condition
is the same. Moreover, note that Pax 6, as in [2], is
forced to undergo an exponential decrease (1).

Cells Interaction Model

The local fate evolution is known to depend on local
mechanical stimuli [3] as well as the spatial distribution
of cytokines. Cytokines secretion and sensing consti-
tutes one of the fundamental mechanism for cell-to-cell
communication [3]. Therefore, moving from a single
(isolated) cell to a group of interacting cells, cell-cell
and cell-environment communication phenomena must
be taken into consideration.

In this direction, we consider N cells spatially or-
ganized in a grid of dimension P ×Q (N = PQ). We
assume that the ith cell (i ∈ [1 . . .N]) can interact only
with its neighbor cells j, j ∈ Ni ⊆ [1, . . .N], with Ni de-
noting the set of neighbours of cell i. Then, we modify
single cell equations (2)-(3) as follows:

9xi,2 = a
xn1

1 + xn1 + xni,3
− kxi,2 + fi,2 + bi,2 + ξi,2

9xi,3 = a
xn1

1 + xn1 + xni,2
− kxi,3 + fi,3 + bi,3 + ξi,3,

where

fi,2 ∶ = µ ∑
j∈Ni

xnj,2

1 + xnj,2 + µxnj,3
bi,2 ∶ = kx̄i,2

fi,3 ∶ = µ ∑
j∈Ni

xnj,3

1 + xnj,3 + µxnj,2
bi,3 ∶ = kx̄i,3.
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Cell-to-cell communication is introduced by includ-
ing a simple feedback fi ∶= [fi,2, fi,3]T for which a cell
differentiating to a cellular type promotes its neigh-
bours to have the same fate. Notice that fi is influ-
enced only by xj,2 and xj,3 for j ∈ Ni, and that the
strength of the feedback depends on the parameter
µ. The feedback term includes two effects: i) posi-
tive feedback among type-specific genes of the same
type; ii) negative feedback among type-specific genes
of different types.

Cell-environment interaction is introduced by in-
cluding the term bi ∶= [bi,2, bi,3]T acting only on the
cells on the boundary of the grid (boundary effect) and
mimicking a mechanical stimuli (bi = 0 if the ith cell is
not on the boundary).

Results

We consider N = 2500 cells organized in a grid with
P = Q = 50, and we assume that each cell communi-
cates with at most 8 cells (that are the cells located in
the upper, upper-right, right, down-right, down, down-
left, left, and upper-left positions).

Figure 2 shows simulated differentiation processes
without boundary effect and different values for the
feedback parameter µ. It is apparent that weak cell-
cell interaction leads to jagged borders between cell
subpopulations, while stronger interaction results in
sharper differentiation bounds.

Figure 3 investigates the effect of feedback in the
presence of an external stimulus enforcing differentia-
tion (either to neuron or to glia) in certain cells. At
the end of the simulated differentiation processes en-
forced patterns can be identified. In addition, as pre-
viously noticed, cell-cell interaction’s strength deter-
mines sharpness of edges between cell subpopulations.

Conclusions

Despite numerous simplified assumptions, the results
show that this simple model for cell-to-cell and cell-
environment interaction is able to capture, as the feed-

Figure 2: Differentiation without boundary effect and
different level of cell-to-cell interaction, µ = 0.05 (left,
weak interaction) and µ = 0.5 (right, strong interac-
tion). Red cells evolved to neurons, green ones to glia.

Figure 3: Differentiation with border effect: outer
border forced to neurons, inner square forced to glia.
Weak cell-to-cell interaction (µ = 0.05, left) is com-
pared with a strong one (µ = 0.5, right). Red cells
evolved to neurons, green cells evolved to glia.

back intensity parameter varies, different macroscopic
emerging behaviours such as sharp differentiations or
islet formation. Interest in this kind of models is stim-
ulated by recent technology advancements [1, and ref-
erences therein] that allow the observation of mRNAs
synthesis, proteins production, genes expression within
a single cell, for hundreds of cells in parallel, instead
of their average values from cells in bulk. Model vali-
dation with real data from single-cell experiments rep-
resents our future research direction.
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