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Abstract: In this paper we address the problem of fault resilient estimation for large-
scale systems, where the measurements are possibly corrupted due to low-cost sensors faults.
As toy application, we consider the problem of localization in Sensor Networks (SN). We
propose a distributed solution based on a recently developed generalized descent algorithm.
To cope with real-world applications, the algorithm we propose is suitable for an asynchronous
implementation and is numerically robust to non ideal communications, i.e., packet-losses. Under
mild assumptions, theoretical convergence of the algorithm is shown. The algorithm is compared
with a recently developed ADMM-based algorithm for robust state estimation.
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1. INTRODUCTION

Nowadays, large-scale and distributed cyber-physical sys-
tems, consisting of a multitude of sensors and “smart
agents” equipped with mild computational, communica-
tion and actuation capabilities, permeate our lives. Be-
cause of the size of the systems, low-cost sensors are
tipically used. However the latter are more prone to ran-
dom failures, and consequently, one important challenge
to face is the systematic quantitative monitoring of the
system. Indeed, by affecting the collected measurements,
these failures eventually compromise the knowledge of the
system’ state, usually used for management and control.
In order to avoid this issue, two strategies can be followed:
(i) the development of suitable fault diagnosis algorithms
(see Paradis and Han (2007) for a survey on the topic),
consisting in detection, isolation and identification of the
fault; (ii) the design of fault resilient state estimation
procedures which are able to produce accurate outcomes
by automatically filtering out the outliers. These two ap-
proaches, which may eventually complement each other,
become necessary to implement reliable systems. However,
the possibly large scale of these systems makes central
monitoring strategies difficult and sometimes impossible to
implement. Thus, distributed solutions must be addressed.

Fault detection and bad data analysis have been largely
studied in the past. A lot of work has been done on the
static analysis of faults. The main idea behind static anal-
ysis is to process the measurements residuals through suit-
able hypothesis tests in order to detect the source of the
fault. In Chen et al. (2006) a distributed belief propagation
approach is proposed for WSN. With specific applications
to electrical power systems, in Korres (2011) a distributed
bad data analysis and detection procedure is shown, which
is based on the normalized residual test. Choi and Xie
(2011) propose a reduced model for distributed wide area
monitoring and a bad data analysis based on the χ2-test.
A more recent branch of research regards the development
of fault diagnosis strategies for general networks of dy-
namical systems using sensors networks. In Franco et al.
(2006) a distributed hypothesis testing method, based on
a belief consensus technique to perform fault diagnosis, is

presented. Consensus is exploited in Boem et al. (2011)
as well, where the authors propose a distributed strategy
which is based on the combination of local fault estimators
to reach a common agreement on the fault detection. More
recently, Boem et al. (2013) propose a method based on
Pareto optimization. Finally, in Keliris et al. (2015) the
authors present a distributed scheme for the detection of
process and sensors faults for a certain class of nonlinear
discrete-time systems.

Regarding distributed state estimation, a vast amount of
literature can be found. However, historically, state esti-
mation does not deal with the presence of outliers. In order
to deal with bad data analysis, the standard approach
consists of two iterative steps: first, state estimation is
performed; second, hypothesis tests on the measurements
residuals are applied as done in Korres (2011); Choi and
Xie (2011). If a bad datum is detected, this is deleted
from the data-set and state estimation is performed again.
Hypothesis test on the new residuals can confirm or belie
the detection. In this sense, this approach iteratively com-
bines standard state estimation with static fault detection
procedures, to eventually lead to a fault resilient state
estimator.
A different approach is followed in Kekatos and Giannakis
(2013), where the authors propose an iterative distributed
strategy based on the classical ADMM algorithm to simul-
taneously solve the state estimation and the fault localiza-
tion in power systems.

In this work we are interested in developing a fault re-
silient state estimator rather than a fault detection scheme.
Conversely to what is done in Kekatos and Giannakis
(2013), where the problem is solved using a least square
approach with the introduction of an additional variable
to take into account the presence of outliers, we exploit
ideas coming from robust statistical analysis (Bloomfield
and Steiger, 2012; Huber, 2011) to formulate a suitable
convex problem. In particular the choice of a “1−norm”-
based cost function let us automatically filter out potential
outliers in the measurements caused by sensors faults.
Inspired by the recent result in Todescato et al. (2015),
we provide a distributed algorithm to solve the problem.
Starting from a synchronous algorithm which assumes



perfect and ideal communications among sensor nodes,
we modify it to deal with communication non idealities.
This is an important aspect since, in real-world large-scale
systems, ideal synchronous communications are not likely.
The algorithm we propose is based on an asynchronous
broadcast communication protocol. Numerically, the al-
gorithm is shown to be robust to communication non-
idealities. Under additional mild assumptions on the type
of communication non-idealities and on the curvature of
our prescribed cost function, convergence of the algorithm
is theoretically proven.

We apply the proposed algorithm in the framework of
sensors networks localization, even if the strategy applies
to a more general setup. Because of the well known perfor-
mance of the ADMM algorithm, we decide to compare the
algorithm with the strategy recently proposed in Kekatos
and Giannakis (2013). Since neither asynchronous nor
robust implementation of the algorithm in Kekatos and
Giannakis (2013) is provided, we suggest one. As shown by
the numerical simulations, compared to the ADMM, our
robust algorithm has the following features: (i) comparable
steady state estimation accuracy; (ii) in scenarios of highly
connected graphs, the algorithm is characterized by a
faster behavior for both the asymptotic and the transient
convergence rate; (iii) in general, conversely to the ADMM,
the transient evolution of our algorithm is monotonically
decreasing. Finally, from a theoretical point of view, (iv)
the algorithm is provably convergent. To the best of our
knowledge, a similar robust analysis for the ADMM is not
available.

1.1 Mathematical Preliminaries

In this paper, G (V, E) denotes a directed graph, where
V = {1, . . . , N} is the set of vertices and E ⊆ V × V is
the set of directed edges. More precisely the edge (i, j)
is incident on node i and node j and is assumed to be
directed away from i and directed toward j. The graph G
is said to be bidirected if (i, j) ∈ E implies (j, i) ∈ E .
Given a directed graph G (V, E), a directed path in G
consists of a sequence of vertices (i1, i2, . . . , ir) such that
(ij , ij + 1) ∈ E for every j ∈ {1, . . . , r− 1}. An undirected
path in G consists of a sequence of vertices (i1, i2, . . . , ir)
such that either (ij , ij+1) ∈ E or (ij+1, ij) ∈ E for every
j ∈ {1, . . . , r − 1}. The directed (resp. bidirected) graph
G is said to be strongly connected (resp. connected) if for
any pair of vertices (i, j) there exists a directed path (resp.
an undirected path) connecting i to j. Given the directed
graph G, the set of neighbors of node i, denoted by Ni, is
given by Ni = {j ∈ V | (i, j) ∈ E}. Moreover, N+

i = Ni ∪
{i}. Given a directed graph G (V, E) with |E| = M let the
incidence matrix A ∈ RM×N of G be defined as A = [aei],
where aei = 1,−1, 0, if edge e is incident on node i and
directed away from it, is incident on node i and directed
toward it, or is not incident on node i, respectively. Given
a vector v with vT we denote its transpose. The symbol I
denotes the identity matrix of suitable dimension. Given
a vector v, diag(v) represents the diagonal matrix where
the i-th diagonal element corresponds to the i-th element
of the vector v.

2. PROBLEM FORMULATION

In the following, we consider a localization-type problem in
Sensors Networks (Mao et al., 2007) where, starting from
a set of noisy measurements, the agents’ goal is to estimate
their absolute positions. We want to develop a distributed

strategy where the agents are allowed to exchange in-
formation locally, i.e., between neighbors. Moreover, for
real-world applications, the algorithm must be robust to
communication non idealities, e.g., packet dropouts, while
being resilient to faulty measurements due to possible
sensors failures.

Consider a set of N agents/sensors, labeled as V =
{1, . . . , N}, where each agent is described by a state vector
xi ∈ Rni . For our purpose and for ease of notation, we
restrict the analysis to the scalar case where ni = 1, ∀i ∈
V. 1 By exploiting graph theoretical tools, we model the
SN by means of a bidirected connected measurement graph
G(V, E).

In the following we introduce the measurement model used
and we formally state the problem at hand.

2.1 Measurement Model & Fault Resilient Estimation

Assume that each agent collects a certain number of mea-
surements according to the measurement graph G. More
specifically, only two types of measurements can be col-
lected. The first are noisy relative distance measurements
with respect to neighboring agents, that is, for each i ∈ V
and j ∈ Ni, node i measures

bij = xi − xj + nij , nij ∼ N (0, σ2
ij) .

where σ2
ij denotes the relative measurement noise variance.

The second type of measurements is a noisy absolute
measurement of the form

bi = xi + ni , ni ∼ N (0, σ2
i ) .

where σ2
i is the absolute measurement noise variance.

By collecting all the state variables in the vector x :=
[x1, . . . , xN ]T and by defining the measurement matrix
H and the vectors of measurements, b, and noises, n,
respectively as

H :=

[
I
A

]
, b :=

[
{bi}i∈V
{bij}(i,j)∈E

]
, n :=

[
{ni}i∈V
{nij}(i,j)∈E

]
,

the overall measurement model 2 can be rewritten in
compact form as

b = Hx + n , n ∼ N (0, R) , (1)

where R := diag({σ2
i }i∈V , {σ2

ij}(i,j)∈E) denotes the noise
variance matrix.

In presence of outliers, however, some of the measurements
can be corrupted by an extra term, which has a probability
distribution that highly differs from that of the expected
gaussian noise. By collecting these outliers in the sparse
vector o, the measurement model (1) becomes

b = Hx + n + o. (2)

As above mentioned, we are willing to design a distributed
state estimation procedure which is fault resilient, that is
which is able to produce a reliable estimation by auto-
matically filtering out the outliers. Conversely to classical
least squares estimation where the objective is to minimize
the weighted squared norm of the residuals, here we fol-
low an approach which is inspired from robust statistical
analysis (Bloomfield and Steiger, 2012; Huber, 2011), i.e.,
least absolute estimation. The main idea is to make use
of suitable convex costs which, differently to the classical
1 The more general case of multidimensional positions can be easily
derived assuming independent measurements along each dimension.
2 We underline the fact that we do not require all the nodes to collect
absolute positioning measurements. However, for absolute position-
ing we require that at least one agents measures it. Conversely, only
relative localization is performed.



quadratic costs, are locally quadratic only around the
origin while they become linear away from it. Thanks
to this, small residuals are weighted quadratically as in
the classical least squares. On the contrary, big residuals,
which usually identify the presence of sensors faults, are
weighted linearly. Consequently, the estimator weights and
“trusts” more the measurements corresponding to small
residuals. Precisely, we consider a modified 1-norm defined
as (Argaez et al., 2011)

‖ · ‖1,ε : Rn 7→ R : x 7→ ‖x‖1,ε :=

n∑
i=1

√
x2i + ε , (3)

where the parameter ε is used to tune the point where
the function changes its behavior from quadratic to linear.
Observe that, conversely to the standard 1-norm, ‖ · ‖1,ε
is differentiable and thus suitable to be used in gradient
based approaches.

Remark 1. (On the choice of ε). The parameter ε regu-
lates the switching behavior of the cost function from
quadratic to linear and its value must be chosen in order
to suitably filter out undesirable outliers. To do so, one
possible choice, is to pick ε such that ‖ · ‖1,ε behaves
quadratically for values of residuals within [−ασ,+ασ],
α ∈ [0,+∞), and linearly outside, being σ the standard
deviation of the noise prior distribution.

By making use of the modified 1-norm (3), we are now
ready to formulate our problem of interest. This reads as

P1 : min
x∈RN

‖(b−Hx)‖1,ε︸ ︷︷ ︸
J(x)

. (4)

Observe that, in order to solve P1 efficient convex solvers
might be used. However, these require global knowledge of
the network model as well as of the measurements.

Before presenting the proposed procedure which is inspired
on recent results in Todescato et al. (2015), in the next
section we briefly recall the particular communication
architecture exploited.

2.2 Partition-based Communication Architecture

We assume the network is partitioned into p non-
overlapping areas Ah, where h ∈ Vc := {1, . . . , p}. Each
area contains a certain number sh of agents i ∈ V and
is monitored by a local master node which has complete
knowledge of the intra-area communications and measure-
ment model. This node collects all the intra-area states,
can collect all the intra-area measurements, can process
the data, and can communicate with the master nodes
in charge to monitor the neighboring areas. According
to this partitioning, it is possible to define a new bidi-
rected communication graph Gc(Vc, Ec), where the edge set
Ec ⊆ Vc × Vc consists of the pairs (h, k) for which there
exist agent i ∈ Ah and agent j ∈ Ak such that (i, j) ∈ E .
Moreover, it is possible to block partition the state, the
measurement, the noise vectors as well as the measurement
matrix as

x =

x1
...
xp

 , b =

b1
...
bp

 , n =

n1
...
np

 , H =

H11 · · · H1p

. . .
Hp1 · · · Hpp

 ,
where, for h ∈ Vc, xh ∈ Rsh is the intra-area state vector,
while bh,nh ∈ Rmh (mh =

∑
i∈Ah

|N+
i |) contain the

measurements and noises of the agents owning to area Ah.
Similarly, the block Hhk ∈ Rmh×sk consists of the elements
of the matrix H connecting the agents contained in area
Ah with those contained in area Ak. Observe that Hhk 6= 0

if and only if (h, k) ∈ Ec. Finally, the noise variance matrix
becomes R = blkdiag(R1, . . . , Rp), Rh ∈ Rmh×mh .
This area partitioning is extremely flexible in large-scale
systems where, for privacy issues, master nodes are built
to have access only to intra-areas knowledge while they
can perform inter-area communications. Observe that, ac-
cording to the partition-based architecture, it is possible to
rewrite Problem P1, highlights the separability structure
of the cost function which is now written as sum of “local”
costs, as

P1 : min
x1,...,xp

∑
h∈Vc

‖bh −
∑
k∈N+

h

Hhkxk‖1,ε

︸ ︷︷ ︸
Jh(xh,{xk}k∈Nh

)

. (5)

3. DISTRIBUTED SOLUTIONS

3.1 Synchronous Fault Resilient Estimation

Here, we present a distributed solution for Problem (5)
which exploits the partition-based communciation archi-
tecture of Section 2.2. This algorithm represents the start-
ing point for an asynchronous robust version which will
be presented in the next section. The proposed algorithm,
which we refer to as Distributed Fault Resilient Estimation
algorithm (hereafter denoted as DFRE), is inspired on the
Blok Jacobi Algorithm recently developed in Todescato
et al. (2015). The algorithm is essentially a generalized
gradient descent of the type

x(t+ 1) = x(t)− ρD−1(t)∇J(t) ,

where, at iteration t, ∇J(t) is the gradient of the cost
function evaluated in the current state estimate x(t), D(t)
is a block diagonal matrix which is used to accelerate the
convergence of the algorithm and ρ is the gradient step
size. In particular, from the cost in (5), we have that the
h-th block of the gradient vector, computed by the master
node of area Ah is equal to

[∇J(t)]h = −
∑
k∈N+

h

HT
kh

(
(diag(zk(t)))

2
+ εI

)−1/2
zk(t)︸ ︷︷ ︸

gk(t)

,

(6)
where zh(t) := bh −

∑
k∈N+

h
Hhkxk(t) represents the

vector of current estimation residuals. Observe that to
compute zh(t), the master node h has to receive the states
xk from nodes k ∈ Nh, and then to compute (6) it needs to
receive the vector gk(t) from k ∈ Nh. Regarding the D(t)
matrix, as done in Todescato et al. (2015), the idea is to
use the second order information of the cost. In particular,
we set the h-th diagonal block of D(t) equal to the h-th
diagonal block of the cost Hessian. In the aforementioned
paper, the adoption of a quadratic cost function led to a
constant second derivative term, that is D(t) = D̄ ∀t ≥ 0.
However, in our case, D(t) changes over time and is state
dependent. In particular, the h-th block of D(t) is equal
to

Dh(t) = εHT
hh

(
(diag(zh(t)))

2
+ εI

)−3/2
Hhh , (7)

which can be computed by the master node h using
only intra-area information. Finally, each master node can
update its current estimate as

xh(t+ 1) = xh(t)− ρD−1h (t)[∇J(t)]h . (8)

Algorithm 1 formally describes the DRFE algorithm. Note
that, in order to compute the g’s and update the x’s, Algo-
rithm 1 requires two communication rounds per iteration.



Algorithm 1 DFRE

1: for t ∈ N each h ∈ Vc do
2: sends xh(t− 1) to k ∈ Nh;
3: receives xk(t− 1) from j ∈ Nk;
4: computes gh(t) as defined in (6);
5: sends gh(t) to k ∈ Nh;
6: receives gk(t) from k ∈ Nk;
7: computes xh(t) by using (8);
8: end for

Remark 2. (On the gradient computation).
Observe that to compute the gradient and, in particular,
zh, h ∈ Vc, the exchange of {xk}k∈Nh

among neighbors is
required. However, it is worth noticing that only the entries
of xk corresponding to columns of Hhk which are different
from the vector of all zeros, are needed. Consequently, the
information exchange can be reduced.

Remark 3. (On the number of communication rounds).
Observe that in the particular case of SN localization, the
communication rounds per iteration needed to implement
Algorithm 1 can be reduced to one. Indeed, by assuming
that at the beginning of the algorithm neighboring areas
exchange their inter-area relative measurements then, only
the communication of the states x’s is required. This is
because in localization-type problems the measurement
matrix has a particular structure being composed only
of entries equal to 1 and −1. However, for the sake of
completeness we presented the more general case where we
assume neither model nor measurements exchange among
neighbors. Moreover, in Section 5 we compare the DRFE
algorithm with the ADMM-based algorithm proposed in
Kekatos and Giannakis (2013) where no measurements
exchange is implemented.

3.2 Asynchronous, Robust, Fault Resilient Estimation

Algorithm 1 is designed for the scenario of synchronous
ideal communications where neither packet losses nor de-
lays occur. Here, inspired on the Robust Block Jacobi algo-
rithm proposed in Todescato et al. (2015), we eventually
generalize Algorithm 1 to the case of asynchronous and
non ideal lossy communications. We refer to this modified
version as Robust Distributed Fault Resilient Estimation
algorithm (denoted hereafter as r-DFRE). In particular,
we exploit an asynchronous broadcast communication pro-
tocol where one master node, say h ∈ Vc, wakes up,
updates its variables and, at the end of the computations,
sends them to all its neighbors. Observe that the protocol
requires only one communication round per iteration since,
conversely to DFRE, we can send at the same time the
state xh and its gradient-related variable gh. However, in
order to perform its local updates, it is necessary that each
node stores in its local memory the following variables:

• xh: estimate of its state;

• x
(h)
k , k ∈ Nh: local estimate of the state of the

neighboring area k (note that x
(h)
h ≡ xh);

• gh: gradient-related variable regarding intra-area h
information;

• g
(h)
k , k ∈ Nh: gradient-related variable regarding

intra-area k information (note that g
(h)
h ≡ gh);

Thanks to this additional memory not only we can use
an asynchronous communication protocol, but we are also
able to deal with packet losses in the communication. The
latter can be conveniently modeled using the indicator
function

γ
(h)
k (t) =

{
1 if h received the packet from k
0 otherwise

as done in Todescato et al. (2015). Indeed, if node k ∈ Nh
does not receive the packet that node h sends to it, then
it simply does not update its memory. Namely,

x
(k)
h (t) =

{
xh(t) if γ

(k)
h = 1

x
(k)
h (t− 1) otherwise

g
(k)
h (t) =

{
gh(t) if γ

(k)
h = 1

g
(k)
h (t− 1) otherwise

(9)

Consequently, when node k will wake up, it will use
information regarding node h which are possibly out of
date. Specifically Eq.(6) becomes

[∇J(t)]h = −
∑
k∈N+

h

g
(h)
k (t) . (10)

This algorithm, which uses memory, is our r-DFRE al-
gorithm, whose formal description can be found in Algo-
rithm 2.

Algorithm 2 r-DFRE

1: for t ∈ N do
2: assume node h ∈ Vc wakes up;
3: using (7) and (10), updates xh(t) as in (8);
4: computes gh(t);
5: sends xh(t),gh(t) to k ∈ Nh;

6: if γ
(k)
h (t) = 1 then node k

7: receives xh(t) and gh(t);

8: updates x
(k)
h (t) and g

(k)
h (t) as in (9);

9: end if
10: end for

3.3 Convergence Analysis of the r-DFRE Alogirthm

Here we present a convergence result regarding the r-
DFRE algorithm described in Algorithm 2. In order to
state our result, which is based on the convergence analysis
of partially asynchronous algorithms provided in Bertsekas
and Tsitsiklis (1989), we introduce the following assump-
tions characterizing the type of communications non ide-
alities.

Assumption 4. (Persistent activation).
There exists a positive integer D such that each master
node h ∈ Vc wakes up and performs its update at least
once within any interval [t, t+D].

Assumption 5. (Bounded packet-losses).
There exists a positive integer L such that the number of
consecutive communication failures between every pair of
neighboring nodes in the communication graph Gc is less
than L.

Finally, we need a technical assumption on the curvature
of the prescribed cost function which force us to consider
a slightly modified cost.

Assumption 6. (Curvature of Cost Function).
Consider the following modified version of ‖ · ‖1,ε

[‖x‖1,ε]i :=

{∑
i

√
x2i + ε if |xi| ≤ x

αx2i + γ if |xi| > x

where x is a “saturation” point and the parameter α and
γ can be used to extend twice continuous differentiability
of the cost in correspondence of x.



Basically, Assumption 6 ensures that the curvature, i.e.,
the second derivative of the cost function, is bounded
below by a strictly positive value. Observe that, from a
practical point of view, the saturation value x can be any
arbitrarily large finite value. Thus, this modification does
not practically influence the r-DFRE algorithm.
The next proposition characterizes the convergence 3 of
Algorithm 2.

Proposition 7. (Convergence of r-DFRE algorithm).
Consider Problem 5 and the r-DFRE Algorithm 2. Let
Assumptions 4 and 5 and the technical Assumption 6 hold.
Then, there exists ρ such that, for all 0 < ρ < ρ, it holds
limt→∞∇J(x(t)) = 0.

The proof can be found in Appendix A.

4. ADMM ALGORITHM

Here, we briefly introduce the distributed ADMM-based
algorithm proposed in Kekatos and Giannakis (2013)
(which, for brevity, in this paper we refer to as ADMM
algorithm) to perform state estimation in smart electric
grid in the presence of possible faulty measurements. The
idea behind the proposed algorithm is that of simulta-
neously estimating the state vector as well as a sparse
vector of outliers, which is used to perform fault resilient
estimation and fault detection. More specifically, assuming
a measurement model of the form (2), the aim is to solve

P2 : min
x,o

1

2
‖b−Hx− o‖22 + λ‖o‖1,

where o is the vector of outliers. The 1−norm, used to
regularize the problem, serves as convex approximation of
the 0−norm, i.e., the cardinality function and it is used to
enforce sparsity of o. Finally λ is a user-defined parameter
used to tune the regularization.
As for the cost function of problem P1, also the one
of P2 can be decomposed exploiting a partition-based
communication architecture similar to the one of Section
2.2. This architecture allows to solve the problem in a
distributed fashion using the ADMM algorithm. We refer
the interested reader to Kekatos and Giannakis (2013) for
an exhaustive explanation.
Interestingly, the ADMM algorithm simultaneously re-
turns an estimate of the state as well as of the vector of
outliers. The latter can be used to perform fault detection.
However, similar to the DFRE but conversely to the r-
DFRE, the ADMM algorithm assumes synchronous and
reliable communications and the authors do not offer any
robust implementation in the presence of communication
non idealities. In order to compare the proposed r-DFRE
algorithm with the ADMM, we implement a possible ex-
tension of the algorithm in Kekatos and Giannakis (2013)
which can be exploited in the case of non ideal communica-
tions. In particular we assume an asynchronous broadcast
communication protocol and we assume that each master
node can store in memory the last received information
from its neighbors, similarly to what is done in Section 3.2.

5. SIMULATIONS

In this section we compare the r-DFRE algorithm with
a “robustified” version of ADMM. We consider a one
dimensional environment of length L = 200[m] equally

3 Interestingly, assuming the presence of bounded delays in the
communication, the r-DFRE algorithm remains provably convergent.
Indeed, this is true since the presence of bounded delays, together
with the specific broadcast communication protocol chosen, implies
the persistent activation of each node.

partitioned in p = 20 areas, each of them supervised by
a master node. In each area the number of agents varies
from 5 to 10. Inside each area, we assume the nodes are
positioned and connected according to a bidirected random
geometric measurement graph G(V, E) with connectivity
radius r. Moreover we assume that each node is able to
measure its absolute position as well.
Regarding the inter-area connections, since we are working
on a line, we assume for h ∈ {2, . . . , p−1} that Nh = {h−
1, h + 1}, while N1 = {2} and Np = {p − 1}. In order to
enforce connectivity among adjacent areas, for each pair
of adjacent areas we take m relative measurements corre-
sponding to the m closest pairs of nodes. The possibility
to manually chose the value of m let us highlight some
interesting behavior depending on the level of inter-area
connectivity.
We assume the measurements are characterized by the
same prior distribution. In particular, we set σi = σij =
σ = 0.1[m], ∀i ∈ V, ∀(i, j) ∈ E . Concerning the outliers,
we assume that 10% of the measurements are corrupted by
an additive noise, whose absolute amplitude is uniformly
distributed in the range [1.5, 2][m]. For consistency, in case
the outlier corrupts a relative distance measure among
agents of the same area, the measurement is saturated to
the communication radius r characterizing the intra-areas
random geometric graph G. In case the outlier corrupts a
relative inter-area measurement, the saturation is set to a
value proportional to their communication radius.
Concerning ε, we have to take into account that, as above
mentioned, its value controls the switching behavior of
‖·‖1,ε from a quadratic to a linear trend. Thus, it influences
the robustness of ‖·‖1,ε to the presence of outliers and even-
tually the accuracy of the solution. Nevertheless, ε controls
the smoothness of the cost and consequently, the rate of
convergence of our proposed gradient-based algorithm. In
the next simulations, we heuristically set ε = 1

4σ
8/3, which

enforces the cost function ‖ · ‖1,ε to behave quadratically
within [−σ, σ]. Preliminary simulations showed that this
value represents a good trade-off between accuracy and
rate of convergence.
For the choice of λ, following Kekatos and Giannakis
(2013), we set λ = 1.34σ. 4

We compare the two algorithms in terms of averaged root
mean squared error (ARMSE). Given M Monte Carlo
runs for different graph realizations, denote with x{i}(t)
the estimate at time t given by one of the two algorithms
in the i−th Monte Carlo run. Then, ARMSE reads as

ARMSE(t) :=
1

M

M∑
i=1

RMSE(x{i}(t)) , (11)

where

RMSE(x) :=
1√
N
‖x− xtrue‖

represents the root mean squared error between the true
nodes positions, xtrue, and the estimate, x. We first use
ARMSE to compare the steady state accuracy of the
estimates, solutions of problems P1 and P2. This corre-
sponds to the evaluation of the ARMSE, computed using
the estimates given by the r-DFRE and the ADMM, as
t→∞, since the accuracy of the technique is given by the
final value of the estimate. Moreover, we also use classical
least squares estimation (LS) to verify if the estimation
technique given by the solution of problem P1 is truly able

4 In Kekatos and Giannakis (2013), λ = 1.34 since the measurements
are normalized by their standard deviation. Equivalently σ = 1.



ARMSE(∞) P1 ARMSE(∞) P2 ARMSE(∞) LS

0.0612 0.0594 0.2290

Table 1. Steady state estimation accuracy. Values
of ARMSE, computed over M = 1000 Monte Carlo
runs, for the solutions of problems P1, P2 and of LS,
respectively, for fixed values of r = 3[m] and m = 5.

to deal with the presence of outliers. Table 1 allows us to
carry out a comparison.
Note that LS returns completely inaccurate estimates due
to the presence of the outliers. Conversely, the other two
approaches are fault resilient and comparable, even though
P2 gives, in general, slightly better results. Even if the
results have been obtained for specific values of r and
m, the same behavior holds for different values of the
parameters.

Once verified the goodness of the solution given by prob-
lem P1, we compare the r-DFRE and the ADMM with re-
spect to their convergence rate 5 . We recall that in order to
effectively implement both the algorithms, a preliminary
step concerns with the choice of the parameters ρ for the r-
DFRE and c for the ADMM (which represents the penalty
in the augmented Lagrangian). We follow the common
approach of selecting the values ρ = ρ∗ and c = c∗, respec-
tively, corresponding to the fastest asymptotic convergence
rate 6 . This is done in order to minimize the number of
iterations to converge toward to optimal solution of the
corresponding problem.
Figure 1 shows the evolution of the ARMSE between the
solution of the algorithms at time t, x(t), and the final solu-
tion of the respective problem in the upper panel, and the
ARMSE between x(t) and the true positions xtrue in the
lower panel. In particular, for the r-DFRE, we report the
evolution corresponding to ρ = ρ∗ while, for the ADMM,
two different values of c are reported, namely, c = c∗ and
c = c∗/10. This choice is due to the different convergence
behavior of the ADMM. Indeed, from the upper panel of
Figure 1 it can be seen that, by choosing c = c∗, the
ADMM is characterized by an undesirable transient but
converges to its corresponding optimum faster than the
r-DFRE. Conversely, by choosing c = c∗/10, the ADMM
shows a better transient but slows down its asymptotic
behavior becoming even slower than the r-DFRE. How-
ever, by comparing the algorithms in terms of estimation
accuracy with respect to the true positions, as shown in the
lower panel of Figure 1, a different behavior emerges. In
particular, for c = c∗ the ADMM is much slower than the
r-DFRE to reach the same level of accuracy. Conversely,
by choosing c = c∗/10, the ADMM and the r-DFRE are
characterized by a similar behavior both in terms of tran-
sient and asymptotic evolution. A final remarkable feature
of the r-DFRE compared to the ADMM, is that during the
transient evolution, the evolution is always monotonically
decreasing.
We recall that the possible discrepancy between transient
and asymptotic behavior is a known fact, see Fagnani and
Zampieri (2008). As highlighted by the previous analysis,
this translates in a non trivial procedure to find the opti-
mal value of c for the ADMM. Conversely, for the r-DFRE,
the extensive simulations performed suggest the fact that
the optimal ρ leads to an optimal transient and asymptotic
behavior simultaneously.
As final remark, notice that for both the algorithms the

5 In all these simulations, both algorithms are initialized to the same
initial conditions, which correspond to the absolute measurements.
6 To given a quantitative idea, in all the simulation performed, the
order of magnitude of ρ∗ and c∗ are −4 and −2, respectively.

number of iterations required to reach a good estimate of
the agents’ positions is quite large. However, it is necessary
to take into account that, in the asynchronous broadcast
communication protocol we are considering, at each time
instant only one (randomly chosen) node is activated, so
the number of iterations to achieve a particular precision
should be averaged over the number of master node in the
network.
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Fig. 1. Upper panel: ARMSE, over M = 100 Monte Carlo runs,
with respect to the optimal solution of the respective problem.
Lower panel: ARMSE with respect to the true positions. The
parameter used for the simulations are m = 5 and r = 3 [m].

To highlight the dependency of the algorithms on the
sensors network connectivity, we perform simulations for
different values of inter-area connections m and intra-area
communication radius r. Each panel of Table 2 shows, for
a given number of inter area connections m, the number
of iterations needed to reach the 95% accuracy from the
optimal solution of the corresponding problem for increas-
ing values of the communication radius r. Observe that, for
low m and increasing r (Table 2 upper panel), the r-DFRE
highly improves, the ADMM corresponding to c = c∗/10
slightly improves while for c = c∗ moderately degrades. For
a larger value of m (Table 2 lower panel), for both c’s the
ADMM deteriorates, while the r-DFRE keeps improving
for increasing r. The analysis just performed suggests
that the connectivity of the underlying graph affects the
behavior of the algorithm and in general it is a quantity
that must be taken into account. Remarkably, even if
in a totally different scenario, the connection between
highly connected graphs and deteriorating performance of
ADMM has been shown in the recent Bof et al. (2016) as
well.

Finally, Figure 2 shows a simulation in the presence of
packet losses. In particular a packet loss probability of
50% is chosen. The plot shows that both algorithms are
robust to packet losses. However, as stated in Proposition
7, convergence of the r-DFRE is theoretically proven.



m = 5 r = 3[m] r = 8[m]

r-DFRE 2593 811

ADMM 0.1c∗ 1643 1526

ADMM c∗ 4361 4896

m = 10 r = 3[m] r = 8[m]

r-DFRE 2186 933

ADMM 0.1c∗ 2130 2673

ADMM c∗ 5777 6278

Table 2. Number of iterations, averaged overM = 100
runs, required to reach a 95% accuracy from the opti-
mal solution for increasing intra-area communication
radius r and for different values of inter-area connec-

tions m.

Conversely, a similar rigorous result for the ADMM is not
available.
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Fig. 2. ARMSE, averaged over M = 100 runs, between the estimate
of the positions of the agents and their true positions, with
a packet loss probability of 50%. The parameter used for the
simulations are m = 5 and r = 3 [m].

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we presented an asynchronous and robust
algorithm which can be used to perform fault resilient
estimation in presence of outliers. We applied it to a
localization-type problem and showed that its results, in
terms of estimation accuracy and convergence behavior,
are comparable with those of a (slightly modified) ADMM
algorithm recently proposed by Kekatos and Giannakis
(2013) to perform estimation in presence of corrupted
measurements. Through simulations, we showed that, for
the ADMM, different parameter choices might lead to
completely opposite convergence behaviors. Conversely,
the proposed solution behaves consistently during the
transient and the steady state evolution, thus alleviating
the parameter tuning phase. Moreover, we showed that the
graph connectivity can play a fundamental role in the con-
vergence behavior of the algorithms. Finally, we observed
that both algorithms give good results even in presence
of packet losses. However, under mild assumptions, the
proposed solution is thoretically provably convergent while
a similar result for the ADMM is not available.

As future directions, we are interested in applying the r-
DFRE to power system state estimation, and to better
characterize its performance in presence of packet losses
and communication non idealities. Another interesting
research avenue regards a better understanding of the
parameters tuning phase and their dependency on the
underlying graph related quantities. Finally, in this paper

we did not considered fault detection. As future work,
therefore, we will study how to implement a distributed
fault detector rather than only a distributed fault resilient
estimator.

Appendix A. PROOF OF PROPOSITION 7

To prove Proposition 7 we leverage tools for the class
of partially asynchronous algorithms. In particular, we
resort to Proposition 5.2 of Bertsekas and Tsitsiklis (1989)
about the convergence of the generalized block-gradient
algorithm, which we recall next with all the necessary
assumptions

Proposition 8. (Convergence of the block-gradient).
Consider the generalized block-gradient algorithm

xi(t+ 1) = xi(t) + ρsi(t) .

where xi represents the state of the i-th processor, ρ is a
step size and si(t) is the prescribed descent direction.

Let J : Rn 7→ R be the cost function to be minimized
satisfying:

(i) J is twice continuously differentiable;
(ii) J(x) ≥ 0, ∀x ∈ Rn;

(iii) ∇J(x) is Lipschitz continuous with constant L.

Let T i be the set containing the instants when the variable
xi is updated. Moreover, let τ ij(t) be the most recent time
instant when processor i has received information from
processor j. Assume that there exists a positive integer B
such that:

(iv) for every i ∈ {1, . . . , n} and t ≥ 0, at least one element
of {t, t+ 1, . . . , t+B − 1} belongs to T i;

(v) ∀i, j and t ≥ 0, it holds that:

max{0, t−B + 1} ≤ τ ij(t) ≤ t

Finally, assume there exist positive constants K1 and K2

such that, ∀i and ∀t ∈ T i it holds:

(vi) si(t)
T∇iJ(xi(t)) ≤ −‖si(t)‖2/K1;

(vii) ‖si(t)‖ ≥ K2‖∇iJ(xi(t))‖,

where xi(t) := (xi(τ
i
1(t)), . . . , xn(τ in(t))), i.e. the memory

accessible to processor i at time t.

Then, there exists ρ̄ > 0 such that for all 0 < ρ < ρ̄ it
holds limt→∞∇J(x(t)) = 0 �

In order to prove convergence of our r-DFRE algorithm
using Proposition 8 we need to check if all the necessary
assumptions hold.
Firstly, thanks to Assumptions 4 and 5, conditions (iv) and
(v) on the existence of a positive integer B characterizing
the nature of non ideal communication and information
exchange are satisfied. Secondly, regarding the cost ‖ ·‖1,ε,
it is easy to see that (i) and (ii) are satisfied, that is, it is
twice continuously differentiable and positive. Moreover,
regarding (iii), its Jacobian is Lipschitz continuous with
constant L which is a function of the parameter ε and,
thanks to the technical Assumption 6 it holds that L > 0.
Finally, what remains is to prove the existence of K1 and
K2 for which (vi) and (vii) are satisfied. According to our

notation xi(t) ≡ {x(i)
j (t)}j∈Ni

and ∇iJ(xi(t)) ≡ [∇J(t)]i.
Then, we have

si(t) = −D−1i (t)[∇J(t)]i, i ∈ Vc ,



and, concerning condition (vi), we can write

−[∇J(t)]Ti Di(t)[∇J(t)]i ≤ −[∇J(t)]Ti D
2
i (t)[∇J(t)]i/K1

which, if Di(t) is symmetric positive definite, is equivalent
to

I − Di(t)

K1
≥ 0 .

The latter holds if K1 ≥ λmax(Di(t)), being λmax(Di(t))
the largest eigenvalue of the matrix Di(t).
Regarding the second inequality (vii) we can write

[∇J(t)]Ti D
2
i (t)[∇J(t)]i ≥ K2

2 [∇J(t)]Ti [∇J(t)]i
which is equivalent to

D2
i (t)−K2

2I ≥ 0

and holds if K2 ≤ +
√
λmin(D2

i (t)) = |λmin(Di(t))| =
λmin(Di(t)), where the last equality holds since, thanks to
Assumption 6, D(t) is positive definite. Then, by choosing

K1 ≥ sup
i
{λmax(Di(t))} , K2 ≤ inf

i
{λmin(Di(t))} , (A.1)

the inequalities hold for every i ∈ Vc.
Observe that it is always possible to find K1 and K2
satisfying (vi) and (vii) as shown by Eq.(A.1) since D(t)
is positive definite. It is important to notice that, without
the additional Assumption 6, this is no more true since our
prescribed cost ‖ · ‖1,ε approximates the standard 1−norm
and its second derivative tends to zero for increasing values
of x leading to K2 = 0, which is not admissible for
Proposition 8.
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