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Abstract— In this paper we analyze randomized coordina-
tion control strategies for the rendezvous problem of multiple
agents with unknown initial positions. The performance
of these control strategies is measured in terms of three
important metrics: average relative agents’ distance, total
input energy consumption, and number of packets per unit
time that each agent can receive from the other agents.
By adopting an LQ-like optimal control approach, we show
how to numerically compute optimal feedback gains for
randomized communication topologies. In particular we show
that there is a trade off between these three metrics and that
the optimal feedback is a sum of two terms: one that depends
only the on agents own positions and the other that depends
only on relative distances between agents.

Keywords— Rendezvous control, networked control system,
consensus agreement, optimal control, randomized topology

I. INTRODUCTION

The need for coordination of multiple mobile vehi-
cles appears in many applications such as search-and-
rescue missions and pursuit evasion games. Coordination
among vehicles requires exchange of information between
them. However, the amount of information that can be
exchanged is limited by many factors such as channel
bandwidth, radio antenna power, interference, and it is
therefore desirable to devise coordination strategies that
require the transmission of a limited number of messages
among the agents. However, limiting information exchange
among agents negatively impacts the performance of the
vehicles as a group in terms of other metrics such as
energy consumption and time required to accomplish a
task. The goal of this paper is to analyze the trade offs
between these aspects within the framework of rendezvous
control, i.e. convergence of all agents to a common lo-
cation not necessarily specified. Recent work has shown
that the performance of rendezvous control is strongly
dependent on the specific communication topology among
the agents. In particular, there has been a particular effort in
estimating performance for specific fixed topology classes
that exploit symmetries. Most of previous work has been
based on fixed communication topologies. In this paper we
consider a time-varying random communication topology,
where every agent exchange messages with a small set of
other agents that is selected at random among all agents.
The rationale behind this communication scheme is that
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random selection allows agents to communicate with all
other agents over time even if at any time step they
can communicate only with a small number. Under the
assumption that the feedback structure is a linear function
of agents own positions and relative distances with the
other agents and considering a cost function defined as a
quadratic penalty on relative distances between the agents
and the sum of all agents energy expenditure, we show
that the total cost can be written as the sum of two terms
which depend only on the initial positions. In particular,
one term depends on the relative distances and the other
that depends on the center of mass of agents with respect
to absolute coordinate system considered. Interestingly, we
show that in order to minimize energy expenditure the
agents do not necessarily converge towards their initial
center of mass as one would expect. This is the case only
if every agent communicates with all other agents at any
time step. In general, the optimal gains that minimize the
total cost cause the agents to move towards a point that is
between the instantaneous center of mass and the a-priori
expected position center of mass of all agents.

II. PROBLEM FORMULATION

Consider N identical agents whose dynamics is de-
scribed by a scalar linear discrete time integrator:

xi(t + 1) = xi(t) + ui(t), i = 1, . . . , N

where xi ∈ R represent agent position, and ui ∈ R. More
compactly we can descrive the dynamics in vector form as
follows:

x(t + 1) = x(t) + u(t)

where x = (x1, x2, . . . , xN )T and u = (u1, u2, . . . , uN )T .
We assume that each agent can measure its own position
perfectly and there is no external disturbance in the agent
dynamics. We assume that the agent can transmit their
current position to some other agents, independently of
their relative distance, i.e. we assume they have infinite
power antennas. The goal is to obtain a (possibly time-
varying) feedback control

u = K(t)x, K ∈ R
N×N

yielding the rendezvous, i.e. the all agents must converge
to a common location. More formally, we want the closed
loop system:

x(t + 1) = (I + K(t))x(t)

where I is the identity matrix, is such that, for all initial
conditions x(0) ∈ R

N , it holds

lim
t→∞

x(t) = α(t)1



where 1 = (1, 1, . . . , 1)T ∈ R
N , and α ∈ R. A

more restrictive definition of rendezvous control would be
limt→∞ x(t) = α1 which forces all agents to converge to
a fixed location.

The problem as stated above seems trivial, since the
choice K(t) = −I would make all agent to converge
to the origin of the coordinate system in one step and
does not need any exchange of information among agents.
However, this scheme might lead to a very high energy
expenditure, i.e. ||u||2, since the origin might be very far
from all agents. On the other hand, if all agents knew all
other agents positions, the best strategy from an energy
perspective, is to converge to the common center of mass
xb(0) = 1

N

∑N

i=1
xi(0) = 1

N
1

T x(0).

This strategy, however requires the exchange of a num-
ber of messages while the agents do not move. On the
other hand, from a performance point of view it is desired
that agents converge to a common point as fast as possible,
therefore waiting for the computation of the exact center
of mass can reduce overall rate of convergence. This is a
common problem in control, often known as exploration-
exploitation dilemma, in fact very often it is unclear
weather it is better to wait to gather more information
or use current incomplete information to accomplish the
desired task. The goal of this paper is to study commu-
nication topologies for rendezvous control which require
only a limited information exchange, and to highlight the
performance tradeoff in terms of energy consumption, rate
of convergence and quantity of information exchanged.

In our framework we quantify information exchange
as number of messages received by each agent at any
time step, which corresponds to the non-zero off-diagonal
entries of the feedback matrix K(t). Most of recent
work on rendezvous control has concentrated on fixed
communication topologies K(t) = K where most of
the off diagonal entries are null [1][2]. In particular, the
goal was to analytically determine the rate of convergence
based on some a priory constrains on the structure of
K and to optimally design classes of communication
topologies with limited communication requirements. This
sets of problems are rather difficult and often lead to the
solution of a combinatorial problems. Another approach
has considered feedback matrix which depended on agents
location K(t) = K(x) [3]; in particular it was assumed
that agents can communicate only with agents which are
within a fixed communication range. This strategy reduces
communication burden but cannot guarantee convergence
of all agents to a common location. In [4] it was shown
that the agents communication topology needs to form
a fully connected graph within an arbitrary large but
finite time interval in order for the agent to converge
to a common location. In other words this means that
there must exist a time interval T ∈ N, such that the
non-zero entries of the union of all matrices {K(t)}

ti+1

t=ti

must form a fully connected graph for all i ∈ N, where
ti+1 − ti ≤ T . Inspired by this result, we propose to
consider a stochastic communication topology, i.e. a time-
varying control feedback K(t), whose off-diagonal entries

mostly zeros instantaneously, i.e. Ki,j(t) = 0 for most
most of the indexes i, j, but on average they are not,
i.e. E[Ki,j(t)] �= 0. This is equivalent of saying that
the communication topology forms on average a fully
connected graph. Our strategy does not satisfy the con-
dition of [4] as there is always a small probability that
the communication topology graph is not connected for
any arbitrary but finite time interval T , therefore it is not
possible to guarantee that limt→∞ x(t) = α(t)1. Since
we are considering probabilistic control strategies, we will
consider the following condition of rendezvous control:

lim
t→∞

E[||x(t) − α(t)1||2] = 0

i.e. x(t) → α(t)1 in mean square sense. Also, we will
limit our control feedback to symmetric schemes, i.e. every
agent must use the same control strategy. In particular we
assume that at any time step each agent receives the current
location of other ν distinct agents chosen at random. The
control scheme is linear feedback with constant gains of
its own position with respect to a fixed point α and the
relative distance with the other agents:

ui = −k(xi − α) + h

ν∑
j=1

ei,j(t)(xj − xi)

where k, h, α ∈ R, ei,j ∈ {0, 1}, eii = 0, and
∑N

j=1
ei,j =

ν. The non-zero ei,j(t)s correspond to the communica-
tion links of agent i with the other agents at time step
t. The control feedback is the sum of two terms: the
first depends only on the origin system and requires no
communication, while the second requires communication
but is independent of the origin system. Therefore, by
appropriately choosing k and h, it is possible to place
more weight on one term or the other. As it will be shown
later, the parameter α can be used to improve performance
when some prior information about distribution of vehicles
is known. More compactly, this control scheme can be
written as:

u(t) = −
(
(k + νh)I + hE(t)

)
(x(t) − α1) (1)

where E ∈ E and the set E is defined as follows:

E = {E ∈ {0, 1}N×N |E1 = ν1, Ei,i = 0}.

The performance of control feedback for fixed gains k, h
is based on a quadratic functional that penalizes relative
distances between agents as well as energy consumptions,
i.e.

J = E

[
xT (T )Qx(T ) +

T−1∑
t=1

(
xT (t)Qx(t) + r||u(t)||2

)]

where r ∈ R
+ and Q ≥ 0 has the following property:

xT Qx = 0 ⇐⇒ (xi − xj) = 0∀(i, j) (2)

This condition penalizes a scenario where all agents are
not in the same location and is independent system origin.
One possible choice is to penalize the sum of the square
distances of agents from their instantaneous center of mass



xb(t). With this regard let us define the distance of agent
i from the instantaneous center of mass yi(t) = xi(t) −
xb(t), or more compactly:

y = x − 1xb = x − 1
1

N
1

T x =

(
I −

1

N
11

T

)
x = Y x

Therefore, since we want to penalize ||y||2, we can chose
Q = qY T Y = qY , where q ∈ R

+. This choice for the
cost weight Q satisfies Equation (2). Although this choice
is somewhat arbitrary, it has the advantage to simplify
derivations, and still it allows us to balance the tradeoff
between rate of convergence and power consumption by
changing the values of the weights q and r. Therefore from
now on we will consider the following cost:

J(k, h, α, x0) =

= E

[
q||y(T )|| +

∑T−1

t=1

(
q||y(t)||2 + r||u(t)||2

) ∣∣∣ x0

]
(3)

subject to control defined in Equation (1).

III. OPTIMAL CONTROL GAINS DESIGN

In this section we compute explicitly the total ren-
dezvous control J for fixed control gains k, h, α. Then we
propose a numerical algorithm to find the optimal gains
k∗, h∗, α∗ which minimize the cost J . Before continuing
we point out some properties of the matrix Y :

Y
Δ
= I −

1

N
11

T , Y⊥

Δ
=

1

N
11

T

Y = Y T ≥ 0, Y = Y 2, Y + Y⊥ = I,

Y Y⊥ = Y⊥Y = 0, Y⊥ = Y T
⊥ ≥ 0, Y⊥ = Y 2

⊥

The random matrix E(t) is uniformly chosen from the set
E and satisfies the following properties:

E[E(t)] = νY⊥ −
ν

N − 1
Y

E[ET (t)E(t)] = ν2Y⊥ +
ν(N − ν)

N − 1
Y

E[ET (t)Y E(t)] = ν

(
1 − ν

N − 2

(N − 1)2

)
Y

E[ET (t)Y⊥E(t)] = ν2Y⊥ +
ν(N − ν − 1)

N − 1
Y

We can now compute explicitly the cost function
J(k, h, x0) using the standard dynamic programming ap-
proach based on the cost-to-go function Vt(x) recursively
defined as follows:

VT (xT )
Δ
= E[q||yT ||

2]

Vt(xt)
Δ
= E[q||yt||

2 + r||ut||
2 + Vt+1(xt+1)]

where we used xt = x(t) to simplify notation. We claim
that the cost-to-go function can be written as

Vt(xt) = stE[xT
t Y xt] + s⊥t E[(xt − α1)T Y⊥(xt − α1)]

where st and s⊥t are appropiate positive scalars. The claim
is clearly true for t = T , where sT = q and s⊥T = 0, since
by definition E[xT

T Y xT ] = E[||yT ||
2]. We can prove our

claim for all other time steps t by induction. To simplify

notation we define the following change of coordinate
system:

z = x − α1

therefore the dynamics of the system and the cost-to-go
can be written as:

ut = (−(k + νh)I + hEt)zt

zt+1 = ((1 − k − νh)I + hEt)zt

Vt(zt) = stE[(zt + α1)T Y (zt + α1)] + s⊥t E[zT
t Y⊥zt]

= stE[zT
t Y zt] + s⊥t E[zT

t Y⊥zt]

where we used the fact that Y 1 = 0.
Let us suppose that the claim is true for t + 1, then we

want to show that the claim is true also for time t. After
some tedious but straightforward calculations we can show
that the claim is verified where the scalar st and s⊥t can
be obtained iteratively as follows:

sT = q, s
⊥

T = 0

st = q + r
νN(ν + 1)

N − 1
h

2 + 2
νN

N − 1
kh + k

2 +

+
ν(N − ν − 1)

N − 1
h

2
s
⊥

t+1 +

+
Nν2 + ν(ν + 1)(N − 1)2

(N − 1)2
h

2 −
2νN

N − 1
(1 − k)h +

+(1 − k)2 st+1

= a1(k, h) + a2(h)s⊥t+1 + a3(k, h)st+1

s
⊥

t = rk
2 + (1 − k)2 s

⊥

t+1

= a4(k) + a4(k)s⊥t+1, t = T − 1, . . . , 0

where the scalar coefficients ai(·) are quadratic functions
of the control gains k, h. The total cost JT is then
equivalent to the cost-to-go from time step t = 0 given
by:

JT (k, h, α, x0) = V0(x0) = V0(z0) =
= s0E[zT

0 Y z0] + s⊥0 E[zT
0 Y⊥z0]

= s0E[(x0 − α1)T Y (x0 − α1)]+
+s⊥0 E[(x0 − α1)T Y⊥(x0 − α1)]
= s0E[xT

0 Y x0] + s⊥0 E[(x0 − α1)T Y⊥(x0 − α1)]
= s0E[xT

0 Y x0] + s⊥0
(
E[x0Y⊥x0] − 2αE[1T x0] + Nα2

)
= s0E[xT

0 Y x0] + s⊥0
(
NE[xb(0)2] − 2NαE[xb(0)] + Nα2

)
The previous equations fully determine the cost function
in terms of the initial position distribution of agents x0,
feedback gains (k, h), and feedback position α.

We also define the infinite horizon cost, if it exists and
it is finite, as

J∞(k, h, α, x0) = lim
T→∞

JT (k, h, α, x0)

Clearly such cost exists if and only if the limits
limT→∞ s0 = s∞ and limT→∞ s⊥0 = s⊥∞ exist and are
finite. At this point we can compute the minimum cost as
the solution of the following optimization problem:

mink,h,α J∞(k, h, α, x0) = s∞E[xT
0 Y x0] +

s⊥∞E[(x0 − α1)T Y⊥(x0 − α1)]

s.t. s∞ = a1(k, h) + a2(h)s⊥∞ + a3(k, h)s∞

s⊥∞ = a4(k) + a4(k)s⊥∞
|a3(k, h)| < 1, |a4(k)| < 1



Obviously the previous problem to be well defined re-
quires, in general, the knowledge of some statistics of the
initial distribution of vehicles positions. In particular, the
total cost J∞ can be rewritten as follows:

J∞(k, h, α, x0) = s∞

(∑N

i=1
E[(xi(0) − xb(0))2]

)
+

+s⊥∞
(
NE[xb(0)2] − 2NαE[xb(0)] + Nα2

)
where the term that multiplies s∞ depends only on dis-
tances of agents from their initial center of mass, while
the second only on the distance of the center of mass
from the origin. Since s∞ and s⊥∞ do not depend on the
variable α, the optimal choice for this variable is the one
that minimizes the second term and it is given by:

α∗ = E[xb(0)]

which corresponds to the a-priori knowledge of agents’
center of mass. This means that each agents moves towards
a combination of the expected initial center of mass and
the other agents actual positions. If we substitute back into
the original optimization problem we have

mink,h J∞(k, h, x0) = s∞

N

i=1

E[(xi(0) − xb(0))2] +

+s
⊥

∞ Nvar[xb(0)]

s.t. s∞ = a1(k, h) + a2(h)s⊥∞ + a3(k, h)s∞

s
⊥

∞ = a4(k) + a4(k)s⊥∞
|a3(k, h)| < 1, |a4(k)| < 1

where var[xb(0)] = E[x2
b(0)]− (E[xb(0)])2. According to

this analysis the optimization problem is well defined as
long as the following three statistics are known:

b1 = E[xb(0)]

b2 =

N∑
i=1

E[(xi(0) − xb(0))2]

b3 = Nvar[xb(0)]

which correspond to the a-priori knowledge about the
system to solve the LQ problem as set up in this paper.

However, there are three special cases for which the opti-
mal gains h, k are independent of the vehicles distribution.

A. Case 1: cheap control (r = 0)

This is the case where the most important thing is fast
convergence regardless of energy consumption. According
to this choice of weight we have:

s⊥t = 0,∀t

st = q +
(Nν2 + ν(ν + 1)(N − 1)2

(N − 1)2
h2 −

−
2νN

N − 1
(1 − k)h + (1 − k)2

)
st+1

It should be clear that the optimal gains to minimize
JT (k, h, α, x0) are h∗ = 0 and k∗ = 1. This would make
all agents to converge to the point α in one step and st = q
for all t, therefore the minimal cost is given by

J∗

T (x0, α) = qE[xT
0 Y x0], h∗ = 0, k∗ = 1

independently of the choice of the variable α.

B. Case 2: fully connected graph (ν = N−1)

This is the case when all agents communicate with all
agents, therefore they have perfect exact information of all
agents positions. The equations then become:

sT = q, s⊥T = 0

st = q + r (k + Nh)
2

+ (1 − k − Nh)
2
st+1

s⊥t = rk2 + k2 s⊥t+1, t = T − 1, . . . , 0

It should be clear that the optimal choice for the gain k is
given by:

k∗ = 0.

For this choice the minimizer h∗ can be obtained by
computing the positive solution of the following standard
algebraic Riccati Equation:

sare = q + sare −
s2

are

sare + r
, sare > 0

hare =
1

N

sare

sare + r

The optimal cost is given by

J∗

T (x0, α) = sareE[xT
0 Y x0], h∗ = hare, k = 0

which is independent of the choice of the variable α since
the gain k∗ = 0. For this case corresponding to a fully
connected graph, it is not difficult to show that the agents
converge to the center of mass of initial agents positions. It
is also possible to show that this choice of gains is the one
that minimizes the total cost J among all possible control
strategies.

C. Case 3: GPS-free agents (k = 0)

This case models a scenario where no global positioning
sensor is available to agents which can only measure rel-
ative distances with other agents. This scenario is relevant
in indoor missions or scenarios when GPS-like systems are
not feasible. In this case the cost equations reduces to:

s⊥∞ = 0

s∞ = q +
νN(ν + 1)

N − 1
h2 r +

+

(
Nν2 + ν(ν + 1)(N−1)2

(N−1)2
h2−

2νN

N−1
h + 1

)
s∞

The optimal gain h∗ can by first minimizing the right hand
side of the previous equation for h and then by solving the
corresponding Riccati-like equation. The minimum cost
for a Gaussian distribution of agents’ initial conditions
is shown in Fig. 1 and it is compared to a scenario for
which GPS information and knowledge about statistics
of initial distribution is exploited. While both curves are
decreasing function of the number of communication links
ν and coincide for ν = N − 1, it is clear that prior
information about agents distribution can be effectively
used to reduce degradation of performance. Although the
cost curves might be different for different choices of
initial distributions, it is important to remark that prior
knowledge of agents position distribution can be effectively
used to reduce performance degradation when only little
information exchange among agents is available. This
aspect can be seen also for the cheep control scenario, i.e.



0 0.2 0.4 0.6 0.8 1
1.5

2

2.5
optimal cost J* (N=20)

ν/(N−1)

J* /N

GPS
GPS−free

Fig. 1. Minimum cost for r = q = 1 for two scenarios: a GPS-based
control for a Gaussian distribution of agents’ initial positions (see Case
4), and a GPS-free control where only relative agents’ distances is known.
The dots correspond to the actual instantiation of ν = 1, . . . , N −1. The
choice ν/(N−1) = 0 corresponds to no communication between agents
and ν/(N − 1) = 1 corresponds to a fully connected communication
graph.

when r = 0. In this case the previous equation simplifies
to:

s∞ = q+
Nν2+ν(ν + 1)(N−1)2

(N−1)2
h

2−
2νN

N−1
h+1 s∞

= q + a(h)s∞

The minimum cost is equivalent to chose the h that
minimizes the convergence rate a(h), i.e. da

dh
= 0. When

the number of agents is large, i.e. N >> 1, then the
optimal gain and convergence rate converges to:

h∗ =
1

ν + 1
, a(h∗) =

1

ν + 1

Differently from Case 1 where all agents converges to a
common location in one step, in the GPS-free scenario the
rate of convergence depends approximately as the inverse
of the number of communication links per time step ν.
The same results ware found in [2].

However, except for the three special scenarios
described above, the agents’ initial position distribution
is necessary to compute the optimal gains k∗ and h∗. A
common choice for initial distribution of agents’ position
is the Gaussian distribution which is analyzed in the
following special case.

D. Case 4: Gaussian distribution of initial positions

If the initial position distribution of agents x0 is known,
then it can be used to explicitly compute the expectations
present in the cost J∞. Suppose for example that it is
known that initial position of agents are i.i.d. random
variable with a gaussian distribution, i.e.

xi(0) ∼ N (x̄0, σ
2), i = 1, . . . , N

where x̄0, σ ∈ R, σ > 0, then we can compute the
distribution on x0 = (x1(0), . . . , xN (0)). In particular it

is possible to explicitly calculate the required statistics
defined earlier in this section:

b1 = x̄0

b2 = (N − 1)σ2

b3 = σ2

Therefore the optimal choice for the variable α is given
by:

α∗ = x̄0

and the optimization problem reduces to:

mink,h J∞(k, h) =
(
(N − 1)s∞ + s⊥∞)σ2

s.t. s∞ = a1(k, h) + a2(h)s⊥∞ + a3(k, h)s∞

s⊥∞ = a4(k) + a4(k)s⊥∞
|a3(k, h)| < 1, |a4(k)| < 1

The optimal gains k∗, h∗ resulting from the previous
optimization problem can be obtained numerically either
by explicitly removing the variables s⊥∞, s∞ using the
constraints and the finding the minimum over k and h,
or by using Lagrange multipliers and then applying an
iterative algorithm that converges to the unique solution.
In the interest of space these steps are not reported here
and only the numerical results are presented.

The optimal gains h∗ and k∗ are a function only of the
total number of agents N and the number of communica-
tion links ν. Fig. 2 shows the optimal gains as a function
of ratio of communication links for N = 20. As expected
when the number of communication links is small, more
weight is placed on the gain k∗ related to the feedback
about the a-priori expected position of the agents center of
mass. When more information is exchanged among agents
then progressively more weight is placed on the gain h∗.
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ν/(N−1)

k* ,h
*

Optimal gains (N=20)

k*

h*

Fig. 2. Optimal gains h∗ and k∗ for N = 20 and cost weights r =
q = 1 as a function of the ratio between the messages received by
each agent ν and the maximum number of messages that one agent can
receive, i.e. N − 1. The dots correspond to the actual instantiation of
ν = 1, . . . , N − 1. The choice ν/(N − 1) = 0 corresponds to no
communication between agents and ν/(N − 1) = 1 corresponds to a
fully connected communication graph.



Although the optimal gains k∗, h∗ are function of the
number of agents N , this dependence becomes smaller as
N increases and they converge to a constant value as shown
in Fig. 3.
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Fig. 3. Optimal gains locus for r = q = 1 and different total
agents number N . The optimal gains h∗ is multiplied by the number
of exchanged messages ν to compensate for the fact that the gain h∗

must decrease as the number of exchanged messages decreases. As the
number of agents increases the locus of optimal gains h∗, k∗ converges
to a the line νh∗ + k∗ = sare

sare+r

= 0.618, where sare is defined in
Case 2 in the text.

Also the average total cost per vehicles J∗/N for the op-
timal gains is converges as the number of agents increases
as shown in Fig. 4. This is because the difference between
the position of the a-priori knowledge of the agents center
of mass and the actual position center of mass for a specific
realization of agents’ initial positions becomes smaller and
smaller as the number of agents increases.

IV. CONCLUSIONS

In this paper we studied the trade off with respect to
rate of convergence, energy consumption and number of
information exchanged for a simple model of rendezvous
of mobile vehicles. We approached the problem consid-
ering a randomized communication scheme where the
number of messages exchanged by each vehicle per unit
time was fixed and we formulated the control problem
as a stochastic linear quadratic optimization problem. We
showed how increase of information exchange can improve
performance, as one would expect. However we also
showed that if some a-priori knowledge about the initial
distribution of agents’s positions can be effectively used
to limit performance degradation when little information
exchange among vehicles is available.

Another important observation is that randomized com-
munication schemes result in a fast information distribution
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Fig. 4. Optimal average cost per agent J∗/N as a function of the ratio
between the messages received by each agent ν and the maximum number
of messages that one agent can receive for different N , for r = q = 1.
The cost is a decreasing function of the number of communication links
ν but it converges to the constant value sare = 1.618 , where sare is
defined in Case 2 in the text.

among all agents and thus increasing performance. In other
words, it seems that fixed communication schemes might
hamper performance, unless they are properly designed
based on vehicles topology [2], while randomized commu-
nication schemes are easy to implement and have almost
optimal performance. To be fair, however, it is important
to remark that purely randomized schemes might not be
possible in practice. In fact, communication among agents
can be established only if they are sufficiently close to
each other. For example, in [4] authors considered disk-
communication, i.e. agents could communicate only if
within a certain distance. A more realist model would be to
consider a probabilistic communication model where the
probability of successfully exchange a packet depends on
the distance. This approach is currently under investigation.

Other possible research directions are the extension of
the results presented in this work to more realistic agents
dynamics, to synchronization of unstable or oscillatory
systems, and to dynamics with process and measurements
noise.
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