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Lyapunov Theory for Discrete Time Systems

This work contains a collection of Lyapunov related theorems for discrete
time systems. Its main purpose it to collect in a self contained document part
of the Lyapunov theory in discrete time, since, in the literature, there does not
seem to be a unique work which contains these results and their proof, apart
from [2], which deals with discrete time Lyapunov theory, but is written in
German, and so it is not easily accessible. The work has been obtained starting
from the Lyapunov results for continuous time given in [1] and from the results
contained in [2].

Definition 0.1 A function f(t, x) is said to be Lipschitz in (t̄, x̄) if

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ (1)

∀ (t, x), (t, y) in a neighbourhood of (t̄, x̄). The constant L is called Lipschitz
constant.
Consider f(t, x) = f(x) independent of t

• f is locally Lipschitz on a domain D ⊂ Rn open and connected if each
point in D has a neighbourhood D0 such that (1) is satisfied with Lipschitz
constant L0.

• f is Lipschitz on a set W if (1) is satisfied for all points in W with
the same constant L. A function f locally Lipschitz on D is Lipschitz on
every compact subset of D.

• f is globally Lipschitz if it is Lipschitz on Rn.

If f(t, x) depends on t, the same definitions hold, provided that (1) holds uni-
formly in t for all t in an interval of time (that is the Lipschitz constant do not
vary due to the time).

A continuously differentiable function on a domain D is also Lipschitz in the
same domain.

1 Autonomous systems

Consider the autonomous system

x(t+ 1) = f(x(t)) (2)

where f : D → Rn is locally Lipschitz in D ⊂ Rn, and suppose f(0) = 0, that
is x = 0 is an equilibrium point for system (2) (all this can be extended for an
equilibrium point different from 0).
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Definition 1.1 The equilibrium point x = 0 of (2) is

• stable if, for each ε > 0, there is δ = δ(ε) such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0

• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

Theorem 1.2 (Existence of a Lyapunov function implies stability) Let
x = 0 be an equilibrium point for the autonomous system

x(t+ 1) = f(x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Suppose there
exists a function V : D → R which is continuous and such that

V (0) = 0 and V (x) > 0, ∀x ∈ D − {0} (3)

V (f(x))− V (x) ≤ 0, ∀x ∈ D (4)

Then x = 0 is stable. Moreover if

V (f(x))− V (x) < 0, ∀x ∈ D − {0} (5)

then x = 0 is asymptotically stable.

Proof: Given ε > 0, choose r ∈ (0, ε] such that Br = {x ∈ Rn | ‖x‖ < r} ⊂
D. Let α = min‖x‖=r V (x), then α > 0 by (3). Take β ∈ (0, α) and let
Ωβ = {x ∈ Br | V (x) ≤ β}. Ωβ is in the interior of Br, and any trajectory
that starts in Ωβ stays in Ωβ for all t ≤ 0. This is true due to (4), since
V (x(t + 1)) ≤ V (x(t)) ≤ · · · ≤ V (x(0)) ≤ β, ∀t ≥ 0. Since Ωβ is compact and
invariant for f , and f is locally Lipschitz in D, there exists a unique solution
defined for all t > 0 if x(0) ∈ Ωβ . Since V (x) is continuous and V (0) = 0,
there exists a δ > 0 such that if ‖x‖ < δ then V (x) < β. This implies that
Bδ ⊂ Ωβ ⊂ Br, so

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ , ∀t ≥ 0⇒ x(t) ∈ Br, ∀t ≥ 0

Therefore
‖x‖ < δ ⇒ ‖x(t)‖ < r ≤ ε, ∀t ≥ 0

and so x = 0 is a stable point.
Suppose now that (5) holds. Since x = 0 is stable, it is possible to find for every
r > 0 such that Br ⊂ D a constant b such that Ωb ⊂ Br and all the trajectorys
starting from Σb stay in Σb. Since V (x) is bounded below by 0 and is strictly
decreasing along the trajectories in D, it holds that V (x(t))→ c ≥ 0 as t→∞.
Suppose ab absurdo that c > 0. Starting from a point in Ωb we have that the
trajectories are such that V (x(t))→ c as t→∞ with c < b (otherwise if c = b
starting from a point x ∈ Ωb such that V (x) = b the trajectory would reach
in a step a point such that V (f(x)) < b, which is a contradiction). Now, as
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before, since V (x) is continuous and V (0) = 0, there exists d > 0 such that
Bd ⊂ Ωc. Consider set ∆ = {x|d ≤ ‖x‖ ≤ r}, which is a compact set that
contains {x|V (x) = c}. Since V and f are continuous functions, we can define

γ := min
x∈∆

V (x)− V (f(x))

due to Bolzano Weierstrass theorem. Since limt→∞ V (x(t)) = c and V is con-
tinuous, there exists t̄ such that for all t > t̄, V (x(t)) ≤ c+ γ′, with γ′ < γ and
x(t) ∈ ∆. Since x(t) belongs to ∆, it also holds that V (x(t))− V (f(x(t))) ≥ γ,
and so V (f(x(t))) ≤ −γ+V (x(t)) ≤ c+ γ′− γ < c, which is a contradiction. �

Definition 1.3 A function V : D → R satisfying (3) and (4) is called a Lya-
punov function.

Theorem 1.4 (Global asymptotic stability from Lyapunov) Let x = 0
be an equilibrium point for the autonomous system

x(t+ 1) = f(x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let V : Rn → R
be a continuous function such that

V (0) = 0 and V (x) > 0, ∀x ∈ D − {0} (6)

‖x‖ → ∞⇒ V (x)→∞ (7)

V (f(x))− V (x) < 0, ∀x ∈ D (8)

then x = 0 is globally asymptotically stable.

Proof: Given any point p ∈ Rn, let c = V (p). Due to (7), for any c > 0 there
is r > 0 such that V (x) > c whenever ‖x‖ > r. Thus Ωc ⊂ Br, and we can
proceed as done in Theorem 1.2 �

If an equilibrium point is globally asymptotically stable, than it is the only
possible equilibrium point of the system (2).
The following gives a condition for instability.

Theorem 1.5 (Instability condition from Lyapunov) Let x = 0 be an equi-
librium point for the autonomous system

x(t+ 1) = f(x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let V : D → R
be a continuous function such that V (0) = 0 and V (x0) > 0 for some x0 with
arbitrary small ‖x0‖. Let r > 0 be such that Br ⊂ D and U = {x ∈ Br|V (x) >
0}, and suppose that V (f(x))−V (x) > 0 for all x ∈ U . Then x = 0 is unstable.

Proof: Consider x0 ∈ U and let a = V (x0) > 0. The set Σa = {x ∈ U |V (x) ≥ a}
is compact, so we can define α = minx∈Σ(V (f(x)) − V (x)). There exists an
instant t̄ such that x(t) ∈ U for 0 ≤ t < t̄ and ‖x(t̄)‖ > r for t = t̄. This
holds because V (f(x)) > V (x) + α, ∀x ∈ U so, at time instant t, V (x(t+ 1) =
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V (f(x(t))) > V (x(t)) > 0. Now if ‖x(t+1)‖ ≤ r, then the trajectory is still in U ,
otherwise is in D\Br. The latter is true because to be in Br \U , V (x(t+1)) has
to be smaller than 0, but V (x(t+ 1)) > 0. So starting from a point arbitrarily
close to the origin the trajectory goes outside Br, and therefore the origin is
unstable. �

2 The invariance principle

Definition 2.1 A point p is said to be a positive limit point of x(t) if there
is a sequence {tn}, with tn → ∞ as n → ∞ such that x(tn) → p as n → ∞.
The set of all positive limit points of x(t) is called positive limit set of x(t).

Definition 2.2 A set M is an invariant set with respect to (2) if x(0) ∈
M ⇒ x(t) ∈M, ∀ t ∈ R. It is a positive invariant set if x(0) ∈M ⇒ x(t) ∈
M, ∀ t ≥ 0.

The trajectory x(t) approaches M as t → ∞, if for each ε > 0 there is T > 0
such that dist(x(t),M) < ε, ∀ t > T , where dist(p,M) = infx∈M ‖p− x‖. Note
that this does not imply that limt→∞ exists.
Equilibrium points and limit cycles are example of invariant sets for (2), and if
a Lyapunov function V for the latter system exists, then also the set Ωc = {x ∈
D|V (x) ≤ c} is an invariant set.

Lemma 2.3 If a solution x(t) of (2) is bounded and belongs to D for t ≥ 0,
then its positive limit set L+ is a nonempty, compact, invariant set. Moreover,
x(t) approaches L+ as t→∞.

Proof: The proof can be obtained from appendix C3 of [1] �

The following is known as LaSalle’s theorem

Theorem 2.4 (LaSalle’s theorem) Let Ω ⊂ D be a compact set that is pos-
itively invariant with respect to the autonomous system

x(t+ 1) = f(x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let V : D → R
be a continuous function such that V (f(x)) − V (x) ≤ 0 in Ω. Let E be the set
of all points in Ω where V (f(x))−V (x) = 0, and let M be the largest invariant
set in E. Then every solution starting in Ω approaches M as t→∞.

Proof: Can be obtained from proof of Theorem 4.4 page 128 in [1]. �

Corollary 2.5 Let x = 0 be an equilibrium point for the autonomous system

x(t+ 1) = f(x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let V : D → R
be a continuous positive definite function on a domain D, x ∈ D, such that
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V (f(x)) − V (x) ≤ 0 in D. Let S = {x ∈ D|V (f(x)) − V (x) = 0} and suppose
that no solution can stay identically in S other than the trivial solution x(t) ≡ 0.
Then the origin is asymptotically stable.

Corollary 2.6 Let x = 0 be an equilibrium point for the autonomous system

x(t+ 1) = f(x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let V : Rn → R be
a continuous, positive definite, radially unbounded function, such that V (f(x))−
V (x) ≤ 0, ∀x ∈ Rn. Let S = {x ∈ Rn|V (f(x)) − V (x) = 0} and suppose that
no solution can stay identically in S other than the trivial solution x(t) ≡ 0.
Then the origin is globally asymptotically stable.

LaSalle principle is useful because

• it gives an estimate of the region of attraction of the equilibrium point. It
can be any compact positively invariant set;

• there is an equilibrium set and not an isolated equilibrium point;

• function V (x) does not have to be positive definite;

• in case of the corollaries it relaxes the negative definiteness on V (f(x))−
V (x).

Before going to the linearisation part, we prove the following theorem con-
cerning systems with exponentially asymptotic equilibrium points (see [1, Ex.
4.68])

Theorem 2.7 (Exponential stability implies existence of a Lyapunov function)
Let x = 0 be an equlibrium point for the nonlinear system the autonomous sys-
tem

x(t+ 1) = f(x(t))

where f : D → Rn is continuously differentiable and D = {x ∈ Rn| ‖x‖ < r}.
Let k, λ, and r0 be positive constants with r0 < r/k. Let D0 = {x ∈ Rn| ‖x‖ <
r0}. Assume that the solutions of the system satisfy

‖x(t)‖ ≤ k‖x(0)‖e−λt, ∀x(0) ∈ D0, ∀t ≥ 0 (9)

Show that there is a function V : D0 → R that satisfies

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2
V (f(x))− V (x) ≤ −c3‖x‖2

|V (x)− V (y)| ≤ c4‖x− y‖(‖x‖+ ‖y‖)

for all x, y ∈ D0 and for some positive constants c1, c2, c3 and c4.

Proof: Let φ(t, x) be the solution of x(t+ 1) = f(x(k)) at time t starting from
x(0) = x at time k = 0. Let

V (x) =

N−1∑
t=0

φ>(t, x)φ(t, x)
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for some integer variable N to be set. Then

V (x) = x>x+

N−1∑
t=1

φ>(t, x)φ(t, x) ≥ x>x = ‖x‖

and on the other hand, using (9) we have

V (x) =

N−1∑
t=0

x(t)>x(t) ≤
N−1∑
t=0

k2‖x‖2e−2λt ≤ k2

(
1− e−2λN

1− e−2λ

)
‖x‖2

We have shown that there exists c1 and c2 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

is satisfied. Now, since φ(t, f(x)) = φ(t, φ(1, x)) = φ(t+ 1, x),

V (f(x))− V (x) =

N−1∑
t=0

φ>(t+ 1, x)φ(t+ 1, x)−
N−1∑
t=0

φ>(t, x)φ(t, x) =

=

N∑
j=1

φ>(j, x)φ(j, x)−
N−1∑
t=0

φ>(t, x)φ(t, x) = φ>(N, x)φ(N, x)− x>x

≤ k2e−2λN‖x‖2 − ‖x‖2 = −(1− k2e−2λN )‖x‖2

Now we can choose N big enough so that 1 − k2e−2λN is greater than 0 and
also the second property has been proven. For the third property, since f is
continuously differentiable it is also Lipschitz over the bounded domain D, with
a Lipschitz constant L, for which it holds ‖f(x)− f(y)‖ ≤ L‖x− y‖. Then

‖φ(t+ 1, x)− φ(t+ 1, y)‖ = ‖f(φ(t, x))− f(φ(t, y))‖ ≤ L‖φ(t, x)− φ(t, y)‖

and by induction
‖φ(t, x)− φ(t, y)‖ ≤ Lt‖x− y‖

Consider now

|V (x)− V (y)| =

∣∣∣∣∣
N−1∑
t=0

(φ>(t, x)φ(t, x)− φ>(t, y)φ(t, y))

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
t=0

[φ>(t, x)(φ(t, x)− φ(t, y)) + φ>(t, y)(φ(t, x)− φ(t, y))]

∣∣∣∣∣
≤
N−1∑
t=0

[‖φ>(t, x)‖‖φ(t, x)− φ(t, y)‖+ ‖φ>(t, y)‖‖φ(t, x)− φ(t, y)‖]

≤
N−1∑
t=0

[‖φ>(t, x)‖+ ‖φ>(t, y)‖]Lt‖x− y‖

≤

[
N−1∑
t=0

ke−λtLt

]
(‖x‖+ ‖y‖)‖x− y‖

≤ c4(‖x‖+ ‖y‖)‖x− y‖

and so we have proven the last inequality. �
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3 Linear systems and Linearization

Consider the linear time-invariant system

x(t+ 1) = Ax(t), A ∈ Rn×n (10)

It has an equilibrium point in the origin x = 0. The solution of the linear system
starting from x0 ∈ Rn has the form

x(t) = Atx(0)

We have the following result on the stability of linear systems

Theorem 3.1 The equilibrium point x = 0 of the linear time-invariant system

x(t+ 1) = Ax(t), A ∈ Rn×n

is stable if and only if all the eigenvalues of A satisfy |λi| ≤ 1 and the algebraic
and geometric multiplicity of the eigenvalues with absolute value 1 coincide.
The equilibrium point x = 0 is globally asymptotically stable if and only if all
the eigenvalues of A are such that |λi| < 1.

A matrix A with all the eigenvalues in absolute value smaller than 1 is called
a Schur matrix, and it holds that the origin is asymptotically stable if and
only if matrix A is Schur.

To use Lyapunov theory for linear system we can introduce the following
candidate

V (x) = x>Px

with P a symmetric positive definite matrix. It’s total difference is

V (f(x))− V (x) = x>A>PAx− x>Px = x>(A>PA− P )x := −x>Qx

Using Theorem 1.2 we have that if Q is positive-semidefinite the origin is stable,
whether if Q is positive definite the origin is asymptotically stable. Fixing a
positive definite matrix Q, if the solution of the Lyapunov equation

A>PA− P = −Q (11)

with respect to P is positive definite, then the trajectories converge to the origin.

Theorem 3.2 (Lyapunov for linear time invariant systems) A matrix A
is Schur if and only if, for any positive definite matrix Q there exists a positive
definite symmetric matrix P that satisfies (11). Moreover if A is Schur, then P
is the unique solution of (11).

Proof: Sufficiency can be obtained combining Theorem 3.1 and the fact that the
existence of solution P for any positive definite matrix Q assures the convergence
of the trajectory. Suppose now that A is Schur stable and build matrix P as

P =

∞∑
t=0

(A>)tQAt (12)
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for any positive definite Q. Matrix P is symmetric and positive definite since Q
is positive definite. We need to show that using this P equation (11) is satisfied.
Substituting (12) in (11) we obtain

A>
∞∑
t=0

[
(A>)tQAt

]
A−

∞∑
t=0

(A>)tQAt =

∞∑
t=0

[
(A>)t+1QAt+1 − (A>)tQAt

]
= −Q

Suppose now that P is not unique, so there exists a P̃ 6= P such that (11) is
satisfied. So it holds

A>PA− P = A>P̃A− P̃ ⇔ A>(P − P̃ )A− (P − P̃ ) = 0

from which, defining R(x) := x>(P − P̃ )x it follows that

R(f(x))−R(x) = 0, ∀x ∈ Rn ⇔ R(x(0)) = R(x(t)), ∀t ≥ 0.

Now it holds that

lim
t→∞

R(x(t)) = lim
t→∞

x(0)>(A>)t(P − P̃ )Atx(0) = 0, ∀x ∈ Rn

since A is Schur stable, so due to the fact that R(x(0)) = R(x(t)), we have that

x>(P − P̃ )x = 0, ∀x ∈ Rn ⇔ P − P̃ = 0

and so the solution is unique. �

Let us consider again the nonlinear model

x(t+ 1) = f(x(t))

with f : D → Rn a continuously differentiable map from D ⊂ Rn, 0 ∈ D into
Rn such that f(0) = 0. Using the mean value theorem, each component of f
can be rewritten in the following form

fi(x) =
∂fi
∂x

(zi)x

for some zi on the segment from the origin to x. It is valid for any x ∈ D, where
the line connecting x to the origin entirely belongs to D. We can also write

fi(x) =
∂fi
∂x

(0)x+

[
∂fi
∂x

(zi)−
∂fi
∂x

(0)

]
x︸ ︷︷ ︸

gi(x)

where each gi(x) satisfies

|gi(x)| ≤
∥∥∥∥∂fi∂x

(zi)−
∂fi
∂x

(0)

∥∥∥∥ ‖x‖
Function f can be rewritten as

f(x) = Ax+ g(x)
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where A = ∂fi
∂x (0). By continuity of ∂fi

∂x we have that

‖g(x)‖
‖x‖

→ 0 as ‖x‖ → 0

Therefore, in a small neighbourhood of the origin the nonlinear system can be
approximated by x(t+ 1) = Ax(t).

The following is known as Lyapunov’s indirect method.

Theorem 3.3 (Linearised asympt stable implies nonlin asympt stable)
Let x = 0 be an equilibrium point for the nonlinear autonomous system

x(t+ 1) = f(x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let A =
∂fi
∂x (x)

∣∣∣
x=0

. Then the origin is asymptotically stable if |λi| < 0 for all the eigen-

values of A. Instead, if there exists at least an eigenvalue such that |λi| > 0,
then the origin is unstable.

Proof: Since A is stable there exists a positive definite matrix P, p1I ≤ P ≤ p2I,
such that V (x) is a Lyapunov function for the linearised system x(t+1) = Ax(t),
and so it solves (11) for any positive definite matrixQ, q1I ≤ Q ≤ q2I. Applying
the same Lyapunov function to the nonlinear system we get the following total
difference

V (f(x))− V (x) = f(x)>Pf(x)− x>Px = (Ax+ g(x))>P (Ax+ g(x))− x>Px
= x>A>PAx− x>Px+ 2g(x)>Px+ g(x)>Pg(x)

= −x>Qx+ 2g(x)>Px+ g(x)>Pg(x)

Since ‖g(x)‖
‖x‖ → 0 as ‖x‖ → 0, fixed a constant γ > 0, there exists a neighbour-

hood of x, ‖x‖ < ε such that ‖g(x)‖ < γ‖x‖, and so

V (f(x))−V (x) ≤ −q1‖x‖2+p2γ
2‖x‖2+2p2γ‖x‖2 = (−q1+p2γ

2+2p2γ)‖x‖2, ∀‖x‖ < ε

Therefore, choosing γ such that −q1 + p2γ
2 + 2p2γ is negative, V (x) is indeed

a Lyapunov function for the starting nonlinear system. Note that −q1 + p2γ
2 +

2p2γ = 0 describes in γ a parabola whose vertex is in the third quarter and is
directed towards the upper part of the plane, so there exists a γ which satisfy
the property required.

To show the instability part, we first give the following statement regarding
the solvability of the discrete Lyapunov equation

Lemma 3.4 B The Lyapunov equation (11) admits a solution if and only if the
eigenvalues λi of matrix A are such that

λiλj 6= 1 for all i, j = 1, . . . , n (13)

Moreover given a positive definite matrix Q, the corresponding solution P is
positive definite if and only if |λi| < 1 for all i = 1, . . . , n.
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The proof of the previous lemma can be found in [2]. Suppose now that there
is λi such that |λi| > 1 but that condition (13) is satisfied. Therefore, given a
positive definite matrix Q, the corresponding solution P of A>PA − P = −Q
is not positive semi-definite (note that if Q is positive definite and A is Schur
stable, then P cannot be positive semi-definite, since if x is such that x>Px = 0,
then x>A>PAx < 0 but this is not possible since P is positive semi-definite).
Matrix P̃ = −P is not negative semi-definite, so defining V (x) = x>P̃ x, it holds
V (x) > 0 for some x ∈ Rn; for the same vector x it also holds

V (f(x))− V (x) = x>A>P̃Ax− x>P̃ x = x>(A>P̃A− P̃ )x =

− x>(A>PA− P )x = −x>(−Q)x = x>Qx > 0

Now we can apply Theorem 1.5 and conclude that the equilibrium point is
instable. If condition (13) is not satisfied, consider matrix A1 = 1

γA, with γ

such that (13) is satisfied using matrix A1 and the solution matrix P1 for (11)
for any positive definite matrix Q is not positive semi-definite (that is there is
at least one eigenvalue of A1 with modulus greater than 1). Therefore, choosing
V (x) = −x>P1x, it holds that V (x) > 0 for some x. It also holds that

V (f(x))− V (x) = −x>A>P1Ax+ x>P1x = −x>(γ2A>1 P1A1 − P1 − γ2P1 + γ2P1)x

= −γ2x>(A>1 P1A1 − P1)x− (γ2 − 1)x>P1x

= −γ2x>(−Q)x− (γ2 − 1)x>P1x = γ2x>Qx− (γ2 − 1)x>P1x

Choosing an adequately small γ it holds V (f(X))−V (x) > 0 and we can apply
again Theorem 1.5. �
This theorem allows to find a Lyapunov function for the nonlinear system in a

neighbourhood of the origin, provided that the linearised system is asymptoti-
cally stable.

4 Comparison Functions

Consider the nonautonomous system

x(t+ 1) = f(t, x(t))

starting from x(t0) = x0 at time t0, with f : (T × D) → Rn, T = {t0, t0 +
1, . . . }, D ⊂ Rn. The evolution of the system depends on the starting time t0.
We need new definitions for the stability in order to have them hold uniformly
in the initial time t0. We will exploit the following class of functions

Definition 4.1 A continuous function α : [0, a) → [0,∞) is said to belong to
class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞
if a =∞ and α(r)→∞ as r →∞.

Definition 4.2 A continuous function β : [0, a) × [0,∞) → [0,∞) is said to
belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K
with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s)→ 0 as s→ 0.
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Lemma 4.3 Let α1 and α2 be class K functions on [0, a), α3 and α4 be class
K∞ functions, and β be a class KL function. Denote the inverse of αi by α−1

i .
Then

• α−1
1 is defined on [0, α1(a)) and belongs to class K.

• α−1
3 is defined on [0,∞) and belongs to class K∞.

• α1 ◦ α2 belongs to class K

• α3 ◦ α4 belongs to class K∞

• σ(r, s) = α1(β(α2(r), s)) belongs to class KL.

These classes of functions are connected to the Lyapunov theory for autonomous
systems through these Lemmas

Lemma 4.4 Let V : D → R be a continuous positive definite function defined
on a domain D ⊂ Rn that contains the origin. Let Br ⊂ D for some r > 0.
Then there exist class K functions α1 and α2, defined on [0, r), such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

for all x ∈ Br. If D = Rn, the functions α1 and α2 will be defined on [0,∞) and
the previous inequality will hold for all x ∈ Rn. Moreover, if V (x) is radially
unbounded, then α1 and α2 can be chosen to belong to class K∞.

Proof: Corollary C.4 in [1]. �
If V is a quadratic positive definite function V (x) = x>Px, P > 0, then the

previous lemma follows from the fact that

λmin(P )I ≤ V (x) ≤ λmax(P )I

5 Nonautonomous Systems

Consider the nonautonomous system

x(t+ 1) = f(t, x(t)) (14)

starting from x(t0) = x0 at time t0, with f : (T × D) → Rn, T = {t0, t0 +
1, . . . }, 0 ∈ D ⊂ Rn locally Lipschitz in x on T×D. The origin is an equilibrium
point for (14) if

f(t, 0) = 0, ∀t ∈ T

Definition 5.1 The equilibrium point x = 0 of (14) is

• stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0 (15)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0, independent
of t0, such that (15) is satisfied

• unstable if it is not stable
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• asymptotically stable if it is stable and there is a positive constant c =
c(t0) such that x(t)→ 0 as t→∞, for all ‖x(t0)‖ < c.

• uniformly asymptotically stable if it is uniformly stable and there is a
positive constant c, independent of t0, such that x(t)→ 0 as t→∞, for all
‖x(t0)‖ < c uniformly in t0; that is, for each η > 0, there is T = T (η) > 0
such that

‖x(t)‖ < η, ∀ t > t0 + T (η), ∀‖x(t0)‖ < c

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε)
can be chosen to satisfy limε→∞ δ(ε) = ∞, and, for each pair of positive
numbers η and c, there is T = T (η, c) > 0 such that

‖x(t)‖ < η, ∀ t > t0 + T (η, c), ∀‖x(t0)‖ < c

Lemma 5.2 (Stability definition through class K functions) The equilib-
rium point x = 0 of x(t+ 1) = f(t, x) is

• uniformly stable if and only if there exists a class K function α and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀ t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c

• uniformly asymptotically stable if and only if there exist a class KL func-
tion β and a positive constant c, independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c (16)

• globally uniformly stable if and only if inequality (16) is satisfied for any
initial state x(t0).

Proof: Proof in Appendix C.6 in [1]. �
An important case for an uniformly asymptotically stable point is when β(r, s) =
kre−λs, with λ > 0. In this case we have the following

Definition 5.3 The equilibrium point x = 0 of (14) is called exponentially
stable if there exist positive constants c, k and λ such that it holds

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀‖x(t0)‖ < c (17)

and is said to be globally exponentially stable if the previous inequality holds
for any initial state x(t0).

Note that since λ is positive, e−λ(t−t0) is equivalent to γt−t0 with γ = e−λ < 1.

Theorem 5.4 (Lyapunov function implies stability for nonautonomous)
Let x = 0 be an equilibrium point for the nonautonomous system

x(t+ 1) = f(t, x(t))

with f : (T × D) → Rn, 0 ∈ D ⊂ Rn locally Lipschitz in x on T × D. Let
V : T×D → R be a continuous function such that

W1(x) ≤ V (t, x) ≤W2(x)

V (t+ 1, f(t, x))− V (t, x) ≤ 0

for all t ≥ 0 and for all x ∈ D, where W1(x) and W2(x) are continuous positive
definite functions on D. Then x = 0 is uniformly stable.
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Proof: Choose r > 0 and c > 0 such that Br ⊂ D and c < min‖x‖=rW1(x).
Then {x ∈ Br | W1(s) ≤ c} is in the interior of Br. Define Ωt,c as

Ωt,c = {x ∈ Br|V (t, x) ≤ c}

The set Ωt,c contains {x ∈ Br | W2(s) ≤ c}, since W2(x) ≤ c⇒ V (t, x) ≤ c; for
similar reasons Ωt,c ⊂ {x ∈ Br | W1(s) ≤ c}. So we have

{x ∈ Br | W2(s) ≤ c} ⊂ Ωt,c ⊂ {x ∈ Br | W1(s) ≤ c} ⊂ Br ⊂ D

for all t ≥ 0. Since V (t+1, x)−V (t, x) ≤ 0 in D, for any t0 ≥ 0 and x(t0) ∈ Ωt0,c,
the solution starting at (t0, x(t0)) will stay in Ωt,c for all t ≥ t0. We have shown
that a solution is bounded and defined for all t ≥ t0. We now use Lemma 5.2
(we still don’t have sets defined on the norm of vector x). Due to the second
property of V we have

V (t, x(t)) ≤ V (t0, x(t0)), ∀ t ≥ t0

Since W1 and W2 are positive definite matrix, due to lemma 4.4 there are class
K functions α1 and α2 defined in [0, r) such that

α1(‖x‖) ≤W1(x) ≤ V (t, x) ≤W2(x) ≤ α2(‖x‖)⇒ α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)

So we have (note that α1 is smaller than V , so to reach the same value of V ,
the argument of α1 has to be greater than the norm of the vector in V)

‖x(t)‖ ≤ α−1
1 (V (t, x(t))) ≤ α−1

1 (V (t0, x(t0)) ≤ α−1(α2(‖x(t0)‖))

Since α−1
1 (α2(x)) is a class K function we are done. �

Theorem 5.5 (Lyapunov function for asymptotically stable nonautonomous systems)
Suppose the assumptions of Theorem 5.4 are satisfied and that it also holds

V (t+ 1, f(x, t))− V (t, x) ≤ −W3(x), ∀ t ≥ 0, x ∈ D

where W3(x) is a continuous positive definite function on D. Then, x = 0 is
uniformly asymptotically stable.

Proof: Consider r > 0 such that Br ⊂ D. Due to theorem 4.4, there exist class
K functions α1, α2, α3 on [0, r) such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) V (t+ 1, f(x, t))− V (t, x) ≤ −α3(‖x‖)

For any fixed ε, r ≥ ε > 0, there exists a positive constant δ ≤ ε that satisfy the
stability property. Consider a value η, 0 < η < ε and define Λ = α1(η). Consider
x(t0) ∈ Bδ; if V (t0, x(t0)) < Λ, then the definition is already satisfied since
‖x(t0)‖ is necessarily smaller then η and V is contracting along the trajectory.
If x(t0) satisfies V (t0, x(t0)) ≥ Λ, define Γ = α−1

2 (Λ) > 0 (note that Γ ≤ η). It
follows that if x is such that V (t, x) ≥ Λ, then ‖x‖ ≥ Γ. Let Ω = {x | Γ ≤ ‖x‖ ≤
ε}, which is closed and bounded. For all t ≥ t0 such that V (t, x(t)) is greater
than Λ, it also holds ‖x(t)‖ ≥ Γ > 0, so α3(‖x(t)‖) ≥ α3(Γ) which implies
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−α3(‖x(t)‖) ≤ −α3(Γ). So we have V (t + 1, f(x, t)) − V (t, x) ≤ −α3(‖x‖) ≤
−α(Γ) < 0. So it holds ∀k ≥ 0 | Ṽ (t0 + k) ≥ Λ

Ṽ (t0 + k) = Ṽ (t0) +

k−1∑
i=0

[
Ṽ (t0 + i+ 1)− Ṽ (t0 + i)

]
≤ Ṽ (t0)− kα3(Γ)

This shows that there exists a k̄, that depends on η and on δ but not on t0, such
that Λ ≤ Ṽ (t0 + k̄) < Λ + α3(Γ), from which it follows that Ṽ (t0 + k̄ + 1) < Λ
and as already discussed ‖x(t0 + k)‖ < η for all k ≥ k̄ + 1. �

Definition 5.6 A function V (t, x) is said to be

• positive semidefinite if V (t, x) ≥ 0

• positive definite if V (t, x) ≥W1(x) with W1 positive definite

• radially unbounded if W1(x) is so

• decrescent if V (t, x) ≤W2(x) with W2 positive definite.

Theorem 5.7 (Lyap exponentially bounded implies exponential stab)
Let x = 0 be an equilibrium point for the nonautonomous system

x(t+ 1) = f(t, x(t))

with f : (T × D) → Rn, 0 ∈ D ⊂ Rn locally Lipschitz in x on T × D. Let
V : T×D → R be a positive definite continuous on x function such that

V (t, x) < a‖x‖2

∆(t, x) := V (t+ 1, f(t, x))− V (t, x) ≤ −b‖x‖2

for all t ≥ 0 and for all x ∈ D, where a and b are positive constants. Then x = 0
is exponentially stable. If the assumptions hold globally, then the equlibrium
point is globally exponentially stable.

Proof: For any given trajectory of the system starting from x0 ∈ D, due to the
assumptions it holds that

∆(t, x(t)) ≤ −(b/a)V (t, x(t)) ≤ −cV (t, x(t)), 0 < c < 1

Exploiting the definition of ∆, we have

V (t, x(t)) ≤ (1− c)V (t− 1, x(t− 1)) ≤ · · · ≤ (1− c)t−t1V (t1, x(t1)), t ≥ t1 ≥ t0

Since c < 1, then (1− c)t−t1 = e−γ(t−t1), γ > 0, so

V (t, x(t)) ≤ e−γ(t−t1)V (t1, x(t1))

Fixing t1 = t0 + p, p can be chosen such that V (t1, x(t1)) ≤ d‖x(t0)‖, with d
independent of x(t0). Now, combining the previous results,

∆(t, x(t)) ≤ −cV (t, x(t)) ≤ −ce−γ(t−t1)V (t1, x(t1))
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from which it follows

‖x(t)‖ ≤ −(1/b)∆(t, x(t)) ≤ c

b
e−γ(t−t1)V (t1, x(t1)) ≤ dc

b
e−γ(t−t0)‖x(t0)‖eγp

which has the form of equation (17) �

Theorem 5.8 (Exp stability assures presence Lyap funct nonauton) Let
x = 0 be an equilibrium point for the system

x(t+ 1) = f(t, x)

where f : T×D → Rn is locally Lipschitz in x on T×D, and D = {x|‖x‖ < r}.
If there exist positive constants k, c, c < r/k and λ, λ < 1 such that for any intial
x(t0) in Bc = {x|‖x‖ < c} ⊂ D the equilibrium point is exponentially stable,
that is

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀‖x(t0)‖ ∈ Bc
then there exists a Lyapunov function V (t, x) for the system. The latter satisfies
the following inequalities

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2
V (t+ 1, f(t, x))− V (t, x) ≤ −c3‖x‖2

|V (t, x)− V (t, y)| ≤ c4‖x− y‖(‖x‖+ ‖y‖)

for all x, y ∈ Bδ and for some positive constants c1, c2, c3 and c4.

Proof: Let φ(t, t0;x) be the solution of x(t + 1) = f(t, x(t)) at time t starting
from x(t0) = x at time t0. It holds φ(t0, t0;x) = x. Let

V (t, x) =

N−1+t∑
k=t

φ(k, t;x)>φ(k, t;x)

for some integer variable N to be set. Then

V (t, x) = x>x+

N−1+t∑
k=t+1

φ(k, t;x)>φ(k, t;x) ≥ x>x = ‖x‖

and on the other hand, due to the exponential stability we have

V (t, x) =

N−1+1∑
k=t

φ(k, t;x)>φ(k, t;x) ≤
N−1+t∑
τ=t

k2‖x‖2e−2λ(τ−t) ≤ k2

(
1− (e−2λ)N

1− e−2λ

)
‖x‖2

We have shown that there exists c1 and c2 such that

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2
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is satisfied. Now, since φ(t+1+k, t+1; f(t, x)) = φ(t+1+k, t+1;φ(t+1, t;x)) =
φ(t+ 1 + k, t;x),

V (t+ 1,f(t, x))− V (t, x) =

=

N−1+t+1∑
k=t+1

φ(k, t+ 1; f(t, x))>φ(k, t+ 1; f(t, x))−
N−1+t∑
k=t

φ(k, t;x)>φ(k, t;x) =

=

N−1∑
∆=0

φ(t+ 1 + ∆, t;x)>φ(t+ 1 + ∆, t;x)−
N−1∑
∆=0

φ(t+ ∆, t;x)>φ(t+ ∆, t;x) =

= φ(t+N, t;x)>φ(t+N, t;x)− φ(t, t;x)>φ(t, t;x)

≤ k2e−2λN‖x‖2 − ‖x‖2 = −(1− k2e−2λN )‖x‖2

Now we can choose N big enough so that 1 − k2e−2λN is greater than 0 and
also the second property has been proven. For the third property, since Bc is a
compact set, function f(t, x) is Lipschitz in Bδ uniformly in t, with a Lipschitz
constant L, so it holds ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ ∀t ∈ T. Then

‖φ(t+ ∆ + 1, t;x)− φ(t+ ∆ + 1, t; y)‖ = ‖f(t+ ∆, φ(t+ ∆, t;x))− f(t+ ∆, φ(t+ ∆, t; y))‖
≤ L‖φ(t+ ∆, t;x)− φ(t+ ∆, t; y)‖

and by induction

‖φ(t+ ∆, t;x)− φ(t+ k, t; y)‖ ≤ L∆‖x− y‖

Proceeding as in the proof of Theorem 2.7 we have

|V (t, x)− V (t, y)| =≤
N−1+t∑
k=t

[‖φ>(k, t;x)‖+ ‖φ>(k, t; y)‖]Lk‖x− y‖

≤

[
N−1+t∑
τ=t

ke−λτLk

]
(‖x‖+ ‖y‖)‖x− y‖

≤ c4(‖x‖+ ‖y‖)‖x− y‖

and so we have proven the last inequality. �

5.1 Linear systems and Linearisation

Consider now the linear time variant system

x(t+ 1) = A(t)x(t) (18)

which has an equilibrium point in the origin. The following theorem holds

Theorem 5.9 (Lyapunov function for linear time variant syst ) Consider
the system (18). If there exists a continuous, symmetric, bounded positive defi-
nite matrix P (t), 0 < p1I ≤ P (t) ≤ p2I, ∀t ≥ 0, which satisfies the equation

A(t)>P (t+ 1)A(t)− P (t) = −Q(t) (19)

with Q(t) continuous, symmetric, positive definite matrix, Q(t) ≥ q1I > 0, then
the equilibrium point x = 0 is globally exponentially stable.
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Proof: The Lyapunov function V (t, x) = x>P (t)x satisfies

p1‖x‖2 ≤ V (t, x) ≤ p2‖x‖2

Moreover, consider the absolute difference

V (t+ 1, A(t)x)− V (t, x) = x>A(t)>P (t+ 1)A(t)x− x>P (t)x

= x>[A(t)>P (t+ 1)A(t)− P (t)]x = −x>Q(t)x

Therefore it holds

V (t+ 1, A(t)x)− V (t, x) ≤ −q1‖x‖2

and the assumptions of theorem 5.7 are satisfied. �
Define now the transition matrix Φ(t, t0) which is such that x(t) = Φ(t, t0)x(t0).
It holds Φ(t0, t0) = I and for linear time variant system its form is Φ(t, t0) =
A(t− 1) ·A(t− 2) · · ·A(t0).

Theorem 5.10 (Condition on the transition matrix to have exp stab)
The equilibrium point x = 0 of the linear time variant system

x(t+ 1) = A(t)x(t)

is uniformly asymptotically stable if and only if the state transition matrix sat-
isfies

‖Φ(t, t0)‖ ≤ ke−λ(t−t0), ∀ t ≥ t0 ≥ 0 (20)

for some positive constants k and λ.

Proof: We first introduce 2 lemmas

Lemma 5.11 If system (18) is uniformly stable, then there exists a constant
M independent of t0 such that ‖Φ(t, t0)‖ ≤M for all t ≥ t0.

Proof: If the system is stable, fixing ε, we can choose δ > 0 such that if ‖x(t0)‖ ≤
δ, then ‖Φ(t, t0)x(t0)‖ ≤ ε for all t ≥ t0. It follows

max
‖x‖=δ

‖Φ(t, t0)x‖ = max
‖x‖=1

‖Φ(t, t0)δx‖ = δ max
‖x‖=1

‖Φ(t, t0)x‖ ≤ ε

so, using the induced norm,

‖Φ(t, t0)‖ = max
‖x‖=1

‖Φ(t, t0)x‖ ≤ ε

δ−1
:= M

�

Lemma 5.12 The following statements are equivalent

(i) System (18) is uniformally asymptotically stable

(ii) System (18) is globally uniformly asymptotically stable

(iii) ‖Φ(t, t0)‖ → 0 as t→∞ uniformly in t0
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(iv) Given {zi}ni=1 a basis of Rn, then ‖Φ(t, t0)zi‖ → 0 as t → ∞ uniformly
in t0

Proof: (i) ⇒ (ii) follows from linearity, and the implications (ii) ⇒ (iv) and
(iii) ⇒ (i) can be easily verified. Concerning (iv) ⇒ (iii) we can proceed as
follows: if (iv) holds, then for every ε > 0 there exists a time τ(ε) independent
of t0 such that ‖Φ(t, t0)zi‖ < ε for all t ≥ t0 + τ(ε) and i = 1, . . . , n. For every
x(t0) =

∑n
i=1 ξizi, ‖x(t0)‖ = 1, there exists a positive constant a such that

max |ξi| ≤ a−1. Thus

‖Φ(t, t0)x(t0)‖ =

∥∥∥∥∥
n∑
i=1

ξiΦ(t, t0)zi

∥∥∥∥∥ ≤ a−1nε, t ≥ t0 + τ(ε)

and again, due to the induced norm, this proves (iii). �
Going back to the proof of the theorem, if the transition matrix satisfies (20),

then due to Lemma 5.12 the system is uniformly asymptotically stable. On
the other hand suppose that the system is uniformly asymptotically stable. By
Lemma 5.12, there exists τ ≥ 0 such that ‖Φ(t + τ, t)‖ ≤ 1/2 for all t ≥ t0. It
follows

‖Φ(t0 + kτ, t0)‖ ≤ ‖Φ(t0 + kτ, t0 + (k − 1)τ)‖ . . . ‖Φ(t0 + τ, t0)‖ ≤ 2−k

Now suppose t0 + kτ ≤ t < t0 + (k + 1)τ, t ≥ t0, k ∈ N, then

‖Φ(t, t0)‖ ≤ ‖Φ(t, t0 + kτ)‖‖Φ(t0 + kτ, t0)‖ ≤ ‖Φ(t, t0 + kτ)‖2−k

Now, due to Lemma 5.11, there exists a constant M ′ such that ‖Φ(t, t0 +kτ)‖ ≤
M ′ for all t ≥ t0 + kτ, k ∈ N and so

‖Φ(t, t0)‖ ≤M ′2−[(t−t0)/τ−1], t ≥ t0

Choosing k = 2M ′ and λ = −1/(τ) loge(2) the theorem is proved. �
This theorem show that uniform asymptotic stability is equivalent to exponen-

tial stability.

Theorem 5.13 (An exp stable lin syst has a Lyap funct) Let x = 0 be
the exponentially stable equilibrium point of the linear time variant system

x(t+ 1) = A(t)x(t)

and suppose that A(t) is bounded. Let Q(t) be a bounded, positive definite,
symmetric matrix, i.e. 0 < q1I ≤ Q(t) ≤ q2I. Then, there is a bounded,
positive definite, symmetric matrix P (t), i.e. 0 < p1I ≤ P (t) ≤ p2I, that
satisfies (19). Hence V (t, x) = x>P (t)x is a Lyapunov function for the system,
that also satisfies the conditions of Theorem 5.7.

Proof: Let

P (t) =

∞∑
τ=t

Φ(τ, t)>Q(τ)Φ(τ, t)

Therefore we have

V (t, x) = x>P (t)x =

∞∑
τ=t

x>Φ(τ, t)>Q(τ)Φ(τ, t)x ≤ q2

∑
τ

‖Φ(τ, t)x‖2
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Using theorem 5.10, we have

V (t, x) ≤ q2‖x‖2
∞∑
τ=t

k2e−2λ(τ−t) =
q2k

2

1− e−2λ
‖x‖2 ≤ p1‖x‖2

On the other hand

V (t, x) ≥ q1

∞∑
τ=t

x>Φ(τ, t)>Φ(τ, t)x ≥ q1‖x‖2

considering only the first element of the summation. So we have

q1‖x‖2 ≤ V (t, x) ≤ p1‖x‖2 ⇒ q1I ≤ P (t) ≤ p1I

and so P (t) is positive definite and bounded.
Now let us check whether (19) is satisfied, so let us evaluate

A(t)>P (t+ 1)A(t)− P (t) = A(t)>
∞∑

τ=t+1

[
Φ(τ, t+ 1)>Q(τ)Φ(τ, t+ 1)

]
A(t)−

−
∞∑
τ=t

Φ(τ, t)>Q(τ)Φ(τ, t)

Now since Φ(τ, t+ 1)A(t) = Φ(τ, t), it holds

∞∑
τ=t+1

Φ(τ, t)>Q(τ)Φ(τ, t)−
∞∑
τ=t

Φ(τ, t)>Q(τ)Φ(τ, t) = −Φ(t, t)>Q(t)Φ(t, t) = −Q(t)

so (19) is satisfied. From the latter we have

V (t+ 1, A(t)x)− V (t, x) = −x>Q(t)x ≤ −q1‖x‖2

and so V (t, x) satisfies all the assumptions of Theorem 5.7 �
Now, using the Lyapunov function for the linear system we will prove some lin-

earisation results. Consider again the general nonlinear nonautonomous system

x(t+ 1) = f(t, x)

where f : T × D → Rn is locally Lipschitz in x on T × D, and D = {x ∈
Rn |‖x‖ < r}. Suppose that f(t, 0) = 0, ∀t ∈ T, that is x = 0 is an equilibrium
point for the system. Moreover suppose that the Jacobian matrix [∂f/∂x] is
bounded and Lipschitz on D, from which it follows, for all i = 1, . . . , n∥∥∥∥∂fi∂x

(t, x1)− ∂fi
∂x

(t, x2)

∥∥∥∥
2

≤ L1‖x1 − x2‖2, ∀x1, x2 ∈ D, ∀t ∈ T

By the mean value theorem, there exists a zi ∈ D on the line segment between
the origin and x ∈ D such that

fi(t, x) = fi(t, 0) +
∂fi
∂x

(t, zi)x
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Since f(t, 0) = 0, fi(t, x) can be rewritten as

fi(t, x) =
∂fi
∂x

(t, 0)x+

[
∂fi
∂x

(t, z1)− ∂fi
∂x

(t, 0)

]
x︸ ︷︷ ︸

gi(t,x)

Defining A(t) = ∂f
∂x (t, 0), f(t, x) can be rewritten as

f(t, x) = A(t)x+ g(t, x) (21)

The nonlinear part is bounded in norm, since

‖g(t, x)‖2 ≤

(
n∑
i=1

∥∥∥∥∂fi∂x
(t, z1)− ∂fi

∂x
(t, 0)

∥∥∥∥2

2

)1/2

‖x‖2 ≤

≤

 n∑
i=1

L2
1 ‖zi‖2︸ ︷︷ ︸
≤‖x‖2


1/2

‖x‖2 ≤
√
nL1︸ ︷︷ ︸
L

‖x‖22 (22)

This implies that in a neighbourhood of the origin we can approximate the
nonlinear function f(t, x) with its linearisation A(t)x. We can therefore apply
the Lyapunov function found for the linearised system to the starting nonlinear
system.

Theorem 5.14 (If lin system is exp stable than the nonlin is exp stabl)
Let x = 0 be an equilibrium point for the nonlinear system

x(t+ 1) = f(t, x)

where f : T × D → Rn is locally Lipschitz in x on T × D, and D = {x ∈
Rn |‖x‖ < r}. Suppose that the Jacobian matrix [∂f∂x ] is bounded and Lipschitz
on D, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)

∣∣∣∣
x=0

Then the origin is an exponentially stable equilibrium point for the nonlinear
system if it is an exponentially stable equilibrium point for the linear system
x(t+ 1) = A(t)x(t).

Proof: From the assumptions we have that ‖A(t)‖ ≤ BA. Due to theorem 5.13,
given bounded and positive definite matrices Q(t), t ∈ T there exist bounded
and positive definite matrices matrices P (t) such that V (t, x) = x>P (t)x is a
Lyapunov function for the linearised system system. The matrices P (t) and
Q(t) satisfy the following inequalities

0 < p1I ≤ P ≤ p2, 0 < q1I ≤ Q ≤ q2I

Let us use function V (x, t) for the nonlinear system. To prove that it is a
Lyapunov function also for the nonlinear system we have to check whether the
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absolute difference V (t + 1, f(t, x)) − V (t, x) is negative definite. Using the
rewriting (21) for function f , we have the following

V (t+ 1, f(t, x))− V (t, x) = (x>A(t)> + g(t, x)>)P (t+ 1)(A(t)x+ g(t, x))− x>P (t)x =

= x>(A(t)>P (t+ 1)A(t)− P (t))x+ 2g(x, t)>P (t+ 1)A(t)x+ g(t, x)>P (t+ 1)g(t, x) =

= x>(−Q(t))x+ 2g(x, t)>P (t+ 1)A(t)x+ g(t, x)>P (t+ 1)g(t, x) ≤

≤ −q1‖x‖22 + 2p1LBA‖x‖32 + p1L
2‖x‖42 = (−q1 + 2p1LBA‖x‖2 + p1L

2‖x‖22)‖x‖22

For the latter to be negative definite, the term −q1 + 2p1LBA‖x‖2 + p1L
2‖x‖22

has to be negative. As in the autonomous case, this is a parabola directed
upward and with the vertex in the third quarter, so there exists δ̄ > 0 such that
as long as ‖x‖ = δ̄ then V (t+ 1, f(t, x))− V (t, x) = 0. Choosing δ < δ̄, δ < r,
and defining the set Bδ = {x|‖x‖ ≤ δ}, if x ∈ Bδ then V (t, x) is a Lyapunov
function for the nonlinear function. �

Corollary 5.15 If the assumptions of Theorem 5.14 are satisfied, there exists
a Lyapunov function V (t, x) for the nonlinear system defined in T × Bδ that
satisfies the following inequalities

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2
V (t+ 1, f(t, x))− V (t, x) ≤ −c3‖x‖2

|V (t, x)− V (t, y)| ≤ c4‖x− y‖(‖x‖+ ‖y‖)

for all x, y ∈ Bδ and for some positive constants c1, c2, c3 and c4.

Proof: Due to the assumptions of the Theorem 5.14, the nonlinear system is
exponentially stable for x(t0) ∈ Bδ, so the assumptions of Theorem 5.8 are
satisfied. �

6 Convergence results for a particular class of
nonlinear systems

Consider the system{
x(k + 1) = x(k) + εφ(k;x(k), ξ(k))
ξ(k + 1) = ϕ(k; ξ(k), x(k))

(23)

For a given k̄ ∈ N consider also the system

ξ̃(k + 1;x(k̄)) = ϕ
(
k; ξ̃(k;x(k̄)), x(k̄)

)
(24)

for k ≥ k̄. Assume that there exist ξ∗
(
k;x(k̄)

)
such that the quantity

ξ̃′(k;x(k̄)) := ξ̃(k;x(k̄))− ξ∗
(
k;x(k̄)

)
(25)

satisfies the property

‖ξ̃′(k;x(k̄))‖ ≤ Cρk−k̄ ‖ξ̃′(k̄;x(k̄))‖. (26)

We have the following proposition.
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Proposition 6.1 Given x(k̄), consider the evolution of system (24) for k ≥ k̄.
Assume property (26) holds true. Then there exists a function W with the
following properties:

(i) there exist positive constants a1 and a2, a1 ≤ a2, such that

a1‖ξ̃′(k;x(k̄))‖2 ≤W (k; ξ̃′(k;x(k̄)), x(k̄)) ≤ a2‖ξ̃′(k;x(k̄))‖2; (27)

(ii) there exists a constant a3 such that

W (k+ 1; ξ̃′(k+ 1;x(k̄)), x(k̄))−W (k; ξ̃′(k;x(k̄)), x(k̄)) ≤ a3‖ξ̃′(k;x(k̄))‖2;
(28)

(iii) there exists a constant a4 such that

|W (k; ξ̃′1, x)−W (k; ξ̃′2, x)| ≤ a4‖ξ̃′1 − ξ̃′2‖
(
‖ξ̃′1‖+ ‖ξ̃′2‖

)
; (29)

(iv) there exists a constant a5 such that

|W (k; ξ̃′, x1)−W (k; ξ̃′, x2)| ≤ a5‖ξ̃′‖2‖x1 − x2‖. (30)

Proof: The proof follows from standard Lyapunov arguments. �

Before proceeding with the proof, it is useful to give the following Proposi-
tions

Proposition 6.2 Let x = 0 be an equilibrium point for the nonlinear system

x(t+ 1) = f(t;x(t)) (31)

where f is continuosly differentiable on D = {x ∈ Rn | ‖x‖ < r} and the Jaco-
bian matrix [∂f/∂x] is bounded and Lipschitz on D, uniformly in t. Let

A(t) =
∂f

∂x
(t;x)|x=0.

Then, the origin is an exponentially stable equilibrium point for the nonlinear
system if it is exponentially stable equilibrium point for the linear system

x(t+ 1) = A(t)x(t).

The following result follows from the above proposition.

Corollary 6.3 Consider system (31) and assume assumptions of Proposition
6.2 hold true. Then there exist a suitable Lyapunov function V and a n-th
dimensional ball Bnr with the following properties

(i) There exist positive constants a1 and a2 such that

a1‖x‖2 ≤ V (k;x) ≤ a2‖x‖2 (32)

for all k and for all x ∈ Bnr ;
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(ii) There exist positive constants a3 and ε such that

V (k + 1;x(k + 1))− V (k;x(k)) ≤ −εa3‖x(k)‖2 (33)

for all x(k) ∈ Bnr ;

(iii) There exists a positive constant a4 such that

|V (k;x1)− V (k;x2)| ≤ a4‖x1 − x2‖(‖x1‖+ ‖x2‖) (34)

for all x1 and x2 in Brn.

Now let ξ′(k) be defined as

ξ′(k) := ξ(k)− ξ∗(k;x(k))

Observe that ξ′(k) = ξ̃′(k;x(k)).
We can write that

ξ′(k + 1) = ξ(k + 1)− ξ∗(k + 1;x(k + 1))

= ϕ(k; ξ(k), x(k))− ξ∗(k + 1;x(k + 1))

= ϕ(k; ξ(k), x(k))− ξ∗ (k + 1;x(k) + εφ(k;x(k), ξ(k)))

= ϕ (k; ξ′(k) + ξ∗(k;x(k)), x(k))− ξ∗ (k + 1, x(k) + εφ(k;x(k), ξ′(k) + ξ∗(k;x(k))))

Now we analyze the system{
x(k + 1) = x(k) + εφ(k;x(k), ξ′(k) + ξ∗(k;x(k)))
ξ′(k + 1) = ϕ (k; ξ′(k) + ξ∗(k;x(k)), x(k))− ξ∗ (k + 1, x(k) + εφ(k;x(k), ξ′(k) + ξ∗(k;x(k))))

(35)
The following Proposition characterize the convergence properties of system

23.

Proposition 6.4 Consider 23. Assume that properties 25 and 26 hold true.
Assume system

x(t+ 1) = x(t) + εφ (k;x(k), ξ∗(k;x(k)))

satisfies assumptions of Proposition 6.2 and let r > 0 be such that for x ∈ Bnr ,
there exists a Lyapunov function as stated in Corollary 6.3. Assume function
φ(k; ·, ·) and ξ∗(k; ·) are Lipschitz with the respect to x ∈ Bnr uniformly in k.

Then, there exists ε∗ such that for all ε ∈ (0, ε∗] the trajectory x(t) converges
exponentially to 0, i.e., there exist C > 0 and 0 < λ < 1 such that

‖x(t)‖ ≤ Cλt‖x(0)‖

if x(0) ∈ Bnr .

Proof: Let
χ(k + 1) = x(k) + εφ (k;x(k), ξ∗(k;x(k))) (36)

so that χ(k + 1) = x(k + 1) as soon as ξ′(k) = 0.
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The following basic bounds follow immediately from the Lipschitz and van-
ishing properties of the various functions

‖φ (k;x(k), ξ∗(k;x(k))) ‖ ≤ `1‖x(k)‖ (37)

‖φ (k;x(k), ξ′(k) + ξ∗(k;x(k))) ‖ ≤ `2 (‖x(k)‖+ ‖ξ′(k)‖) (38)

‖x(k + 1)− x(k)‖ ≤ ε`2 (‖x(k)‖+ ‖ξ′(k)‖) (39)

‖φ (k;x(k), ξ′(k) + ξ∗(k;x(k)))− φ (k;x(k), ξ∗(k;x(k))) ‖ ≤ `3‖ξ′(k)‖ (40)

‖x(k + 1)− χ(k + 1)‖ ≤ ε`3‖ξ′(k)‖ (41)

‖ϕ(k;x(k), ξ′(k) + ξ∗(k;x(k)))− ξ∗(k;x(k))‖ ≤ `4 (‖x(k)‖+ ‖ξ′(k)‖) (42)

‖ξ∗(k + 1;x(k + 1)))− ξ∗(k;x(k)))‖ ≤ `5 (‖x(k)‖+ ‖ξ′(k)‖) (43)

‖x(k + 1)‖ ≤ `6 (‖x(k)‖+ ‖ξ′(k)‖) (44)

‖χ(k + 1)‖ ≤ `7 (‖x(k)‖+ ‖ξ′(k)‖) (45)

‖ξ∗(k;x(k))‖ ≤ `8‖x(k)‖+ cr (46)

‖ξ∗(k + 1;x(k + 1)))− ξ∗(k + 1;x(k)))‖ ≤ `9 (‖x(k + 1)− x(k)‖) (47)

for some positive constants `1, . . . , `8 and where cr is a suitable constant de-
pending on r.

Observe now that there exist a Lyapunov function V such that

(i) There exist positive constants c1 and c2 such that

c1‖x‖2 ≤ V (k;x(k)) ≤ c2‖x‖2 (48)

(ii) There exist positive constants c3 and ε such that

V (k + 1;χ(k + 1))− V (k;x(k)) ≤ −εc3‖x(k)‖2 (49)

(iii) There exists a positive constant c4 such that

|V (k;x1)− V (k;x2)| ≤ c4‖x1 − x2‖(‖x1‖+ ‖x2‖) (50)

As for the temporal evolution of V (k;x), exploiting the definition (36) and
properties (49) and (50) it follows that

∆V (k;x(k)) := V (k + 1;x(k + 1))− V (k;x(k))

= V (k + 1;x(k + 1))− V (k + 1;χ(k + 1)) + V (k + 1;χ(k + 1))− V (k;x)

≤ c4‖x(k + 1)− χ(k + 1)‖ (‖x(k + 1)‖+ ‖χ(k + 1)‖)− εc3‖x(k)‖2

and, thus using properties (41), (44) and (45),

∆V (k, x(k)) ≤ εc4`3‖ξ′‖ (`6(‖x(k)‖+ ‖ξ′(k)‖) + `7‖ξ′(k)‖)− εc3‖x(k)‖2

Letting then `9 = c4`3`6, `10 = c4`3(`6 + `7) we obtain the quadratic bound

∆V (k, x(k)) ≤ −εc3‖x(k)‖2 + ε2`10‖x(k)‖‖ξ′(k)‖+ ε`11‖ξ′(k)‖2 (51)
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Observe that there is a Lyapunov function W (k;x(k), ξ′(k)) such that

b1‖ξ′(k)‖2 ≤W (k; ξ′(k), x(k)) ≤ b2‖ξ′(k)‖2 (52)

W (k + 1;ϕ (k; ξ′(k) + ξ∗(k, x(k)), x(k))− ξ∗(k + 1, x(k)), x(k))−W (k; ξ′(k), x(k))

≤ −b3‖ξ′(k)‖2 (53)

|W (k; ξ′1, x)−W (k; ξ′2, x)| ≤ b4‖ξ′1 − ξ′2‖ (‖ξ′1‖+ ‖ξ′2‖) (54)

|W (k; ξ′, x1)−W (k; ξ′, x2)| ≤ b5 ‖ξ′‖2 ‖x1 − x2‖ (55)

Now let us compute

∆W (k; ξ′(k), x(k))

= W (k + 1; ξ′(k + 1), x(k + 1))−W (k; ξ′(k), x(k))

= W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k) + εφ (k;x(k), ξ(k))) , x(k + 1))−
−W (k; ξ′(k), x(k))

= W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k) + εφ (k;x(k), ξ(k))) , x(k + 1))

−W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k)) , x(k + 1))

+W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k)) , x(k + 1))

−W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k)) , x(k))

+W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k)) , x(k))

−W (k; ξ′(k), x(k))

We then exploit: (54) to bound the first two rows of the last right hand side; (55)
to bound the third and the fourth rows; (53) to bound the last two rows. This
implies that ∆W (k; ξ′(k), x(k)) ≤ β1 + β2 + β3, where the last three symbols
are the following shorthands:

β1 = b4‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k + 1;x(k)) ‖ (‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k + 1)) ‖+
+‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k)) ‖)

β2 = b5‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) ‖2‖x(k + 1)− x(k)‖
β3 = −b3‖ξ′(k)‖2

To bound β1 we apply the triangular inequality so that

β1 ≤ b4‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k + 1;x(k)) ‖ (‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k + 1)) ‖+
+ ‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k + 1;x(k)) ‖
+‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k + 1)) ‖)

≤ b4‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k + 1;x(k)) ‖ ( 2 ‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k + 1)) ‖+
+‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k + 1;x(k)) ‖)

≤ b4‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k + 1;x(k)) ‖ ( 2 ‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) ‖+
+2 ‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k;x(k)) ‖+ ‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k + 1;x(k)) ‖)

Exploiting (42), (43), (47) and (39), we can write that

β1 ≤ εb4`2`9 (‖x(k)‖+ ‖ξ′(k)‖) (2`4 (‖x(k)‖+ ‖ξ′(k)‖) + ε`5 (‖x(k)‖+ ‖ξ′(k)‖))

≤ εb4`2`9 (2`4 + ε`5) (‖x(k)‖+ ‖ξ′(k)‖)2
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Concerning β2, consider that from ‖x(k)‖ ≤ r′, and ‖ξ(k)‖ ≤ r0 for a suitable
r′ and r0, we obtain

β2 ≤ εb5`2`24 (‖x(k)‖+ ‖ξ′(k)‖)2
(‖x(k)‖+ ‖ξ′(k)‖)

≤ εb5`2`24 (r0 + (`8 + 1)r′ + cr) (‖x(k)‖+ ‖ξ′(k)‖)2
.

Given the previous, we can thus write

∆W (k;x(k), ξ′(k)) ≤ (ε`12 + ε2`13 − b3)‖ξ′(k)‖2 + 2
(
ε`12 + ε2`13

)
‖x(k)‖‖ξ′(k)‖+ (ε`12 + ε2`13)‖x(k)‖2

(56)

for suitable constants `12, `13.
Now we propose a Lyapunov function for the whole system. Let the candi-

date be
U(k;x(k), ξ′(k)) = V (k;x(k)) +W (k;x(k), ξ′(k))

We must check whether, for all plausible trajectories, the condition (x(k), ξ′(k)) 6=
(0, 0) implies

∆U(k;x(k), ξ′(k)) = U(k + 1;x(k + 1), ξ′(k + 1))− U(k;x(k); ξ′(k)) < 0.

Consider that inequalities (51) and (56) form a quadratic form that can be
rewritten as

∆U(k;x(k), ξ′(k)) ≤ [‖x(k)‖ ‖ξ′(k)‖]A
[
‖x(k)‖
‖ξ′(k)‖

]
(57)

where

A =

[
−εc3 + (ε`12 + ε2`13) ε`10 + ε`12 + ε2`13

ε`10 + ε`12 + ε2`13 ε`11 + ε`12 + ε2`13 − b3

]
Consider now that the leading principal minors of A are, in Landau notation

anf for ε→ 0,
−εc3 +O(ε2), εc3b3 +O(ε2).

Thus there must exists a sufficiently small ε∗ such that for every ε ∈ (0, ε∗], A
is negative definite, i.e.,

A ≤ −ε`14I

for a suitable positive scalar `14.
It follows that

∆U(k;x(k), ξ′(k)) ≤ −ε`14

(
‖x(k)‖2 + ‖ξ′(k)‖2

)
≤ −ε`14

(
1

c2
V (x(k)) +

1

b2
W (k;x(k), ξ′(k))

)
≤ −εγ U(k;x(k), ξ′(k))

where γ = `14 min
{

1
b2
, 1
c2

}
. This eventually implies that[

‖x(k)‖
‖ξ′(k)‖

]
≤ ` (1− εγ)

k
2

[
‖x(0)‖
‖ξ′(0)‖

]
(58)

where ` is an appropriate constant. This concludes the proof. �
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7 Another convergence result for discrete time
dynamical systems using time scale separation
principle

Lemma 7.1 Consider the dynamical system[
x(t+ 1)
y(t+ 1)

]
=

[
I −εB

C(t) F (t)

] [
x(t)
y(t)

]
. (59)

Let the following assumptions hold

(i) There exists a matrix G such that y = Gx satisfies the expression y =
C(t)x+ F (t)y, ∀t, ∀x

(ii) the system
z(t+ 1) = F (t)z(t) (60)

is exponentially stable;

(iii) the system
ẋ(t) = −BGx(t) (61)

is exponentially stable.

(iv) The matrices C(t) and F (t) are bounded, i.e. there exists m > 0 such that
‖C(t)‖ < m, ‖F (t)‖ < m,∀t ≥ 0.

Then, there exists ε̄, with 0 < ε < ε̄ such that the origin is an exponentially
stable equilibrium of (59). �

Proof: [Proof of Lemma 7.1] Let us first consider the following change of
variable:

z(t) = y(t)−Gx(t)

The dynamics of the system in the variables x, z can be written after some
straightforward manipulations as follows:

[
x(t+ 1)
z(t+ 1)

]
=


[
I − εBG 0

0 F (t)

]
︸ ︷︷ ︸

Σ(t)

+ε

[
0 −BG

GBG GB

]
︸ ︷︷ ︸

Γ


[
x(t)
z(t)

]
︸ ︷︷ ︸
µ(t)

(62)

where we used Assumption 1. From Assumptions 2, 3 and 4, using converse
Lyapunov theorems [?], it follows that there exist positive definite matrices
Px > 0 and Pz(t) > 0 such that

− PxBG−GTBTPx ≤ −aI,
F (t)TPz(t+ 1)F (t)− Pz(t) ≤ −aI, ∀t

where a is a positive scalar and Pz(t) is bounded, i.e. ‖Pz(t)‖ ≤ m. We will use
the following positive definite Lyapunov function to prove exponential stability
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of the whole system:

U(x, z, t) = xTPxx+ zTPz(t)z

=
[
xT zT

] [Px 0
0 Pz(t)

]
︸ ︷︷ ︸

P (t)

[
x
z

]

If we define time difference of the Lyapunov function as ∆U(x, z, t) = U(x(t+
1), z(t+ 1), t+ 1)− U(x(t, )z(t), t) we get:

∆U(x, z, t) =

xT
(
−ε(PxBG+GTBTPx) + ε2GTBTPxBG

)
x

+ zT
(
F (t)TPz(t+ 1)F (t)− Pz(t)

)
z

+ 2εµTΣT (t)P (t+ 1)Γµ+ ε2µTΓTP (t+ 1)Γµ

≤ −εa‖x‖2 − a‖z‖2 + ε2 ‖P
1
2
x BG‖2︸ ︷︷ ︸
b

‖x‖2

+ 2εµTΣT (t)P (t+ 1)Γµ+ ε2‖P 1
2 (t+ 1)Γ‖2‖µ‖2

Note that the top left block of Γ is zero and that Σ(t) and P (t) are diagonal
and bounded for all times. From this it follows that

ΣT (t)P (t+ 1)Γ =

[
0 ?
? ?

]
=⇒ 2µTΣT (t)P (t+ 1)Γµ ≤ c(2‖x‖‖z‖+ ‖z‖2)

for some positive scalar c. Boundedness of P (t) also implies that

‖P 1
2 (t+ 1)Γ‖2‖µ‖2 ≤ d(‖x‖2 + ‖z‖2)

for some positive scalar d. Putting all together we get

∆U(x, z, t) ≤[[
‖x‖ ‖z‖

]] [−εa+ bε2 εc
εc −a+ εc+ ε2d

] [
‖x‖
‖z‖

]
It follows immediately that there exists a critical ε such that for 0 < ε < ε
the matrix in the above equation is strictly negative definite and therefore the
system is exponentially stable. �
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