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Target applications: the MAgIC Lab

Smart Camera  
Networks 

Applications: MAgIC Lab  

Networked Control Systems: physically distributed dynamical 
systems interconnected by a communication network  

Wireless Sensor  
Actuator Networks 

Smart Energy  
Grids 

Robotic 
Networks 
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Research Lines
Research lines 

!  Research line 1: multi-agent systems: 
!  Consensus algorithms 
!  Distributed estimation 
!  Distributed optimization 

!  Research line 2: control subject to 
communication constraints: 
!  Packet loss 
!  Random delay 
!  Sensor fusion 
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Cooperative Distributed Optimisation

f1

f2

f3 f4
f5

f6

f7

Assumption: neighbours cooperate to find minimizer of network
cost:

f (x) =
1
N

N∑

i=1
fi (x), x∗ = argminx f (x)

Global estimation: x ∈ Rn, each node wants
x̂i = x∗, ∀i = 1, . . . ,N. Typically n independent of N: support
vector machine, robotic map building.
Local estimation: fi (x) = fi (xi , {xj}j∈Ni ), each nodes just
wants x̂i = x∗i . Typically n ≥ N: smart grid state estimation,
robotic localization 8



Global estimation: Robotic Map Building
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Introduction

Distribution optimization - Example 1

Robust regression in sensor networks
(e.g. when estimation = optimization of a cost function)

Residuals minimization

minθ

∑N
i=1 φ(yi − ŷi)

s.t. ŷi = θTxi

φ(r) = |r |2 (least squares)
φ(r) = |r | (least abs. deviations)

φ(r) =

{
0 if |r | < 1
|r | − 1 otherwise

(Vapnik)

φ(r) =

{ |r |2 if |r | < 1
2(|r | − 1) otherwise

(Huber)

. . . .

− − −
schenato@dei.unipd.it (DEI - UniPD) Distrib. Newton-Raphson optimization April 28th, 2011 3 / 26
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Global estimation: SVM Classification
D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato. “Newton-Raphson Consensus for Distributed Convex

Optimization”. IEEE Transactions on Automatic Control (submitted)

χ ∈ R4: frequency of specific words,
y ∈ {spam, non-spam}
(x, x0) ∈ R5: separating hyperplane parameters
Connected graphs with 30 nodes
Local cost functions:

fi (x) :=
30∑

j=1
log
(
1+exp

(
−yj

(
χT

j x + x0
)) )

+γ ‖x‖22 .

Spam Filters:

x

fi
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Global estimation: Robust Regression
D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato. “Newton-Raphson Consensus for Distributed Convex

Optimization”. IEEE Transactions on Automatic Control (submitted)

χ ∈ R4: size, distance from downtown
y ∈ R, house price
(x, x0) ∈ R5: parameters to be computed
Connected graphs with 30 nodes
Local cost functions:

fi (x) :=
30∑

j=1

(
yj − χT

j x − x0
)2

∣∣yj − χT
j x − x0

∣∣+ β
+ γ ‖x‖22 .

Housing Price
Predictors:

x

fi
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Local estimation: Localization
A. Carron, M. Todescato, R. Carli, L. Schenato. “An asynchronous consensus-based algorithm for estimation from noisy relative

measurements”. IEEE Transactions on Control of Network Systems (submitted)

xi ∈ R2: robot position
x = (x1, . . . , xN) ∈ R2N

zij ∈ R2, vector noisy distance of node i and
j , i.e. zij = xi − xj + noise
Local cost functions:

fi (x) :=
∑

j∈Ni

‖xi − xj − zij‖2.

Range-bearing
measurements:

x

fi
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Local estimation: Smart Grid Estimation from noisy PMUs
S. Bolognani, R. Carli, M. Todescato, “State estimation in power distribution networks with poorly synchronized measurements”,

IEEE Transactions on Smart Grids (submitted)

xi ∈ C: node voltage
x = (x1, . . . , xN) ∈ CN

mu
i ∈ C, noisy measured voltage at bus i

mc
i ∈ C, noisy measured current at bus i

L: weighted Laplacian of the network

m = Hx + η, Rη = E[ηηT ]

m =




Re[mu]

Im[mu]

Re[mc ]

Im[mc ]


 ,H =




I 0
0 I

Re[L] −Im[L]

Im[L] Re[L]




Macro-area monitoring:
10

B. Jacobi-like algorithm

The method we propose in this subsection is inspired by
the Jabobi technique used to iteratively solve systems of linear
equations [29]. In the sequel we refer to this method as the
Jacobi-like algorithm. The algorithm is formally described
as follows. The standing assumption is that the matrices
AT

iiQiAii, i 2 {1, . . . , s} are all invertible.
Processor states: For i 2 {1, . . . , s}, node i stores an esti-

mate xi(0) 2 Rmi of its own state.
Initialization: Every node initializes its estimate to an arbi-

trary value.
Transmission iteration: For t 2 N, at the start of the t-th

iteration of the algorithm, node i transmits its estimate
xi(t) to all its neighbors. It also gathers the t-th estimates
of its neighbors, xj(t), j 2 Ni.

Update iteration: For t 2 N, node i, i 2 {1, . . . , s}, based
on the information received from its neighbors, updates
its estimate as follows

xi(t + 1) = argmin
xi

Ji

⇣
xi; {xj(t)}j2Ni

⌘

=
�
AT

iiQiAii

��1
AT

iiQi

0
@zi �

X

j2Ni

Aijxj(t)

1
A

To establish the convergence properties of the Jacobi-like
algorithm it is convenient to introduce the following block
matrix K = [Kij ], i, j = 1, . . . , s, where Kij 2 Rmi⇥mj is
defined as

Kij =

8
<
:

AT
iiQiAii if j = i

AT
iiQiAij if j 2 Ni, j 6= i

0 if j /2 Ni

In the following Proposition, by diag {K} we denote the
block diagonal matrix having in the diagonal the blocks
K11, . . . , Kss. We have the following result.

Proposition V.2. Assume the spectral radius of the matrix
(diag {K})

�1
(K � diag {K}) is strictly less than one, i.e., all

its eigenvalues are strictly inside the unitary circle. Then, there
exists x̄ 2 RN , such that the trajectory t ! x(t) generated by
the Jacobi-like algorithm converges exponentially to x̄. If the
matrix K is invertible then

x̄ = K�1z̄,

where z̄ =
⇥
(AT

11Q1z1)
T , . . . , (AT

ssQszs)
T
⇤T

.

Proof: Observe that the updating step can be written as

x(t + 1) = (diag {K})
�1

(z̄ � (K � diag {K})x(t)) (18)

where (18) represents the standard iteration of the Jacobi
method. The result established in the Proposition follows from
the classical results on the Jacobi method [29].

Remark. Observe that both the partition-based ADMM algo-
rithm and the Jacobi-like algorithm can be applied directly to
the state estimation problem formulated in (13). In Section VI
we numerically evaluate their performance in estimating the
state of a electric grid.

Area
monitor
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Fig. 3. IEEE test feeder 123 divided into four non-overlapping areas.

Remark. In general the state x̄ is different from the optimal
state x⇤, i.e., the Jacobi-like algorithm does not converge to the
optimal solution. However we will see in Section VI that, when,
applied to Problem (13), the Jacobi-like algorithm converges
to an estimate x̄ which is close enough to x⇤, expecially for
small values of �2

sync.

Remark. it is worth stressing that the computation of the
update iteration of the Jacobi-like algorithm is simpler, and,
in turn, less time-consuming, than the update iteration of the
partition-based ADMM algorithm. This fact is emphasized and
discussed, also numerically, in Section VI.

VI. SIMULATION RESULTS

In this section we validate the solutions presented in this
paper via simulations on two standard testbeds for medium
voltage power distribution networks: the IEEE 37 and the
IEEE 123 test feeders [30]. Specifically, in Subsection VI-A
we provide a comparison between the performance of the
ADMM-based algorithm presented in Section V-A and the
Jacobi-like algorithm presented in V-B. In Section VI-B,
instead, we explore the effect of measurement errors on
a prototypical feedback control algorithm on the grid, and
we quantify the beneficial effects obtained via the proposed
solutions.

A. State estimation accuracy

We partitioned both the IEEE 37 and the IEEE 123 test
feeders into 4 areas, as shown in the left panel of Figure 1 and
in Figure 3. In both cases, we compared the performance of
the ADMM-based algorithm and of the Jacobi-like algorithm,
considering the following standard deviations of the measure-
ment errors:

voltage amplitude: �U = 10�3UN [Volt]

current amplitude: �I = 10�3Imax [A]

angle: �✓ = 10�3 [rad]

sync: �sync = 3 · 10�3 [rad]

Local cost functions:

min
x

(m − Hx)T R−1η (m − Hx) = min
xA1 ,..,xAs

s∑

h=1
Jh(xAh , {xA`

}`∈NAh
)

Jh are quadratic functions 13



Ideal algorithm features

Distributed: only local communication
Asynchronous: no global communication nor updates
synchronization
Robust to (random) time-delays
Robust to packet losses
Broadcast communication: no ACK/NACK or full duplex
Asymptotically optimal
Anonymous
Suitable for time-varying graphs

14
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State-of-the-art

Distributed optimization methods: 3 main categories

Primal decompositions methods
(e.g. distributed subgradients)

Dual decompositions methods
(e.g. alternating direction method of multipliers)

Heuristic methods
(e.g. swarm optimization, genetic algorithms)

16



Primal decomposition methods (centralized)

Subgradient methods [Shor, 1985]

xk+1 = xk − αk · g (xk)

with

g (xk) := subgradient of f (·) at xk

αk := stepsize

Convergence properties
αk typically needs to be diminishing for non-smooth f
g(·) may be required to be bounded
. . .

17



Primal decomposition methods (distributed)

Distributed subgradient methods [Nedic Ozdaglar, 2009]
xi (k)+ = xi (k)− αgi

(
xi (k)

)

xi (k + 1) =
∑N

j=1 aij(k)x+
j (k)

x̂i (k) = 1
k
∑k

h=1 xi (h)
with

gi
(
xi (k)

)
:= local subgradient of local cost fi (·) at xi (k)

α local stepsize
∑N

j=1 aij(k)xj(k) := aver. consensus step on local estimates
xj(k)

Convergence properties [Nedic Ozdaglar, 2009]
E.g., for bounded subgradients and αi (k) = α then

lim inf
k→+∞

f
(
x̂i (k)

) ≤ f ∗ + δ

18



Dual decomposition methods (centralized)

Method of Multipliers [Bertsekas, 1982]

Primal reformulation:

minimize f (x)

subject to Ax = b

m

minimize f (x) + ρ
2 ‖Ax − b‖22

subject to Ax = b

yelds to dual Lagrangian
1 xk+1 = argminx

(
f (x) + λT

k (Ax − b) + ρ
2 ‖Ax − b‖22

)

2 λk+1 = λk + ρ(Axk − b)

Convergence properties
convergence to the optimum under mild assumptions (milder
than for original dual ascent [Boyd et al., 2010])

19



Dual decomposition methods (distributed)

Alternating Direction Method of Multipliers [Bertsekas
Tsitsiklis, 1997]

minimize f1(x) + f2(z)

subject to A1x + A2z − b = 0
Augmented Lagrangian:

Lρ(x , x2, λ) := f1(x) + f2(z) + λT (A1x + A2z − b) +

+ρ
2 ‖A1x + A2z − b‖22

Algorithm
1 x(k + 1) = argminx Lρ

(
x, z(k), λ(k)

)

2 z(k + 1) = argminx2 Lρ
(
x(k + 1), z, λ(k)

)

3 λ(k + 1) = λ(k) + ρ (A1x(k + 1) + A2z(k + 1)− b)

20



ADMM for distributed optimization

f1

f2

f3 f4
f5

f6

f7

Global estimation

min
x

N∑

i=1
fi (x)⇐⇒ min{xi}N

i=1,{zij}(i,j)∈E

∑N
i=1 fi (xi )

subject to xi = zij ,∀(i , j) ∈ E

zij : Bridge variables. Constraints written as A1x + A2z − b = 0.
Lagrangian:

Lρ({xi}, {λij}):=
∑N

i=1fi (xi )+
∑

(i ,j)∈E λ
T
ij (xi−zij)+ ρ

2
∑

(i ,j)∈E‖xi−zij‖2

21



Drawbacks of the considered algorithms

Primal based strategies
may be slow (sublinear convergence 1/k)
may not converge to the minimizer

Dual based strategies
may be computationally expensive
require topological knowledge
implementation to handle time-varying graphs, time delays,
packet losses, etc. may require effort

Related recent work
Primal: Gharesifard and Cortes 2014, Lu and Tang 2012,
Wang and Elia 2010, Kia et al. 2014
Dual: Boyd et al. 2010, Duchi et al. 2012, Zhu and Martinez,
2012, Johansson et al. 2009, Wei and Ozdaglar 2013

22
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Newton-Raphson: scalar case
Goal: find minimum of
convex f (x)

Idea: approximate function
f (x) with a parabola

f̂ (x) =
1
2a(x − b)2 + c

xk+1 xk

Match slope and curvature at point xn:

f (xk) = f̂ (xk) = 1
2a(xk − b)2 + c

f ′(xk) = f̂ ′(xk) = a(xk − b)

f ′′(xk) = f̂ ′′(xk) = a
⇒

a = f ′′(xk)

b = xk − f ′(xk )
f ′′(xk )

c = ∗
Jump to the minimum:

xk+1 = xk −
f ′(xk)

f ′′(xk)

24



Gradient Descent: scalar case

Idea: approximate function
f (x) with a parabola with
curvature equal to one

f̂ (x) =
1
2(x − b)2 + c xk+1xk

Match slope at xk :

f (xk) = f̂ (xk) = 1
2(xk − b)2 + c

f ′(xk) = f̂ ′(xk) = xk − b ⇒ b = xk − f ′(xk)

c = ∗

Jump to the minimum:

xk+1 = xk − f ′(xk)

25



Newton-Raphson: multivariable case

Idea: approximate function f (x) with a
parabola

f̂ (x) = 1
2(x − b)T A(x − b) + c,

b ∈ Rn,A > 0 ∈ Rn×n

Match slope and curvature at point xk :

∇f (xk) = ∇f̂ (xk) = A(xk − b)

∇2f (xk) = ∇2f̂ ′′(xk) = A ⇒ A = ∇2f (xk)

b = xk − (∇2f (xk))−1∇f (xk)

Jump to the minimum:

xk+1 = xk − (∇2f (xk))−1∇f (xk)

26



Gradient Descent: multivariable

Idea: approximate function f (x) with a
parabola with unitary curvature

f̂ (x) = 1
2‖x − b‖2 + c

(A = I)

Match slope at xk :

∇f (xk) = ∇f̂ (xk) = xk − b

Jump to the minimum:

xk+1 = xk −∇f (xk)

27



Jacobi: multivariable

Idea: approximate function f (x) with a
parabola with parallel axes

f̂ (x) = 1
2(x − b)T A(x − b) + c,

A = diag{a1, . . . , an}

Match slope and axis curvature at xk :

∇f (xk) = ∇f̂ (xk) = A(xk − b)[∇2f (xk)
]
ii = ai

Jump to the minimum:

xk+1 = xk −
(
diag(∇2f (xk))

)−1∇f (xk)

28



Centralized Newton-Raphson (NR): properties

if f is quadratic, then minimization is performed in 1 step
Newton step is invariant w.r.t. affine changes of coordinates
if f ∈ C2, strongly convex, and Hessian is uniformly Lipschitz,
i.e., ∥∥∥∇2f (x1)−∇2f (x2)

∥∥∥
2
≤ L ‖x1 − x2‖2

then for x ≈ x∗ convergence rate is quadratic (super-linear,
doubly exponential)

Lo
g(
er
ro
r)
(

#(itera-ons(

linear(
Superlinear(
(quadra-c)(

sublinear(
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Centralized NR in practice

xk+1 = xk − ε(∇2f (xk))−1∇f (xk)

practical implementations perform line search, e.g.
ε∗k = minε f (xk+1). For ε = 1 could diverge if x0 far away.
convergence follows two phases: first damped (linear
convergence) then quadratic (optimal ε ≈ 1)
computational burden to obtain ∇2f (x) can be alleviated
using quasi-Newton methods:

∆x = −B−1k ∇f (xk)

where B−1k is an estimate of the Hessian using ∇f (xk−1)

30
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Average Consensus algorithm
Linear Distributed algorithm to compute averages:

xi ∈ R, x =




x1
x2
...

xN


 , 1 =




1
1
...
1




Matrix P doubly stochastic, nonnegative,
associated graph strongly connected

x(k + 1) = Px(k)

1T P = 1T ,P1 = 1,P ≥ 0,PN > 0

X*#X*#
Xi#

Xj#

X*#
Xi#

Xj#

X*# Xi#
Xj#

1" 2"

3"
4"

center#of#mass#

1" 2"

3"
4"

center#of#mass#

1" 2"

3" 4"
center#of#mass#

1"2"3"4" center#of#mass#

K=1#

K=2#

K=3#

K=4#

P =




1
2

1
4

1
4 0

1
4

1
4

1
4

1
4

1
4

1
4

1
2 0

0 1
4 0 3

4


 ,=⇒

limk→∞ xi (k) = 1
N
∑N

i=1 xi (0), ∀i
exponentially fast rate=esr(P)

Center of mass preserved ! Works also for time-varying P(k): e.g. gossip
32



Map-building in robotic networks
Application 4: 

Map-building in robotic networks 
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!  Issues: 
!  Each robot collects local data 
!  Local communication with robot 
!  Patrolled area dynamically change 
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Map building as distributed least squaresMap-building  
as least-squares regression 

Least-squares as ratio of two averages of local quantities
(Xiao,Boyd,Lall, IPSN05), (Bolognani,Del Favero, Schenato, Varagnolo JRNC10)

34



Consensus based map-building
Consensus-based Map-building  

i 

j 

!  Pros: 
!  Asynchronous 
!  Communication graph can change 

!  Cons: 
!  Exchange of O(M2) data 
!  Parametric model "# curse of dimensionality  

35



Simulation: coverage with adaptive map-building
Simulations 

36



How to deal with non-quadratic cost functions?Map-building  
as least-squares regression 

Global estimation: Robust Regression
D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato. “Newton-Raphson Consensus for Distributed Convex

Optimization”. IEEE Transactions on Automatic Control (submitted)

‰ œ R4: size, distance from downtown
y œ R, house price
(x, x0) œ R5: parameters to be computed
Connected graphs with 30 nodes
Local cost functions:

fi (x) :=
30ÿ

j=1

!
yj ≠ ‰T

j x ≠ x0
"2

--yj ≠ ‰T
j x ≠ x0

-- + —
+ “ ÎxÎ2

2 .

Housing Price
Predictors:

x

fi

11
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Naive application of Consensus: the wrong way !
Centralized Gradient Descent ( to simplify notation
xk = x , xk+1 = x+):

f (x) =
1
N

N∑

i=1
fi (x) =⇒ x+ = x − ε 1N

N∑

i=1
f ′i (x)

Some notation:

xi : local copies of estimated minimum, x = [x1 · · · xn]T

yi : local copies of estimated global gradient, y = [y1 · · · yn]T

Naive Distributed Gradient Descent Algorithm:

(1) yi = f ′i (xi ) local gradient
(2) y+ = Py estimated global gradient via communication
(3) x+

i = xi − εy+
i local descent step

NOT WORKING !!
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Naive application of Consensus: the wrong way ! (cont’d)

(1) yi = f ′i (xi ) local gradient
(2) y+ = Py estimated global gradient via communication
(3) x+

i = xi − εy+
i local descent step

Why it does not work:
even if xi = x∗ ∀i , unless P = 1

N 11T (complete graph), then
the x+

i ’s s will spread around =⇒ x∗ is not an asymptotic
equilibrium point
even if P = 1

N 11T (complete graph), unless xi = xj∀i , j , then
x+

i 6= x+
j =⇒ they agree on a direction not on a point

X*#X*#
Xi#

Xj#

X*#
Xi#

Xj#

X*# Xi#
Xj#

X*#X*#
Xi#

Xj#

X*#
Xi#

Xj#

X*# Xi#
Xj#

39



Back to Newton-Raphson approach
Approximate each fi (x) with a parabola

f̂i (x) =
1
2ai (x − bi )

2+ci =⇒ f̂ (x) = 1
N
∑n

i=1
(
1
2ai (x − bi )

2 + ci
)

= 1
2a(x − x∗)2

Match slope and curvature at point xi :

f ′i (xi ) = f̂ ′i (xi ) = ai (xi − bi )

f ′′i (xi ) = f̂ ′′i (xi ) = ai
⇒ ai = f ′′i (xi )

aibi = f ′′i (xi )xi − f ′i (xi )

Jump to the minimum of f̂ (x):

x+
i = x∗ =

N∑

i=1
aibi

N∑

i=1
ai

=

1
N

N∑

i=1
aibi

1
N

N∑

i=1
ai

=

1
N

N∑

i=1
f ′′i (xi )xi − f ′i (xi )

1
N

N∑

i=1
f ′′i (xi )
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Graphical interpretation

aibi = f ′′i (xi )xi − f ′i (xi )

ai = f ′′i (xi )

⇒ x∗ =

1
N

N∑

i=1
f ′′i (xi )xi − f ′i (xi )

1
N

N∑

i=1
f ′′i (xi )

x1

f1(x)

f̂1(x)|x1
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Graphical interpretation

aibi = f ′′i (xi )xi − f ′i (xi )

bi = f ′′i (xi )

⇒ x∗ =

1
N

N∑

i=1
f ′′i (xi )xi − f ′i (xi )

1
N

N∑

i=1
f ′′i (xi )

f̂2(x)|x2

f̂1(x)|x1

x1 x2

f2(x)
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Graphical interpretation

aibi = f ′′i (xi )xi − f ′i (xi )

bi = f ′′i (xi )

⇒ x∗ =

1
N

N∑

i=1
f ′′i (xi )xi − f ′i (xi )

1
N

N∑

i=1
f ′′i (xi )

f2(x)

f̂2(x)|x2

f̂1(x)|x1

f̂1(x)|x1 + f̂2(x)|x2

x1 x2x?
true x?
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Centralized vs Distributed Newton-Raphson
Is the minimum of f̂ (x) a good approximation of the true
minimum of f (x) ? Minimum of global f̂ (x):

x+
i = x∗ =

1
N

N∑

i=1
f ′′i (xi )xi − f ′i (xi )

1
N

N∑

i=1
f ′′i (xi )

Not clear, but if all points are the same, i.e. xi = x ∀i , then:

x+
i = x+ = x −

1
N

N∑

i=1
f ′i (xi )

1
N

N∑

i=1
f ′′i (xi )

= x − f ′(x)

f ′′(x)

Intuition: If xi are close to each other, then x∗ is a good estimate
of the true minimum, therefore x∗ − xi is a good direction for xi . 44



Towards a consensus-based Newton-Raphson

Algorithm
1 initialise local variables:

yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0)) = aibi
zi (0) := f ′′i (xi (0)) = ai

2 run 2 average consensus (P doubly stochastic):
y(k + 1) = Py(k),
z(k + 1) = Pz(k)

3 locally compute xi (k + 1) =
yi (k + 1)

zi (k + 1)

If fi (xi ) = 1
2ai (xi − bi )2 =⇒

{
f ′′i (xi )xi − f ′i (xi ) = aibi
f ′′i (xi ) = ai

,∀xi ,∀i

(Xiao,Boyd,Lall, IPSN05), (Bolognani,Del Favero, Schenato, Varagnolo JRNC10)
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Towards a consensus-based Newton-Raphson

Algorithm
1 initialise local variables:

yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0))

zi (0) := f ′′i (xi (0))

2 run 2 average consensus (P doubly stochastic):
y(k + 1) = Py(k),
z(k + 1) = Pz(k)

3 locally compute xi (k + 1) =
yi (k + 1)

zi (k + 1)

Problem:
All local estimate converge to consensus yi (k)→ ȳ(0), zi (k)→ z̄(0)

therefore also xi (k)→ x∗(0), but x∗(0) depends on initial condition. One
could run K steps and then restart algorithm with
yi (0)← f ′′i (xi (K ))xi (K )− f ′i (xi (K )), zi (0)← f ′′i (K ): too slow
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The (synchronous) consensus-based Newton-Raphson

Fixes:
change initial condition of consensus step to track the
changing xi

move xi slowly to let consensus variable (yi , zi ) to converge

Algorithm
1 define local variables:

gi (k) := f ′′i (xi (k))xi (k)− f ′i (xi (k)), gi (−1) = 0, yi (0) = 0
hi (k) := f ′′i (xi (k)), hi (−1) = 0, zi (0)

2 run 2 average consensus (P doubly stochastic):
y(k + 1) = Py(k) + g(k)− g(k − 1),
z(k + 1) = Pz(k) + h(k)− h(k − 1)

3 locally compute xi (k + 1) = (1− ε)xi (k) + ε
yi (k + 1)

zi (k + 1)
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Tracking of the current average

Plain average consensus would lead to integration, differently:

z(k + 1) = Pz(k)+h(k)− h(k − 1)

z(0) = 0, h(−1) = 0
⇓

1
N
∑N

i=1 zi (k + 1) = 1
N
∑N

i=1 hi (xi (k)), ∀k!!

Therefore, if zi (k)− zj(k)
k→∞−→ 0, then

zi (k + 1) −→ 1
N

N∑

i=1
hi (xi (k)) =

1
N

N∑

i=1
f ′′i (xi (k)), ∀i
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Block diagram representation

gi , hi

g1, h1

gN , hN

any
average
consensus

“P”
y(k + 1) = Py(k)

z(k + 1) = Pz(k)

xi

x1

xN

local
computations

distributed
averaging

local
updates

gi(k) = f ′′i (xi(k))xi(k)− f ′i (xi(k))
hi(k) = f ′′i (xi(k))

xi(k +1) = (1−ε)xi(k)+ε
yi(k + 1)
zi(k + 1)
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Presentation outline

Motivations
State-of-the-art
Centralized Newton-Raphson: a quick overview
Consensus-based Newton-Raphson
Convergence properties (theory + simulations)
future directions
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Singular Perturbation Theory: an example

Coupled dynamics:

ẋ = −xy2 slow dynamics
εẏ = −y + x2 fast dynamics(
ẏ = 1

ε (−y + x2)
)

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Idea: decouple time scales
freeze slow dynamics, i.e. x = constant

find equilibrium points for fast dynamics, i.e. y = x2

verify if fast dynamics is asymptotically stable: ẏ = −y (OK)

substitute equilibrium into slow dynamics and verify is systems is
asymptotically stable, ẋ = −x5

plus some other technical conditions =⇒ coupled system is
asymptotically stable if ε sufficiently small
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Convergence based on Singular Perturbation Theory

Algorithm





x(0) = y(0) = z(0) = g(x(−1)) = h(x(−1)) = 0 initialization
y(k + 1) = Py(k) + g(x(k))− g(x(k − 1)) fast dynamics
z(k + 1) = Pz(k) + h(x(k))− h(x(k − 1))

xi (k + 1) = (1− ε)xi (k) + ε yi (k+1)
zi (k+1) slow dynamics

Proof sketch:
Fast dynamics
If ε ≈ 0, then x(k + 1) ≈ x(k) = x (constant)
=⇒ yi (k + 1)→ 1

N
∑N

i=1 gi (xi ) = 1
N
∑N

i=1 f ′′i (xi )xi − f ′i (x) =

ḡ(x), ∀i
=⇒ zi (k + 1)→ 1

N
∑N

i=1 hi (xi ) = 1
N
∑N

i=1 f ′′i (xi ) = h̄(x), ∀i
ḡ(x), h̄(x) : Rn → R
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Convergence based on Singular Perturbation Theory

Fast dynamics
If ε ≈ 0, then x(k + 1) ≈ x(k) = x (constant)
=⇒ yi (k + 1) = 1

N
∑N

i=1 f ′′i (xi )xi − f ′i (x) = ḡ(x), ∀i
=⇒ zi (k + 1) = 1

N
∑N

i=1 f ′′i (xi ) = h̄(x), ∀i

Slow dynamics: perturbed system
Insert equilibrium point of fast dynamics into slow dynamics:
xi (k + 1) = (1− ε)xi (k) + ε ḡ(x(k))

h̄(x(k))
,∀i

Same forcing term, therefore limk→∞ xi (k)− xj(k) = 0.
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Convergence based on Singular Perturbation Theory

Slow dynamics: perturbed system
Insert equilibrium point of fast dynamics into slow dynamics:
xi (k + 1) = (1− ε)xi (k) + ε ḡ(x(k))

h̄(x(k))
, ∀i

Same forcing term, therefore limk→∞ xi (k)− xj(k) = 0.

Slow dynamics: unperturbed system
Assume xi = xj = x̄ :
x̄+ = (1− ε)x̄ + ε ḡ(x̄1)

h̄(x̄1)

= (1− ε)x̄ + ε
1
N
∑N

i=1 f ′′i (x̄)x̄−f ′i (x̄)

1
N
∑N

i=1 f ′′i (x̄)

= (1− ε)x̄ + ε

(
x̄ −

1
N
∑N

i=1 f ′i (x̄)

1
N
∑N

i=1 f ′′i (x̄)

)

= x̄ − ε f ′(x̄)
f ′′(x̄)

Centralized Newton-Raphson !!
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Formal results

If fi are quadratic =⇒ Global exponential convergence
with rate sr(P) for ε = 1 for any connected graph
If graph is complete =⇒ Centralized Newton-Raphson
Under mild conditions (fi ∈ C3 and convex) =⇒ Local
Exponential Stability for 0 < ε < εc
Under more restrictive conditions (uniformly Lipschitz,
strongly convex, bounded interconnection perturbations) =⇒
Global Exponential Stability for 0 < ε < εc
Convergence is “only” linear due to consensus: it needs
time to pass information around

Lo
g(
er
ro
r)
(

#(itera-ons(

linear(
Superlinear(
(quadra-c)(

Sublinear((DSM)(

Lo
g(
er
ro
r)
(

#(itera-ons(

Superlinear(
(??)(

Linear(
(NRC,ADMM)(
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The Multivariable consensus-based Newton-Raphson
Derivation of the algorithm

Algorithm
1 define local variables:

gi (k) :=∇2fi (xi (k))xi (k)−∇fi (xi (k)), gi (−1) = yi (0) = 0,∈ Rn

Hi (k) := ∇2fi (xi (k)), Hi (−1) = Zi (0) = 0, ∈ Rn×n

2 run 2 average consensus (P doubly stochastic):
y(k + 1) = Py(k) + g(k)− g(k − 1)

Z(k + 1) = PZ(k) + h(k)− h(k − 1)

3 locally compute xi (k + 1) = (1− ε)xi (k) + εZi (k + 1)−1yi (k + 1)

Need to compute averages and inversions of matrices:

O(n2) communication complexity & memory requirements
O(n3) computational complexity

.
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Distributed Gradient Descent Revised

Approximate each fi (x) with a parabola with unitary curvature:

f̂i (x) =
1
2 (x − bi )

2 + ci =⇒ f̂ (x) = 1
N
∑n

i=1
(
1
2 (x − bi )

2 + ci
)

= 1
2(x − x∗)2 + c

Match slope xi :

f ′i (xi ) = f̂ ′i (xi ) = (xi − bi ) ⇒ bi = xi − f ′i (xi )

Jump to the minimum of f̂ (x):

x+
i = x∗ =

1
N

N∑

i=1
bi =

1
N

N∑

i=1
xi − f ′i (xi )
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The (synchronous) consensus-based Gradient Descent
Derivation of the algorithm

The correct algorithm
1 define local variables:

gi (k) := xi (k)− f ′i (xi (k)), gi (−1) = 0, yi (0) = 0
2 run 1 average consensus (P doubly stochastic):

y(k + 1) = Py(k) + g(k)− g(k − 1),
3 locally compute

xi (k + 1) = (1− ε)xi (k) + εyi (k + 1)

= xi (k) + ε (yi (k + 1)− xi (k))

The Naive Gradient Descent algorithm

(1) yi = f ′i (xi ) local gradient
(2) y+ = Py estimated global gradient via communication
(3) x+

i = xi − εy+
i local descent step
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Simulations: SVM Classification with synchronous NR
http://archive.ics.uci.edu/ml/datasets/Spambase

χ ∈ R4: frequency of specific words,
y ∈ {spam, non-spam}
(x, x0) ∈ R5: separating hyperplane parameters
Connected graphs with 30 nodes
Local cost functions:

fi (x) :=
30∑

j=1
log
(
1+exp

(
−yj

(
χT

j x + x0
)) )

+γ ‖x‖22 .

Spam Filters:

59



Simulations: SVM Classification with synchronous NR
Consensus-based algorithms:

0 10 20 30 40
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Comparison with other algorithms
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ADMM=Alternating Direction
Multipliers Method
NRC=Newton-Raphson Consensus
FNRC= Newton-Raphson with Fast
Consensus (diffusive)
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Simulations: Robust Regression with synchronous NR
http://archive.ics.uci.edu/ml/datasets/Housing

χ ∈ R4: size, distance from downtown
y ∈ R, house price
(x, x0) ∈ R5: parameters to be computed
Connected graphs with 30 nodes
Local cost functions:

fi (x) :=
30∑

j=1

(
yj − χT

j x − x0
)2

∣∣yj − χT
j x − x0

∣∣+ β
+ γ ‖x‖22 .

Housing Price
Predictors:

x

fi
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Simulations: Robust Regression with synchronous NR
Consensus-based algorithms:
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Comparison with other algorithms
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Simulations: synthetic data

circulant graph, N = 30
fi (x) = exp

(
(x − bi )

T Ai (x − bi )
)
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Convergence speed: ADMM vs NRC

Quadratic function with unit curvature:

fi (x) =
1
2(x − θi )

2 =⇒ x∗ =
1
N

N∑

i=1
θi

Distributed computation via consensus (same as Newton-Raphson
consensus):

x̂(t + 1) = Px̂(t), P ∼ G
x̂(0) = θ

Rate of convergence:

rate : ρP = 1− σP

where ρP is essential spectral gap and σP is spectral gap of P.
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Convergence speed: ADMM vs NRC

Average consensus with memory (diffusive methods):

x̂(t + 1) = βPx̂(t) + (1− β)x̂(t − 1)

x̂(0) = x̂(−1) = θ

If β chosen optimally:

β = β∗ :=
2

1 +
√
1− ρ2P

=⇒ rate : ≈ 1−
√
2σP

Interpretation:
Standard consensus: P feedback
Consensus with memory: PD feedback and heavy-ball
methods
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Convergence speed: ADMM vs NRC
Equivalent optimization problem:

min
x

N∑

i=1

1
2 (x − θi )

2 ⇔ minx1,...,xN ,z1,...,zN

∑N
i=1

1
2 (xi − θi )2

s.t. xi = zj , ∀i = 1, . . . ,N,∀j ∈ N+
i

ADMM approach

L(x , z , η) =
N∑

i=1
fi (xi ) +

N∑

i=1

∑

j∈N+
i

ηij(xi − zj) +
1
2

N∑

i=1

∑

j∈N+
i

cij(xi − zj)
2

to get:

xi (t + 1) =
θi +

∑
j∈N+

i
cijzj(t)−∑j∈N+

i
ηij(t)

1 +
∑

j∈N+
i

cij

zi (t + 1) =

∑
j∈N+

i
cjixj(t + 1) +

∑
j∈N+

i
ηji (t)

∑
j∈N+

i
cji

ηij(t + 1) = ηij(t) + cij(xi (t + 1)− zj(t + 1))
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Convergence speed: ADMM vs NRC

Previous dynamics can be written as:

C = ηP =⇒ x(t + 1) = Mx(t)− Nx(t − 1)

where
M =

2η
1 + η

P2 +
1

1 + η
I, N =

η

1 + η
P2

and η is a free parameter. If η chosen optimally :

η = η∗ =⇒ rate : ≈ 1−
√
2σP
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Asynchronous implementation

2500 5000 7500 10000

10−1
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10−3

10−4
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e(
k
)

v
(k
)

NRC DSM
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Presentation outline

Motivations
State-of-the-art
Centralized Newton-Raphson: a quick overview
Consensus-based Newton-Raphson
convergence properties (theory + simulations)
Future directions

69



Comparisons

DSM ADMM NRC

diff. functions NO NO YES

rate (diff. functions) sublinear linear linear

comm. complexity O(N) O(N) O(N2)

comp. complexity small medium-high medium-high

glob. stable yes yes no

asynchronous yes maybe yes

time var. graph yes maybe yes
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Extensions

Simplified Multivariable:
Distributed Gradient Descent: O(n) complexity, only ∇f
needed
Distributed Jacobi: O(n) complexity, only ∇f , [∇2f ]ii needed

Asynchronous: straightforward implementation. Some uniform
persistency requirements for global convergence

Flexible: by changing the consensus block can be adapted to
different scenarios:

Accelerated: diffusion-based consensus

Broadcast communication: no need
for symmetric gossip (ratio consensus)

Directed Graphs

Packet loss

Block schematic representation

gi , hi

g1, h1

gN , hN

any
average

consensus
“P”

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

xi

x1

xN

local
computations

distributed
averaging

local
updates

gi(k) = f ÕÕ
i (xi(k))xi(k) ≠ f Õ

i (xi(k))

hi(k) = f ÕÕ
i (xi(k))

xi(k +1) = (1≠Á)xi(k)+Á
yi(k + 1)

zi(k + 1)
24
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Conclusions

Takeaway messages
new distributed optimisation method
it takes advantage of standard consensus algorithms
(plug-and-play)
its potentials are still mainly unexplored

Future work
adaptive local stepsize εi (k)

non-differentiable cost functions
quasi-Newton methods
constraints
distributed interior point methods
extensive comparisons based on real data with ADMM&co
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Questions ?

THANK YOU
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F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
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American Control Conference (ACC’12)
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Publications on Newton-Raphson Convex Optimization
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F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
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3rd IFAC Workshop on Distributed Estimation and Control in Networked
Systems (NecSys’12)

Convergence rate
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