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Abstract: In this work we consider the problem of simultaneously classifying sensor types and
estimating hidden parameters in a network of sensors subject to gossip-like communication limitations.
In particular, we consider a network of scalar noisy sensorswhich measure a common unknown
parameter. We assume that a fraction of the nodes is subject to the same (but possibly unknown) offset.
The goal for each node is to simultaneously identify the class the node belongs to and to estimate
the common unknown parameter, only through local communication and computation. We propose a
distributed estimator based on the maximum likelihood (ML)approach and we show that, in case the
offset is known, this estimator converges to the centralized ML as the numberN of sensor nodes goes
to infinity. We also compare this strategy with a distributedimplementation of estimation-maximization
(EM) algorithm and a distributed naive strategy; we show tradeoffs via numerical simulations in terms
of robustness, speed of convergence and implementation simplicity.

1. INTRODUCTION

In recent years, we have witnessed an increasing interest inthe
design of control, estimation algorithms which can operatein
a distributed manner over a network of locally communicating
units. A prototype of such problems is the average consensus
algorithm Olfati-Saber and Murray (2004); Olfati-Saber etal.
(2007), which can be used as a distributed procedure providing
the average of real numbers, each of them belonging to a unit.
Since the average is the building block for many estimation
methods, the average consensus has been proposed as a possible
way to obtain distributed estimation algorithms and, in particu-
lar, to obtain distributed Kalman filtering Olfati-Saber (2005);
Carli et al. (2008). However, while averaging is suitable for the
estimation of real valued parameters, it is typically of no help
when the quantities to be estimated belong to a finite alphabet.
Moreover, the average is by definition an operation which fuses
information loosing in this way the possible information that
is specific of each unit. The model we consider in the present
paper has two characteristics, namely we consider the case in
which the information of each unit contains both a common
parameter and a unit specific parameter. Moreover we assume
the unit specific parameter belong to a finite alphabet.

More precisely we assume that we haveN units and that each
unit i has a numberyi that can be decomposed as follows

yi = θ +Ti +vi . (1)

whereθ ∈R is a continuous parameter influencing all the units,
Ti ∈ A , with A being a finite set, is a discrete parameter
influencing each unit independently andvi is a noise term. The
goal of each unit is to estimate the common parameterθ and
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its specific oneTi . Notice that the presence of the common
parameterθ impose that any efficient estimation technique will
require cooperation between units and therefore will require
communication. We will assume that communication between
the units can occur only according to a graph as discussed
in Section 3, which is devoted to the distributed algorithm
description.

There are various examples of applications in which the previ-
ous estimation problem could be of interest. One application is
related to fault detection. Indeed, the units could represent in
this case some sensors that, when working properly, measure
a noisy version the parameterθ and that, when faulty, add a
bias to the measurement. Similar application could consistof
heterogeneous sensors belonging to classes which differ bythe
bias they add. In both cases the parameter of primary interest is
θ . Another example could consists in different units belonging
to different classes, the objective being to classify them based
on theyi ’s while also estimating the common parameterθ .

For example we can imagine a network for environmental
monitoring; the different values ofTi could model for instance
a constant external field only active in certain areas where the
sensor is located, such as for instance being on the sunshineor
on the shade or being inside or outside of a fire.

More in general these problems fit in the general class of the
unsupervised clustering problems, which are quite standard
in statistics Titterington et al. (1985); Duda et al. (2001).
Algorithms for clustering have been widely proposed in the
computer science literature both for the standard centralized
case Berkhin (2006) and for the distributed case Rabbat and
Nowak (2004); Nowak (2003); Safarinejadian et al. (2010);
Bandyopadhyay et al. (2006). Indeed, the technique proposed
in this paper can be seen as a distributed algorithm for a specific
clustering problem.



The structure of the paper is as follows: Section 2 introduces
the model we consider; the decentralized estimator is studied in
Section 3 while its limit behavior is characterized in Section
4. In section 5 an alternative approach based on a Bayesian
model is presented and the some generalization are discussed in
Section 6. Some simulations are presented in Section 7. Some
of the proofs are omitted for reasons of space and can be found
in Chiuso et al. (2010).

2. THE MODEL

In this section we give a more precise description of the model
we consider and of the estimation cost we will try to minimize
by the proposed estimation algorithm. Assume that the numbers
yi are given by (1), where we assume thatθ ∈R, Ti ∈ {0,1} and
thatvi are independent Gaussian random variables. The goal of
each uniti is to estimateθ andTi . For simplicity, with respect to
what mentioned in the introduction, we will restrict to the case
in which Ti can take only two values, that are supposed to be
known and which, with no loss of generality, can be supposed
to be 0 and 1. Extension to the case in which the difference
between the two symbols is unknown are discussed in Section
6. The algorithm we propose does not need to know the variance
σ which therefore can be assumed unknown.

2.1 The maximum likelihood estimator

When the bias termTi is not present, the centralized maximum
likelihood estimator ofθ (assuming that all measurementsyi
are available) is given by

θ̂ = N−1∑
i

yi . (2)

This arithmetic average can be asymptotically evaluated bythe
agents in the graph through standard consensus algorithms as
long as the graph is strongly connected.

The presence of the bias terms makes the problem quite harder.
In this paper we propose a decentralized version of the central-
ized maximum likelihood estimator for this problem. We set
some useful notation. We consider the vectorsy = (y1, . . .yN)
andT = (T1,T2, . . .TN) and the following weightsw(T) = ∑Ti ,
w(y) = ∑yi . The maximum likelihood estimator is given by

(θ̂ ML, T̂ML) = argmax
(θ ,T)

P(y|θ ,T) = argmin
(θ ,T)

[

∑
i

(yi −θ −Ti)
2

2σ2

]

(3)

Remark 1.The choice of the maximum likelihood estimator is
motivated by the simplicity of the solution we obtain from it.
Of course, it would be natural to seek for “optimal” estimators
which minimize, e.g., the variance of̂θ , E[(θ̂ − θ )2] and/or
the average classification errorE[∑N

i=1 |T̂i −Ti|]. Unfortunately
these optimal estimators are in general difficult (if not impossi-
ble) to find even in the centralized case. We will show instead
that the maximum likelihood estimator is not only computation-
ally simple, but also prone to a decentralized implementation.

From (3) we immediately obtain that

θ̂ (T) =
1
N ∑

i

(yi −Ti) =
w(y)−w(T)

N
(4)

So, to estimateθ , what is needed is the average measure
N−1w(y) which can be obtained by a standard consensus algo-
rithm, and the average biasN−1w(T). This second term how-

ever is not directly available, so that (4) is not an implementable
solution. Rather, we can substitute (4) inside (3) and we obtain:

T̂ = argmin
T




∑

i

(

yi − w(y)
N + w(T)

N −Ti

)2

2σ2




 (5)

This minimization can be solved in a two-step way by consid-
ering

min
w=0,...,N




 min

T :w(T)=w
∑
i

(

yi − w(y)
N + w

N −Ti

)2

2σ2




 (6)

For everyw = 0, . . . ,N, put

T̂w = argmin
T:w(T)=w

∑
i

(

yi − w(y)
N + w

N −Ti

)2

2σ2 (7)

Let us define

ηi = yi −
w(y)

N
and consider its ordered permutationη[1] ≤ η[2] ≤ ·· · ≤ η[N].
Clearly, the above minimization is solved by the vectorT̂w such
that

(T̂w)[ j ] =

{
0 if j ≤ N−w
1 otherwise (8)

Substituting in (6) and performing simple algebraic transfor-
mations, we obtain that the solution of the outer minimization
problem becomes ˆw = minF(w) where

F(w) := −w2

N
+w−2

N

∑
j=N−w+1

η[ j ]

Clearly, from Eqn. (8),

T̂ML
[ j ] = (T̂ŵ)[ j ] =

{
0 if j ≤ N− ŵ
1 otherwise (9)

and from Eqn. (4) we get:

θ̂ ML =
w(y)− ŵ

N
=

w(y)−w(T̂AML)

N
(10)

3. A DECENTRALIZED ESTIMATOR

Notice that each agenti can computeηi by a consensus al-
gorithm. Moreover, as will be discussed later, there existsan
efficient decentralized algorithm capable of ordering theηi , so
that each agenti knows its ordering indexj i : ηi = η[ j i ]. For
each valuew, the agenti is thus capable of computing(T̂w)i

through (8). In order to compute(T̂w)i using (9) we need to
know the ordered positionj i of agenti with respect toN− ŵ.
This would follow if we could compute ˆw in a decentralized
fashion, but this is not at all evident, because of the presence of
the aggregation term∑N

j=N−w+1 η[ j ].

Consider

∆(w) := F(w+1)−F(w) = −2w+1
N

+1−2η[N−w] (11)

Notice that∆(w) can be computed by the agent in ordered
positionN−w.

Define the set of local minima:

S := {w∈ [1,N−1] | ∆(w−1) < 0, ∆(w) > 0}
If we knew that |S | = 1 then our computational problem
could be solved in the following way. Notice that in this case



we would have thatG(w) decreases till the point ˆw and then
starts to increase. Consider a generic agenti in position j i . He
computes∆(N− j i). If ∆(N− j i) < 0 it means thatN− j i < ŵ,
namely j i > N− ŵ which implies, by (9) that(T̂ŵ)[ j i ] = 1. If
instead∆(N− j i) > 0, then(T̂ŵ)[ j i ] = 0. So, in this way, each
agent could compute its ML estimated biasT̂i . Again, using
consensus all agents can then computeN−1ŵ = N−1w(T̂) and
can therefore also computeθ using formula (4).

Of course the decentralized algorithm proposed above can
always be implemented by the agents. In the following part of
the paper we will show that, typically, forN large,F possesses
just one local minimum in[0,1/2] which happens to be the
global minimum on[0,1] while it can show other local minima
on ]1/2,1]. In this way, applying previous algorithm but for all
agents whose positionj is aboveN/2 and forcing all agents
whose positionj is belowN/2 to estimateT̂[ j ] = 0, with high
probability we will obtain the maximum likelihood estimator.
We can summarize the previous reasoning in the following
conditions:

T̂AML
i =







1 if 2

(

yi−
w(y)

N

)

>1−2(N− j i)+1
N

∧ j i >
N
2

0 otherwise
(12)

where the superscriptAML stands forapproximate maximum
likelihood. This approximate maximum likelihood estimator
converges (asN → ∞) to the maximum likelihood estimator in
(3) as stated in corollary 12.

Before describing the algorithm to compute(θ̂ AML, T̂AML) in a
distributed fashion, we need to introduce some useful general
distributed algorithms that will be used in our algorithm.

3.1 Decentralized average and ranking computation

We model the network of distributed agents with a graphG =
(N ,E ) whereN = {1,2, . . . ,N} is the set of nodes andE
is the set of edges corresponding to the communication links.
We indicate withV(i), the set of neighbors of nodei, i.e.
V(i) = { j | (i, j) ∈ E }. We assume that the graph is connected,
i.e. there is a path between any two nodes, and it is undirected,
i.e. nodes are capable of bidirectional communications. Wealso
assume that each sensor nodei knows its labeli, i.e. nodes are
numbered from 1 toN.

Proposition 2.(Symmetric gossip consensus). Let us assume
that each nodei has a sensor measurementyi ∈ R, and initialize
a local variable toxi(0) = yi . At each time stepk = 1,2, . . .,
one edge(i, j) ∈ E is selected with probabilitypi j > 0 such
that ∑(i, j)∈E pi j = 1. The nodesi and j exchange their local

variablesx(k)
i andx(k)

j and updates them as follows

x
(k+1)

i =
x(k)

i +x(k)
j

2

x
(k+1)

j =
x(k)

i +x(k)
j

2
while all other nodes do no perform any operation. Then we
have

lim
k→∞

x(k)
i =

1
N

N

∑
i=1

yi a.s.

Proposition 3.(Distributed ranking for complete graphs). Let us
assume that each nodei knows its own labeli and has a sensor
measurementyi ∈ R. Let us definey[ j ] the sorted measurements
in increasing order, i.e.y[1] ≤ y[2] ≤ ·· · ≤ y[N] and let us indicate
with j i , the index in the ordered measurements of sensori, i.e.

yi = y[ j i ]

Let us consider the following algorithm: each sensor sets a local
variable to its label, i.e.

x(0)
i = i, ∀i

Then, at each time stepk = 1,2, . . ., one edge(i, j) ∈ E is
selected with probabilitypi j > 0 such that∑(i, j)∈E pi j = 1.
The nodesi and j exchange their measurementsyi ,y j and their

current indexesx(k)
i ,x(k)

j , and updates them as follows

x
(k+1)

i =







x(k)
i i f (yi −y j)(x

(k)
i −x(k)

j ) ≥ 0

x(k)
j otherwise

x
(k+1)

j =







x(k)
j i f (yi −y j)(x

(k)
i −x(k)

j ) ≥ 0

x(k)
i otherwise

while all other nodes do no perform any operation.

If the graph iscomplete, i.e. (i, j) ∈ E ,∀i, then there exists
T > 0 such that

x(k)
i = j i ∀k≥ T,∀i a.s.

Proof The proposed algorithm can be interpreted as a Markov
chain defined on the indexes of the nodes and this chain has
a unique absorbing state defined by the sorted list. Let us first
defineℓ[ j ] the nodeℓ such that

yℓ[ j]
= y[ j ]

i.e.ℓ[ j ] is the label of the node that it is in positionj in the sorted
measurement list. We start by observing that if there existsT
such thatxℓ[ j]

(T)= j,∀ j, then alsoxℓ[ j]
(T +1)= j,∀ j, therefore

xℓ[ j]
= j,∀ j is an absorbing state.

Let us know compute the probability that after timeT the list
is ordered, i.e.P[xℓ[ j]

(T) = j, ∀ j]. To do so we compute the
probability of a specific sequence that leads to the absorbing

state. Let us consider the nodēj(k)i defined as

x(k)

j̄
(k)
i

= i

i.e. the nodej for which x(k)
j is equal toi at timek. Let us now

consider the following sequence of edges

ek = ( j̄(k)N−k, ℓ[N−k]), k = 0, . . . ,N−1

and consider the update ofx(k)
i as specified in the algorithm.

Then this sequence is designed so thatx
(k+1)

ℓ[N−k]
= N− k, i.e. the

index N− k is set in the right position. Since the ranking is
done starting from the largest, it also follows thatxℓ[N−k]

(t) =

N− k for t = k+ 1, . . . ,N, and thereforex(k)
ℓ[ j]

= j, ∀ j for all

k≥ N. Since this is only one specific sequence that leads to the
absorbing state, it follows that

P[xℓ[ j]
(T) = j, ∀ j,T = N] ≥ P[e0,e1, . . .eN−1] =

N−1

∏
k=0

pek ≥ εN



whereε = mini, j pi j > 0 sinceek ∈ E being the graph complete,
and the eventsek are all independent by hypothesis. From the
independence of the eventsek also follows that

P[∃( j,t) s.t. x(t)
ℓ[ j]

6= j, t ≥ T = kN] ≤ (1− εN)k k→∞−→ 0

which concludes the proof.

3.2 Decentralized estimation and classification algorithm

We are now ready to present the algorithm that allow each
sensori to compute the maximum likelihood estimate for the
unknown parameterθ and for its unknown classTi .
Proposition 4.Let us consider the following algorithm based
on the measurementsyi available to each nodei. We defined
and initialize the following local variables:

ξ (0)
i = η(0)

i = θ̂ (0)
i = yi , w(0)

i = 0, T̂(0)
i = 0, ℓ

(0)
i = i

At each time stepk = 1,2, . . ., one edge(i, j) ∈ E is selected
with probability pi j > 0 such that∑(i, j)∈E pi j = 1. The nodes

i and j exchange their local variablesy,x(k), ℓ(k),w(k), and
perform the following update for nodei:

ξ (k)
i =

ξ (k−1)
i + ξ (k−1)

j

2

η(k)
i = yi − ξ (k−1)

i

ℓ
(k)
i =







ℓ
(k−1)
i if (yi−y j)(ℓi(k−1)−ℓ j(k−1)) ≥ 0

ℓ
(k−1)
j otherwise

T̂(k)
i =







1 if 2η(k)
i >1− 2(N−ℓ

(k)
i )+1

N
∧ ℓ

(k)
i >

N
2

0 otherwise

w(k)
i =

w(k−1)
i +w(k−1)

j

2
+
(
T̂(k)

i − T̂(k−1)
i

)

θ̂ (k)
i = ξ (k−1)

i −w(k−1)
i

and likewise for nodej by simply replacing the indexj with i
and i with j in the previous equations. All other nodes do not
perform any update.

If the graph iscomplete, thenalmost surelywe have

lim
k→∞

ξ (k)
i = ȳ =

w(y)
N

(13)

lim
k→∞

η(k)
i = yi − ȳ (14)

lim
k→∞

ℓ
(k)
i = j i (15)

lim
k→∞

T̂(k)
i = T̂AML

i (16)

lim
k→∞

w(k)
i =

ŵ
N

(17)

lim
k→∞

θ̂ (k)
i = ȳ− ŵ

N
= θ̂ AML (18)

Proof Eqns. (13) and (13) follow directly from Proposition 2,
and Eqns. (15) from Proposition 3.

Let us now assume that all measurements are different, i.e.
y[1] < y[2] < .. . < y[N] and define

δ = min
k=1,...,N

∣
∣
∣
∣
2(yi − ȳ)−1+

2(N− j i)+1
N

∣
∣
∣
∣

From Proposition 2 it also follows that there existsT1 such that

|η(k)
i − (yi − ȳ)| < δ for all k ≥ T1 and forall i almost surely.

This fact and Proposition 3 imply that there existsT such that

2η(k)
i −1+

2(N− ℓ
(k)
i )+1

N
> 0 ∧ ℓ

(k)
i >

N
2

, k≥ T
a.s.⇐⇒

a.s.⇐⇒ 2(yi − ȳ)−1+
2(N− j i)+1

N
> 0∧ j i >

N
2

Therefore, according to Eqn. (12), this implies that Eqn. (16)
holds almost surely for allk≥ T.

Note now that

N

∑
i=1

w(k)
i =

N

∑
i=1

w(k−1)
i +

N

∑
i=1

(
T̂(k)

i − T̂(k−1)
i

)

=
N

∑
i=1

w(0)
i +

N

∑
i=1

(T̂(k)
i − T̂(0)

i )

=
N

∑
i=1

T̂(k)
i =

N

∑
i=1

T̂AML
i = ŵ, k≥ T

where we used the fact thatwi(0) = T̂i(0) = 0,∀i and the last
equality follows from Equation (16) almost surely for someT.
Then Eqns. (17) and (18) follows from Proposition 2.

4. THE LIMIT BEHAVIOR

In what follows we study the behavior (in particular the mono-
tonicity) of the objective random functionF whenN → +∞.
To emphasize dependence onN, from now on we will use the
notationFN.

We recall that, in our approach, the bias valuesTi are fixed, even
if unknown to the agents. We put

I1 = {i = 1, . . . ,N |Ti = 1} , I0 = {i = 1, . . . ,N |Ti = 0}
and we assume that

lim
N→+∞

|I1|
N

= lim
N→+∞

w(T)

N
= p∈ [0,1/2[ (19)

We start with some preliminary considerations on the ordered
variablesη[w]. We can writeηi = ξi + Ω where

ξi = Ti +vi , and Ω =
w(v)

N
− w(T)

N
. (20)

The variablesξi are thus independent and have two possible
distribution functions:

P(ξi < t) = Fσ (t −1) if i ∈ I1

P(ξi < t) = Fσ (t) if i ∈ I0
(21)

where

Fσ (a) :=
1√
2πσ

∫ a

−∞
e
− x2

2σ2 dx

Notice now that
ξ[w] < t ⇔ Λt := |{i |ξi < t}| ≥ w (22)

Put Λq
t := |{i ∈ Iq |ξi < t}| for q = 0,1. Λ1

t and Λ0
t are

two Binomial r.v. of type, respectively,B(|I1|,Fσ (t − 1)) and
B(|I0|,Fσ (t)). Since, Λt = Λ1

t + Λ0
t , we have thatE(Λt) =

|I1|Fσ (t −1)+ |I0|Fσ (t) and

lim
N→+∞

E(Λt )

N
= Fξ (t) := pFσ (t −1)+ (1− p)Fσ(t) (23)



Let us now consider the functionFN(ω) defined as follows:

FN(ω) =
1
N

FN(Nω) = −ω2+ ω − 2
N

N

∑
k=⌊N(1−ω)+1⌋

η[k]

=−ω2 + ω −2ωΩ− 2
N

N

∑
k=⌊N(1−ω)+1⌋

ξ[k], ω ∈ [N−1,1]

which is a normalized, scaled and interpolated version of the
functionFN(w).

Equations (22) and (23) suggest thatξ[w] andF−1
ξ (w/N) should

be close to each other for largeN. We can thus guess (formal
proofs are omitted for reasons of space) that:

lim
N→∞

FN(ω)
a.s.
= F (ω):=−ω2+ω+2pω−2

∫ 1

1−ω
Fξ

−1(t)dt, ω ∈ (0,1]

Likely enough, local extrema ofFN will converge, almost
surely, to the local extrema ofF so that ifF possess just one
local minimum on[0,1/2] which is the global minimum, then
this will also happen forFN almost surely whenN → +∞. This
would mean that our decentralized algorithm will almost surely
coincide with the centralized ML algorithm. Next section will
make precise all these considerations.

4.1 The analysis of the functionF (ω)

We start with some preliminary remarks on the functionF . It is
immediate to verify thatF is continuous. The other important
fact is that can have one or two local minima depending on the
particular values forσ andp, i.e. the derivative ofF is equal to
zero once or three times. However, the derivative ofF seems
to be equal to zero in only one point inω ∈ (0,1/2) which
corresponds to the global minimum.

The “small noise” case, i.e. the limitσ → 0, deserves to be
studied; this is done in the following proposition:
Proposition 5.Under the assumption of model given by Eqn. (3)
we have that

lim
σ→0

F (ω) = −ω2 + ω +2pω −2p−2(ω− p)δ−1(p−ω)

lim
σ→0

ω̂ := argmin
ω

F (ω) = p

whereδ−1(x) is equal to one for positivex and zero otherwise.
We also have

lim
σ→+∞

ω̂ := argmin
ω

F (ω) =
1
2

The previous theorem states that if the the two distributiondo
not overlap, then the proposed algorithm exactly compute the
proportions measurements generated by each of the two Gaus-
sian distributions. However, when there is substantial overlap,
the estimation has a bias toward the midpoint 1/2, and in the
limit of very large variance estimatêω is completely uninfor-
mative.

The value of the minimum̂ω of the asymptotic functionF (ω)
as a function of the noise varianceσ for p = 0.3 is reported
in Figure 1 (dotted line). As stated in the previous proposition,
ω̂ = p for small σ and ω̂ = 1/2 for largeσ . As mentioned
above, the graph shows that this minimum monotonically in-
creases fromp to 1/2, thus confirming the hypothesis that
the global minimum is always in the interval(0,1/2) for all
values ofp andσ . Figure 1 also shows the mean and standard
deviation of the minimum of̄FN(ω) over 10 Monte Carlo runs
for N = 100 sensor nodes.
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Asymptotic
Sample (mean and errorbars)

Fig. 1. Minima ofF (ω) (asymptotic) and ofFN(ω) (sample,
10 Monte Carlo runs) vs. noise standard deviationσ . Data
are always generated withp = ∑i Ti

N = 0.3.

4.2 The concentration results

In the sequel we present some concentration results which make
rigorous the considerations done above. In the interest of space,
all technical proofs are omitted.

We recall a standard result on the concentration of binomialr.v.
which will be our main technical tool.
Theorem 6.Let Z be a binomial r.v of typeB(N, p). Put, for
x > 0, γ(x) = xlogx−x+1. Then, for anyx < 1 < y, it holds

P(Z ≤ Npx) ≤ e−Npγ(x) , P(Z ≥ Npy) ≤ e−Npγ(y)

Remark:Notice that, for anyy0 > 1, there exists a constant
C > 0, such thatγ(y) ≥Cylogy

The following result is standard but we will give an elementary
proof for the sake of making the paper self-contained.
Lemma 7.For any 0< a < b < 1 and for everyδ > 0, there
existslδ > 0 such that, forN sufficiently large,

P(|ξ[ j ] −F−1
ξ ( j/N)| ≥ δ ) ≤ e−Nlδ , ∀ j ∈ [aN,bN]

With the following bound we take care of the behavior ofξ[ j ]
for j close to 0 and toN.
Lemma 8.There exist 0< a < 1 and l > 0 such that, forN
sufficiently large and forj ∈ [1,aN], it holds

P

(

ξ[ j ] ≤−(N/ j)1/2
)

≤ e−lN

P

(

ξ[N− j ] ≥ (N/ j)1/2
)

≤ e−lN

P(ξ[N] ≥ N1/2) ≤ e−LN

(24)

Theorem 9.For everyδ > 0 there existsLδ > 0 such that, for
N sufficiently large,

P

(

∃w :

∣
∣
∣
∣

FN(w)

N
−F

(w
N

)
∣
∣
∣
∣
≥ δ

)

≤ e−NLδ

Since our decentralized algorithm is influenced by the position
of the local minima ofFN in [0,1/2], the result above is not
sufficient to study the performance. Indeed, we need to study
the asymptotic behavior of the variation function∆(w).
Theorem 10.For everyδ > 0, there exists̃Lδ > 0 such that

P

(

∃w :
∣
∣
∣∆(w)−F

′
(w

N

)∣
∣
∣≥ δ

)

≤ e−NL̃δ

for N sufficiently large.



Proposition 11.Consider an interval[a,b] ⊆ [0,1] andε > 0.
Then,

F
′(x)≥ε ∀x∈ [a,b] ⇒ P(∆(w)≥0∀w∈ [Na,Nb])≥ pε (N)

F
′(x)≤−ε ∀x∈ [a,b] ⇒ P(∆(w)≤0∀w∈ [Na,Nb])≥ pε (N)

(25)

wherepε(N) := 1−Ce−L̃εN.

We are now ready to state and prove the main theoretical result
of our work. Denote bySN the set of local minima ofFN in
[0,1/2] and bySglob

N the subset ofSN consisting of the global
minima ofFN living in [0,1/2] (of course a priori this set could
as well be empty).

Corollary 12. Assume that

(a) min
ω∈[0,1/2]

F (ω) < min
ω∈[1/2,1]

F (ω).

(b) F admits just one local minimum point̄ω in [0,1/2]
(which is thus the only global minimum for (a)).

Then, for everyδ > 0, there existsJδ > 0 such that

P(SN/N ⊆]ω̄ − δ , ω̄ + δ [) ≥ 1−Ce−Jδ N

P(Sglob
N 6= /0) ≥ 1−Ce−Jδ N

(26)

5. BAYESIAN MODELING AND EM

An alternative approach to this estimation and detection prob-
lem is possible if one postulates thatTi , i = 1, ..,N are indepen-
dent and identically distributed (i.i.d.) binary random variables,
taking values in{0,1}. This implies that theTi ’s are Bernoulli
random variables with parameterp

Ti ∼ B(p) p := P[Ti = 1]. (27)

so that

P(T|p) =
N

∏
i=1

pTi (1− p)1−Ti

Hence, one can formulate the problem of estimatingp, θ
andσ from measurementsy1, ...,yN. The maximum likelihood
estimator is defined by

(
p̂, θ̂ , σ̂

)
:= arg max

p,θ ,σ
P(y|θ ,T)P(T|p) (28)

Note that in the estimation problem (3) the number of un-
knowns grows with the number of data; instead the i.i.d. as-
sumption on theTi ’s allows to keep the parameter space in
(28) of fixed dimension. As a result, the asymptotic properties
of the estimators in (28), such as consistency and asymptotic
efficiency, follow straightforwardly from standard asymptotic
theory of maximum likelihood estimators, see Zacks (1971).

An estimator of the variablesT1, ..,TN can then be obtained by
maximizing the posterior probability

(T̂1, ..T̂N) := arg max
T∈{0,1}N

p̂(T|y,θ , p,σ).

The maximum likelihood estimator ˆp(T|y,θ , p,σ) of the pos-
terior probabilityp(T|y,θ , p,σ) is given, from the invariance
principle (see e.g. Zacks (1971)), by

p̂(T|y,θ , p,σ) = p(T|y, θ̂ , p̂, σ̂)

= ce
− 1

2 ∑N
i=1

(

yi−θ̂−Ti
σ̂

)2

+ln
(

p̂
1− p̂

)

∑N
i=1Ti

(29)

wherec is a suitable normalization constant.

The maximum likelihood problem (28) is a typical estima-
tion problem for a finite mixture distribution (see Titterington
et al. (1985)) and does not have a closed form solution. One
possible approach is to resort to the well known Expectation-
Maximization (EM) algorithm in Dempster et al. (1977). This
is an iterative algorithm which is known to converge to a local
maxima of the likelihood. For reasons of space we shall only
report the final equations for EM iterations; we refer the reader
to the book by Titterington et al. (1985) for a derivation of
the EM algorithm which can be easily adapted to this specific
problem.

Let θ̂ (k), σ̂ (k) and p̂(k) the estimators at thek− th iteration of
the EM algorithm; the estimators for the(k+1)-th iteration are
given by:

(1) Expectation Step: compute the posterior probabilities

µ̂ (k+1)
j := p(Tj |y, θ̂ (k), p̂(k), σ̂ (k))

=
p̂(k)e

− 1
2

(

yj−θ̂ (k)−1

σ̂(k)

)2

p̂(k)e
− 1

2

(

yj−θ̂ (k)−1

σ̂(k)

)2

+(1− p̂(k))e
− 1

2

(

yj−θ̂ (k)

σ̂(k)

)2

(30)
(2) Maximization Step:

p̂(k+1) =
1
N

N

∑
j=1

µ̂ (k+1)
j

θ̂ (k+1) =
1
N

N

∑
j=1

y j − p̂(k+1)

σ̂ (k+1) =

√
√
√
√
√
√

1
N

N

∑
j=1

(

(y j −θ )2+ µ j −2µ j(y j −θ )
︸ ︷︷ ︸

)

θ=θ̂ (k+1) µ j =µ̂(k+1)
j

(31)

The EM algorithm (30),(31) has a “centralized” nature; how-
ever it can be easily decentralized (i.e. computed by each node
only using local information) since it is essentially basedupon
computing averages. It is well known that this can be done
resorting to consensus algorithms; for instance an algorithm
based on gossip has been proposed by Kowalczyk and Vlassis
(2005). In this paper we have implemented the averages in (31)
using a symmetric gossip algorithm assuming the nodes are
connected via a complete graph. We shall refer to this algorithm
asdistributed-EM.

As expected, if the number of gossip iterations is sufficient
to reach consensus, the distributed-EM algorithm converges to
the maximum likelihood estimator (28). However, as soon as
the number of iterations is not sufficient to reach consensus,
the distributed-EM algorithm either oscillates or even diverge,
failing to provide sensible estimates. This simple simulation
experiments suggest that distributed-EM is not robust against
errors in computing the averages in (31) which may result from
an insufficient number of consensus iterations.

6. GENERALIZATION

One drawback of the model in (1) is that theTi ’s are assumed
to belong to a known alphabetA . In particular in this paper
we have considered the caseTi ∈ {0,1}. A simple yet important
generalization is to allow that the alphabet is partially unknown.



For instance one can assume that only the cardinality ofA

is known. In the binary case considered in this paper this is
equivalent to assume that

yi = θ + αTi +vi (32)
with Ti ∈ {0,1} andα ∈ R

+ unknown1 .

In this more general scenario the maximum likelihood estimator
(3) becomes:

(θ̂ ML, T̂ML, α̂ML) = argmax
(θ ,T,α)

P(y|θ ,T,α)

= argmin
(θ ,T,α)

[

∑
i

(yi −θ −αTi)
2

2σ2

]
(33)

Solving (33) is considerably more difficult than (3); one pos-
sible approach is to utilize and alternating minimization algo-
rithm as follows:

(i) Fix α := α̂(k−1) and solve

T̂(k)(α) = argmin
T

min
θ

[

∑
i

(yi −θ −αTi)
2

2σ2

]

(34)

(ii) Fix T := T̂(k) and solve

(θ̂ (k)(T), α̂(k)(T)) = argmin
(θ ,α)

[

∑
i

(yi −θ −αTi))
2

2σ2

]

(35)

Problem (34) is analogous to (3) with the only difference that
in (3) we assumeα = 1. Hence this can be solved as described
in Section 2.1.

Instead, problem (35) admits a closed form solution as:

θ̂ (k) =
∑i yi

N
− α̂(k) ∑i T̂

(k)
i

N
α̂(k) =

∑i T̂
(k)
i yi
N − ∑i T̂

(k)
i

N
∑i yi
N

∑i T̂(k)
i

N

(

1− ∑i T̂(k)
i

N

)

(36)

In Section (7) we shall also report simulation experiments,in
which α is not assumed to be known, using the alternating
minimization approach above; experimental evidence shows
that this alternating minimization algorithm converges infew
steps (2 or 3) in all the examples considered. Of course, in
the distributed scenario the averages in (36) will have to be
computed resorting to consensus algorithms.

As an alternative one could also consider the Bayesian for-
mulation in Section 5 for the measurement model (32). This
is standard estimation problem for a mixture of two Gaussian
distributions with unknown means and unknown (but common)
variance. An EM algorithm similar to (30), (31) in Section 5
can be derived (see Titterington et al. (1985)). Of course, in
the distributed setting, averages will have to be computed using
consensus algorithm, with the same limitations discussed in
Section 5.

7. SIMULATIONS

In order to compare the algorithm introduced in this paper with
more standard EM algorithms (based on gossip iterations, as
1 It is immediate to show that, for identifiability reasons, only the difference
between the two symbols have to be parameterized; in addition this difference
can be assumed to be positive modulo permutations.
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Fig. 2. Example 1: Average (over 50 Monte Carlo runs) of
the classification error∑N

i=1 |Ti − T̂i | as a function of the
number of gossip iterations. Data are generated as follows:
θ = 0, Ti ∼ B(0.3), σ = 0.3.

proposed in Section 5, 6), we consider the following setup. In
Example 1 (see Fig. 2) we assumeN = 50 sensors are deployed
which measure data according to the model (1) or equivalently
according to the model (32) withα = 1. We generate data with
θ = 0, σ = 0.3 and assume thatTi are i.i.d. Bernoulli random
variables with meanp = 0.3. In order to test the robustness
of the algorithms against outliers, in Example 2 we consider
a second setup in which data are generated as in Example 1,
except for an outliery0 = −2 which is artificially added.

We compare the following algorithms:

(1) Distributed AML ( α = 1): this is the distributed approx-
imate Maximum Likelihood described in Section 3 which
is based on the model (1) withTi ∈ {0,1} as in Section 2.

(2) Distributed AML : the distributed approximate Maxi-
mum Likelihood based on model (32), which also es-
timatesα using the alternating maximization approach
described in Section 6.

(3) EM (α = 1): this is the distributed implementation of
the EM algorithm introduced in Section 5, based on the
measurement model (1) withTi ∈ {0,1} as in Section 2.

(4) EM : this is the distributed implementation of the EM
algorithm for the estimation of a mixture of two Gaussian
distributions with different and unknown means discussed
at the end of Section 6.

(5) Naive threshold. This is the most naive algorithm one
can come up with: classify measurements based on the
following rule:

Ti =

{

1 yi >
min{yi}+max{yi}

2
0 otherwise

In its distributed version the maximum and the minimum
can be calculated using a distributed ranking algorithm as
in Section 3.1.

The simulation results show that there is not a clear-cut dis-
tinction between different algorithms. The EM algorithm isnot
robust if the number of gossip iterations between successive M-
steps and E-steps is not sufficient to reach “almost” consensus
(i.e. compute reliably enough the averages in (31)). The number
of these gossip iterations has been fixed to 300 in our simulation
experiments; this number seemed large enough to reach essen-
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Fig. 3. Example 2 (with outlier): Average (over 50 Monte Carlo
runs) of the classification error∑N

i=1 |Ti − T̂i | as a function
of the number of gossip iterations. Data are generated as
follows: θ = 0, Ti ∼ B(0.3), σ = 0.3. An outlier is added
to each Monte Carlo realization by settingy1 = −2.
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Fig. 4. Distributed AML: estimateŝθi andα̂i for each nodei as
a function of the number of gossip iterations.

tially consensus in the setup we consider while smaller values
gave sometimes rise to unstable results. On the other hand, the
“naive” thresholding approach is not robust against the possible
presence of outliers. Also the EM algorithm which does not
assumeα to be known seems to get trapped in a local minima
(see Figure 3). The algorithm introduced in this paper seems,
overall, a bit slower than its competitors, but more robust in the
examples considered. The simulation results suggest that,if α
is not assumed to be known (and hence it has to be estimated as
described in Section 6), then the algorithm essentially hasthe
same performance. One typical realization of the estimators θ̂i
andα̂i (estimators forθ andα at thei-th node) obtained by the
distributed AML algorithm are reported in Figure 4.

8. CONCLUSIONS

In this work we studied the problem of distributively com-
puting simultaneous binary classification and noisy parameter
estimation in network of distributed sensors subject to topo-

logical communication constraints. The proposed ML strategy
has shown different trade-offs as compared to an EM approach
in terms of speed of convergence and robustness in particular
when the offset of the “misbehaving” sensors is not known.
Different research avenues are possible, such as the generaliza-
tion of the distributed ranking to simply connected graphs,the
generalization to multiple class, and the development of more
robust strategies when the offset is unknown.
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