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Abstract: In this paper, the problem of building a model of a sensor (camera) network from
observations is considered. By model, we mean a graph where the nodes represent states that
are observable and distinguishable by the sensor network and edges are the feasible transitions
among these states: the edges are also weighted by the probability of transition from one state to
another. Remarkably, since merely static observations are not su�cient to discern all states in the
networked system, the dynamics of transition is also considered. In this respect, the proposed
graph model appears falling into the class of hidden Markov models, where the discover of
hidden states is made possible by exploiting the temporal evolution of the transitions and the
implementation of a splitting procedure of previously identi�ed graph nodes.
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1. INTRODUCTION

In a distributed scenario, the knowledge of the topology
of the network by the acting agents is of paramount im-
portance: in fact, the agents have to share information
locally and need to coordinate with neighbors to attain
the global performance. While in general this represents an
advantage of the distributed architecture in terms of par-
simony of computational and communication resources, it
also becomes a need in situations where hundreds of nodes
are spread across the environment. In this situation, in
fact, it is practically impossible to have a manual setup of
the network, and at the same time it is not convenient to
rely on a topology that is a priori de�ned during the design
phase. There is therefore the necessity of learning the
topology of the network after it has been deployed in the
environment. A practical example of such situation is that
of the control room of a surveillance network of hundreds
of sensors (cameras). The real world scenario refers to
monitoring vast indoor or outdoor area (e.g. malls, natural
or amusement parks, city neighborhoods, docks and large
industrial sites, airport terminals, university campuses)
with Pan-Tilt-Zoom (PTZ) or �xed cameras. There is a
feasible possibility of visualizing only a subset of these
signals, and the human operator attention can focus only
on an even smaller set of information. In particular, once
an event of interest has been localized in a speci�c area,
it would be interesting to know which are the locations
where the same event is more likely to appear in the near
future, or better which are the sensors (cameras) that
can provide information on this movement. Therefore, the
problem consists in understanding how the sensor scene
relate to the environment topology. In the case of camera
networks, the sensor scene is meant as the whole of visibil-
ity areas obtained through the union of the camera �elds
of view. We refer to this problem as the graph building
problem, since the solution is given in terms of a graph
where each node represents a �sensor area� and each edge
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stands for an admissible physical transition from one area
to another. In particular, the aim is to associate to each
graph edge a probability of transition that describes the
possibility of the event to move from the current position.
The estimation of the graph structure in terms of both
nodes (i.e. areas of interest) and edges (i.e. the transition
probability map) has to be made from the information
obtained from camera observations, during the calibration
phase of the system. In this phase, with reference to the
camera network application, we suppose to have a known
target that moves across the scene. The aim is to devise
a procedure that takes the observations in input in order
to identify an initial model able to describe the visible
areas and the adjacency relationship among them, i.e. the
probability of transition from one to the others. Then,
while more observations are received by the network, the
system should learn how to adaptively correct the initial
model making it in some sense increasingly homeomorphic
to the monitored environment (as far as this is possible,
w.r.t. unobservable states).

2. STATE OF ART

The general subject of multicamera networks is widely
treated in the scienti�c literature (e.g. [Javed et al. (2003)],
[Collins et al. (2001)], and references within). The focus,
though, is often on the target matching problem (e.g. [Chil-
gunde et al. (2004)]), after the event of interest have been
detected in more than one �eld of view, and is based on
several approaches to feature matching among di�erent
views. Di�erently, the problem addressed in this work
regards the topological association of the �elds of view
themselves, and is related more to the structure of the
camera network than to the dynamic instances that occur
in the scene. More in detail, this issue can be seen from a
theoretical point of view as a model selection problem.
In this context, graphical models, �a marriage between
probability theory and graph theory� [Jordan (1999)], are
a popular research subject [Bishop (2006)][Wainwright and
Jordan (2008)] where the problem of �tting and selecting
models on the basis of data is tackled for example by



Fig. 1. A simpli�ed camera network scenario. Camera fov's
provide the observations to identify system states.

resorting to graph based structures (Markov random �eld)
and to the formulation of a maximum likelihood optimiza-
tion problem with a regularization term. An in principle
similar approach from the application perspective is given
in [Vasquez et al. (2009)] where a growing Hidden Markov
Model is capable of learning incrementally the model and
is proposed to study and predict the motion of vehicles
and pedestrians: this work makes use of tools of the same
kind than those developed for our case study. A graphical
model is also used in [Farrell et al. (2007)] for multicamera
surveillance systems, where a dynamic Bayesian network
is used to learn the model parameter incrementally by
accumulating observations on the tracked object trajec-
tories. In [Ellis et al. (2003)] the problem of a multicamera
framework is posed, where the aim is to establish corre-
spondences among neighboring �elds of view, for dynamic
object tracking and to estimate the periods of blind-view
due to the presence of occlusions. The approach is based
on the identi�cation of the entrance/exit points in each
�eld of view and in studying the temporal correlation of
objects as seen by di�erent cameras.

3. FORMALIZATION OF THE PROBLEM

3.1 Work Hypotheses and Camera Model

In this work, without loss of generality, a simpli�ed sce-
nario is considered, where the monitored area is a two-
dimensional domain Ω of 25 × 50m2 and K = 11 �xed
cameras {Ai, i = 1, . . . ,K} are positioned around the
perimeter, facing inwards with circular sector �eld of view
(fov) ∆i, as shown in Fig. 1. Other camera parameters of
interest are known and set as follows:

• focal length F = 20m;
• fov angle θ = 30◦;
• frame rate f = 25fps.

Conversely, the camera position and orientation are un-
known, and also the shape of the fov overlapping regions is
a priori not known. The states of the system are the visible
areas obtained by considering all overlapping and non
overlapping fov regions, in addition to the (null) state cor-
responding to no observation and region S0 = (Ω \

⋃
∆i).

3.2 Rationale

In this context, we are not interested in solving the
computational vision problem of how the camera sees the
object of interest, but we are interested in if the camera
sees it. The information datum (observation) at time t is
given as a binary string Ot ∈ {0, 1}K whose entry in the
i-th position is 1 if the i-th camera sees the target object,

while it is 0 otherwise 1 . Since this binary observation
represents a signature of the states, di�erent observations
state that the corresponding states of the system are
distinguishable.

Therefore, the problem of graph selection can be formu-
lated as follows: given an observation sequence O in the
�nite interval [1, T ], infer the set of states S and the
underlying graph G that constraints their transitions (and
whose node set is S).
In the adopted formulation, the state graph construction
follows a two step approach: �rstly, a strong correspon-
dence between states and (static) observations is enforced
and for every di�erent observation at time t a state is
generated and a transition probability is evaluated. Then,
some of these states undergo a splitting procedure, giving
rise to the revelation of initially hidden states, and in
this ways being replaced by two or more novel states:
this procedure is attained exploiting the dynamics of the
observation by considering not only present but also past
and future values.

3.3 Hidden Markov Models

Hidden Markov Model (HMM) [Rabiner (1989)][Rabiner
and Juang (2003)] is the model that better describes the
problem we are dealing with, being actually characterized
by the fact that the state is not known a priori but need
to be inferred from observations.

An HMM is characterized by the following:

• the number N of the states of the model (although
they are hidden, usually their number is known); we
denote the state set as S = {S1, S2, . . . , SN} and the
state at time t as qt ∈ S.
• the number M of distinct observation symbols,
M ≤ 2K . This dictionary is denoted by V =
{v1, v2, . . . , vM}, being vi ∈ {0, 1}K ; an (ordered) se-
quence of observations in the interval T = [1, T ] ⊂ Z+
is given by O = [O1, . . . , OT ], Oi ∈ V;
• the state transition probability distribution A ∈

RN×N whose elements are

aij = P[qt+1 = Sj |qt = Si] 1 ≤ i, j ≤ N , (1)

with 0 ≤ aij ≤ 1 and
∑N
j=1 aij = 1 ;

• the observation symbol probability distribution B ∈
RM×N , whose elements {bij} are
bj(vi) = P[Ot = vi|qt = Sj ] 1 ≤ i ≤M , 1 ≤ j ≤ N ,

(2)

with 0 ≤ bj(vi) ≤ 1 and
∑M
i=1 bj(vi) = 1 2 ;

• the initial state distribution π ∈ RN , whose elements
are

πi = P[q1 = Si] 1 ≤ i ≤ N , (3)∑N
i=1 πi = 1 .

Given the state space S, the Markov model is the triple
λ = (A,B, π), and a directed graph G is associated to the
related Markov chain.The event [qt = Si] represents the
fact that the chain is in the state Si at time t, while the
event [qt = Sj |qt−1 = Si] represents the transition from
the state Si to the state Sj . In other words, G is obtained
as follows:
1 This quite simplifying assumption appears reasonable as the setup
of complex multicamera system may boil down to the mere detection
of a known target as the input of some indicator function.
2 This condition means that being in a state Sj generates an

observation with probability 1.



(1) for every state Si in the model a graph node is set;
(2) for each pair of nodes (Si, Sj) in the graph, the

directed arc between the two is labeled with the
transition probability aij .

3.4 Objective and Design Strategy

At this stage, it is useful to point out how the work ratio-
nale of Subsec. 3.2 is embodied by the Markov modeling
just presented. In this respect, the following procedure is
implemented:

(1) a camera con�guration is setup and a trajectory in
the Ω domain is considered, to provide observation
data;

(2) a �rst topological graph is built directly as a �rst
guess Markov model, in terms of nodes (states) and
edges (state transitions);

(3) the re�nement of the model is obtained through an
iterative procedure according to some norm, updating
the model parameters to better �t the observation
sequence;

(4) the identi�cation of hidden states is then carried out
by observing the evolution in time of the trajectory.

This �nal model should provide a better description of
data, in the sense of prediction of the trajectory used
for the graph construction. In this respect, given the
observation O and its estimate Ô the probability that they
coincide is considered as the utility function:

max P[Ôt+1 = Ot+1|O1:t] . (4)

4. GRAPH BUILDING ALGORITHM

Given an initial model,λ0 = (A,B, π)0, one canonical
problem for HMMs is to determine a method to adjust the
model parameters {A,B, π} to maximize the probability
of the observation sequence O given the model:

max
λ

P[O|λ]. (5)

In this context, we make use of the Baum-Welch algorithm
[Baum et al. (1970)][Welch (2003)] to �nd and adjust
the unknown parameters of the HMM of interest. The
algorithm refers to expectation-maximization methods to
compute posterior estimates for the model parameters,
based on a maximum likelihood approach. In order to do
so, we �rst introduce some preliminary concepts in the
following.

To compute the probability of the observation sequence,
given the model, P[O|λ], the forward-backward procedure
is employed [Baum et al. (1970)].

Be the observation interval T = [1, T ]: the forward variable
αt(i) is de�ned for t ∈ T as

αt(i) = P[O1, O2, . . . , Ot, qt = Si|λ] , (6)

i.e. it is the probability of the partial observation sequence
[O1, O2, . . . , Ot] and state Si at time t, given the model λ.

The solution can be found inductively for t ∈ [1, T − 1]

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1) 1 ≤ j ≤ N , (7)

with initialization as

α1(i) = πibi(O1) , 1 ≤ i ≤ N . (8)

Similarly, the backward variable βt(i), t ∈ T , is de�ned as

βt(i) = P[Ot+1, Ot+2, . . . , OT |qt = Si, λ] , (9)

i.e. it is the probability of the partial observation sequence
in the interval [t + 1, T ], given the state Si at time t
and the model λ. Again, we can solve it inductively for
t ∈ {T − 1, T − 2, . . . , 1} as

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j) 1 ≤ i ≤ N , (10)

with initialization as

βT (i) = 1 , 1 ≤ i ≤ N . (11)

Finally, γt(i), t ∈ T , is de�ned as the probability of being
in state Si at time t, given the observation sequence and
the model:

γt(i) = P[qt = Si|O, λ]. (12)

Remarkably, the probability of the whole observation
sequence O is given in terms of forward and backward
variables either by summing over the state space the
terminal variables αT (i), or, alternatively, by summing
over the state space the partial observation variables αt(i)
multiplied by the correspondent βt(i) accounting for the
remainder of the observation interval:

P[O|λ] =
N∑
i=1

αT (i) =
N∑
i=1

αt(i)βt(i) . (13)

Also, γt(i) relates to αt(i) and βt(i), being:

γt(i) = P[qt = Si|O, λ] =
αt(i)βt(i)
P[O|λ]

. (14)

To determine the model that maximizes the probability
of the observation sequence there is no known analytical
way, nonetheless the Baum-Welch algorithm locally max-
imizes P[O|λ], bases on two steps: �rst it computes the
forward (6) and backward (9) probabilities for each state
of the model, then the expected count of the transition to
a state and emission of an observation pair is evaluated,
to provide a new estimation of the model parameters
{Ā, B̄, π̄}.
The variable ξt(i, j) is introduced as the probability of
been in state Si at time t and in state Sj at time t + 1,
given the model λ and the observation sequence O:

ξt(i, j) = P[qt = Si, qt+1 = Sj |O, λ] . (15)

From the chain rule, the de�nitions (6)-(9), and (13), this
can be rewritten as

ξt(i, j) =
P[qt = Si, qt+1 = Sj ,O|λ]

P[O|λ]
(16)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1 αt(i)βt(i)
, (17)

while from (12) and (14) it follows:

γt(i) =
N∑
j=1

ξt(i, j) . (18)

Integrating over time, the summation of γ gives either the
expected number of visits of state Si if summing over [1, T ]
or the expected number of transition made from state Si
if summing over [1, T − 1], while the summation of ξ over
[1, T−1] provides the expected number of transitions from
state Si to state Sj , namely:



T∑
t=1

γt(i) = E[# of Si] (19)

T−1∑
t=1

γt(i) = E[# of Si → •] (20)

T−1∑
t=1

ξt(i, j) = E[# of Si → Sj ] , (21)

with straightforward interpretation of the adopted nota-
tion.

Finally, simply by counting the event occurrences, it is
possible to formulate a procedure for the re-estimation of
the model parameters, {Ā, B̄, π̄} as:

π̄i = E[# of Si at t = 1] = γ1(i) (22)

āij =
E[# of Si → Sj ]
E[# of Si → •]

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(23)

b̄j(vi) =
E[# of Sj and vi]

E[# of Sj ]
=

T∑
t=1

s.t. Ot=vi

γt(j)

T∑
t=1

γt(j)

(24)

In [Baum and Sell (1968)][Baker (2003)] it is shown that
the new model λ̄ = (Ā, B̄, π̄) is more likely than the initial
model λ in the sense that it increases (at worst it equalizes)
the probability of the observation given the model:

P[O|λ̄] ≥ P[O|λ)] , (25)

i.e., the new model λ̄ is more likely than the original λ
to produce the observation sequence (or at least equally
likely).

A couple of notes are in order: �rstly, since this iterative
procedure converges to local minima and the optimization
manifold may be of some complexity, the initial condition
(state) should be a fair guess of the true model, in order
to provide a good model adjustment. Also, working with
long observation sequence, scaling is required for the re-
estimation computation, because the parameter values
become numerically close to machine precision.

Some implementations can be found in [Rabiner (1989)],
[Stamp (2004)], [Mann (2006)].

5. NODE-SPLITTING FOR HMM IDENTIFICATION

As previously mentioned in Subsec. 3.2 once a �rst in-
stance of the graph G has been retrieved, some of the nodes
undergo a splitting procedure, which is the subject of this
section. Here and in the remainder of the paper we neglect
self loops in the graph structure.

5.1 Topological and Logical Node-Splitting

Starting from the observation data, it is possible to infer
a probabilistic graph structure that represents the sensor-
observation relations, which can be not exactly consistent
with the topology of the camera network and does not
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Fig. 2. Schematic drawing for topological node-splitting.
The fov's of two cameras identify an overlapping area,
while the other areas of interest are seen by one
camera only. Areas colored with the same pattern
style generate the same observation symbol.
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Fig. 4. Node splitting example. The target trajectory at
past and future times determines the node splitting.

provide accurate information about space locations. To
exemplify, given the assumptions of having binary obser-
vations, it is possible to get the same observation symbol
while being the target in distinct positions (e.g. in Fig. 2).
In this case, it is preferable to have two distinct states S′i
and S′′i that relate to the same observation, because the
future trajectory could evolve very di�erently. We refer
to this situation as topological node-splitting. A second
situation is related to the target trajectory, since the past
transitions may suggest a preferential direction and allow
the estimation of the future state visits (see Fig. 3). This
is a motivation to split a state, i.e. the probability of
future state, given the present position (observation) and
the past trajectory. We indicate this case as logical node-
splitting. Note that logical splitting include also topological
splitting. In both case, it follows an increase in the number
of states and arcs of the graph, as well as an appropriate
arrangement of the transition probabilities. The purpose
is now to design a procedure that autonomously �nds the
states to split and performs the splitting. To this aim, we
�rst need to enrich the graph with more information so we
decide to consider for each state Si all the possible paths of
length 2 (i.e. combinations of past/future transitions that
can occur).

5.2 Orthogonality Measure

With reference to the example in Fig. 4, for a node qt = Si
a table is built with the possible past and future nodes
(qt−1 and qt+1), and the related transition probabilities,
as the following:

qi+1

Sa Sb Sc

qi−1

Sa 0 Pa∗b 0
Sb Pb∗a 0 Pb∗c

Sc Pc∗a 0 Pc∗c

Table 1.

Here, it appears that the future state is Sb only if the
past state is Sa (dashed arrows in �gure on the right);
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Fig. 3. Schematic drawing for logical node-splitting. A corridor is seen by a set of cameras in the orthogonal direction
w.r.t. the target trajectory. A) Without trajectory information, probabilities to go either way are equal. B)
Trajectory pattern: left to right or viceversa. C) The state is split into two according to what is the origin of
the trajectory and the probabilities of transition are updated accordingly.

instead future states are {Sa, Sc} only if the past states
are {Sb, Sc} (continuous arrows in �gure on the right).

From a projection point of view, the past-future transition
table of state Si (Tab. 1) is prone to an interesting interpre-
tation: the �rst row of the table is in fact orthogonal to the
others, which conversely lie on the same 2D space, and are
in this sense �similar�. The state Si can be therefore split
into two separate states S′i and S′′i to take into account
this feature: S′i will refer to the transition Sa → Si → Sb
while S′′i will be related to {Sb, Sc} → Si → {Sa, Sc}. In
general, a �measure of orthogonality� between row vectors
vh and vl is given by the cosine of the angle between the
two:

σhl =
vh · vTl
‖vh‖‖vl‖

, (26)

that is σhl = 0 if vh and vl are orthogonal, 0 < σhl ≤ 1 if
they are coplanar, σhl = 1 being the parallel condition.

A node-splitting occurs when σhl = 0, which is a strict
condition, but at the same time it assures the bene�t
of the operation (although in Sec. 6 this condition will
be relaxed to σhl ≤ 0.1 and σhl ≤ 0.2). In fact, this
means that the states in t − 1 (Sa and {Sb, Sc} in the
example) give rise to very di�erent evolutions in t + 1
that need to be treated separately at t (qt = Si). Then,
new transition probabilities are assigned redistributing
the transition probability through Si according to the
occurrence of transitions from one state to the other. This
procedure is described in the left drawing of Fig. 5, with Si
split into S′i and S

′′
i . Nonetheless, a non-null probability ε

(i.e. low values 10−6) among apparently non related states
(i.e. unobserved transitions), is admitted with the twofold
purpose of accounting for non perfect orthogonality among
vectors and of allowing some �genetic variability� among
transitions since the whole procedure is based on a �nite
sampling (see Fig. 5).

In the end modi�cations to the elements of A are in the
rows and columns corresponding to the two new states. In
particular rows and columns related to Si are doubled. In
B only the number of columns changes due to the fact that
the observation cardinality remains the same. The column
corresponding to Si splits into one for S

′
i and a new equal

column for S′′i .

5.3 Algorithm

The splitting procedure described in the previous section
is not complete yet. It only proposes a strategy which
tells when and where to add an hidden state (a new
row and column to matrix A, which have some elements
forced to zero). However, the numerical values of the
non-zero entries are not known, therefore it is necessary
to re-estimated the enlarged A based on the observa-
tions. Baum-Welch's algorithm gives the solution to this
problem. More precisely, the Baum-Welch's algorithm is
applied repeatedly after each split until the parameters
converge within a certain tolerance ν. In particular, we
cycle until no adjustment of values between A in input
and Ā in output exceeds a chosen ν (initially set equal
to 10−4 but then increased to 10−3 in the experimental
part to reduce the computational burden). We repeat
the steps σ-splitting+Baum-Welch until there is some σhl
(approximately) equal to 0.

More precisely, the algorithm proceeds as follows. At
the beginning the states are identi�ed by the distinct
observation, i.e. S = V, i.e. N = M and the observation
matrix is set to identity, B = I, since each state is
observed exactly. The transition matrix A and the initial
state distribution π are obtained by applying the Baum-
Welch's algorithm, which in this particular setup has a
unique solution independent of the initial condition of A
and π since the states are observable. Indeed the entries aij
are just the relative frequency of the observed transitions
from state i to state j, and πi are all zero except for
the the state Sī = y(0) = x(0). After this initialization
step, when a split is performed with respect to a state
Si, then a new state SN+1 is added, i.e. a new column
and a new row are appended to the matrix A, and a new
row is appended to the matrix B. In particular this new
N + 1 for B is a copy of the row corresponding to the
splitting node Si, i.e. all elements are zeros except for a
one, corresponding to the unique observation. Similarly,
the newN+1 row and column inherit the same zeros of the
splitting node Si, however the values of these entry are set
quite arbitrarily, with the only constraint that the matrix
A is still stochastic. A sensible choice for these entries is
illustrated in Fig. 5. The Baum-Welch's algorithm, will
then adjust these values to better predict the observed
measurements. This procedure implemented by the main
program is described in Algorithm 1.
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Fig. 5. Drawing for a general node-splitting of a node Si.

Algorithm 1 σ-splitting HMM identi�cation

Require: Set S = V, B = I, run Baum-Welch's algorithm
for all states Si do
while σhl = 0 for ahi > 0, ail > 0 do
split node Si into Si and SN+1
set new N + 1 row B equal to row i
set new N + 1 row and column of A (e.g. in Fig. 5)
repeat
Baum-Welch's algorithm

until convergence for A is not reached (w.r.t. ν)
end while

end for

5.4 Performance index

As mentioned in Section 3.4, our goal is to identify a HMM
which has good predictive properties. Therefore, a natural
index of performance in the normalized correct prediction
probability de�ned as

η(O, λ) = T

√√√√T−1∏
t=0

P[ŷt+1 = yt+1|y0:t] = T
√

P[O|λ] . (27)

which corresponds to the (geometric) average probability
of making the correct prediction for a speci�c sequence of
observationsO of length T based on the identi�ed model λ.
This index can be interpreted as a sort of e�ciency. In fact
it is easy to see that η ∈ [0, 1] for any observation sequence
O and model λ, and it is equal to one if the model is able to
perfectly predict all observations yt+1 based on the past,
and zero if there is at least one t for which. Therefore, in
general, the closer is this index to one, the better are its
prediction capabilities.

It is also important to notice that the σ-splitting procedure
described above should generate a sequence of models
λk, where k is the algorithm iteration step, for which
the performance index η increases when evaluated over
the training observation sequence Otr, i.e. η(Otr, λk+1) ≥
η(Otr, λk). However, we should evaluate the performance
based on a di�erent validation sequence of observation
Oval. In this case, we expect that η(Oval, λk) will initially
increase, and then it will start decreasing due to the
fact that the σ-splitting procedure starts over�tting the
training observation Otr. As a consequence, the splitting
procedure should be stopped when the prediction perfor-
mance η start decreasing when computed for the validation
set Oval.

6. SIMULATIONS

In this section, we provide some numerical simulations of
the proposed algorithm and we evaluate its performance

under di�erent scenarios. We will start with a simple model
of corridor where targets move back and forth from one
side to the other. This example clearly exhibits the need
of both topological splitting and logical splitting, and
we expect that the splitting procedure exactly captures
this structure. In the second example, we consider a
rectangular area where targets move at di�erent velocities
along random directions for a random period of time.
This scenario is representative of large areas where there
are no preferential paths as inside an airport. In this
scenario we expect no substantial improvement from the
splitting procedure as targets dynamics is representative
of a random walk. In the third example we consider again
a rectangular area where targets moves randomly along
preferential paths. This could be the typical behavior in
a park where there are preferential paths for pedestrians
and green areas where people do not generally walk. In
this scenario we expect that the splitting procedure is able
to better capture this structure of target motions. This
scenario is in between the constrained motion of targets
along a corridor and the totally random motion of targets
on a planar area.

6.1 Scenario 1: Corridor

As explained above, in this scenario targets moves from
one side to the other at approximately the same speed.
The cameras are positioned as in Fig. 6, i.e. they are not
overlapping and cover most of the corridor. In this case,
there are 5 distinct observations yt, which correspond to
the initial guess of the states. More precisely S1 is the
state relative to the areas on the left and on the right that
are not seen by any camera, while S2, S3, S4, S5 are the
states corresponding to the areas seen by one camera only.
After applying our splitting procedure procedure with the
threshold for splitting set to σ = 0, the graph had 10
states, as expected. In particular, initial states are split as
follows:

S1 → S1, S6
S2 → S2, S10
S3 → S3, S9
S4 → S4, S8
S5 → S5, S7

as shown in the bottom panel of Fig. 6. In fact, one
splitting corresponds to a topological node-splitting (state
S1), while the others correspond to a logical node-splitting
(states S2 to S5).

Fig. 6 illustrates the performance η as a function of the
iteration step of Algorithm 1. The solid line correspond
to the performance for the training trajectory and as ex-
pected is monotonically increasing. Also the performance
on a di�erent validation trajectory computed only after a
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Fig. 6. States for corridor scenario: initial states (top) and
after the splitting procedure with σ = 0 (bottom)
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Fig. 7. Prediction performance η as a function of iteration
time of Algorithm 1 for corridor scenario: including
self-loops (top) and without self-loops (bottom). Star
symbols correspond to prediction performance on a
validation trajectory after each state splitting step.

state splitting is very close to the training performance.
However, it seems that the improvement is only marginal
since the performance increases from η = 0.966 to η =
0.970 in top panel of Fig. 6. This is due to the fact that the
sampling time is very small, therefore the target remains
in a state for a very long time, and transitions between
two distinct states are rare. A more informative approach
is obtained by removing from the training trajectories
all observations for which yt+1 = yt. In this way, only
the transitions are recorded. The negative side of this
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Fig. 8. Trajectories (top) and performance (bottom) for the
2-D random motion with σ = 0.2.

modeling is that permanence time in each state is lost,
but it is much more useful if the objective is to alert the
cameras that are more likely to see the target next. The
performance with the self-loop removal is shown in the
bottom panel of Fig. 6. As expected at the beginning, the
prediction performance is η = 0.5 since a Markov modeling
predicts with the same probability that the target can
change direction at every step. At the end of the splitting
procedure the �hidden states� are properly identi�ed and
the prediction capability is now perfect η = 1, since the
identi�ed HMM now correctly estimates the direction of
the target.

6.2 Scenario 2: 2D Random motion

In this scenario targets move in a rectangular area with
random direction and with random velocities as shown in
top panel of Fig. 8. The black conic areas are the �elds
of view of 11 cameras (as in Fig. 1). Clearly, there are
areas that are not seen by any cameras and others that
are seen by multiple cameras. In this case, the initial
number of distinct observations is 35. The performance
based on trajectories without self-loops as a function of
the iteration time by setting the splitting threshold to
σ = 0.2 is shown in the bottom panel of Fig. 8. The
solid line corresponds to the performance on the training
trajectory. It is evident from the �gure that after each
splitting step the performance drops considerably due
to the incorrect initialization of the matrix A, however,
after a few steps of the Baum-Welch's algorithm, the
performance improves becoming higher than before the
splitting. It might happen that the splitting procedure
leads to a performance which is slightly smaller than before
the splitting. This is probably due the fact that the Baum-
Welch is only locally optimal and it is guaranteed to
converge only to a local maximum. Also from the panel it
is clear that the splitting procedure in this scenario does
not lead to much improvement (the performance goes from
η = 0.25 to η = 0.3), thus con�rming the intuition that the
random walk of the targets do not allow good prediction.
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Fig. 9. Trajectories (top) and performance (bottom) for the
park-like motion with σ = 0.2.

6.3 Scenario 3: Park-like

This scenario setup is similar to the previous one in the
sense that targets moves with random speed around a
region with the same positioning of the cameras. However,
now the targets move along preferential path as illustrated
in the top panel of Fig. 9. Interestingly, despite the fact
that the targets explore only a fraction of the total region,
the number of distinct observations are exactly the same
of those relative to the previous example, namely 35.
However, in this scenario the proposed HMM identi�cation
algorithm identi�es about 40 additional �hidden" states,
and performance improves from about η = 0.3 to η = 0.45,
i.e. the prediction capability has improved of about 50%
from the initial step. This con�rms the intuition that this
scenario represents a situation in between the corridor-like
scenario for which the trajectory can be exactly predicted
and the 2D random target motion, for which it is not
possible to predict the future trajectory based on the two-
step observation history, but depends only on the current
observation.

7. CONCLUSIONS AND FUTURE WORK

The problem of determining the graph structure in a sensor
network is addressed in the context of camera networks:
this represents an important issue during the installation
phase of medium-scale and large networks, to avoid tir-
ing, expensive, and often unfeasible manual setups. The
proposed strategy makes use of HMM modeling and the
combination of the Baum-Welch algorithm to optimize the
model and a node splitting procedure to discover hidden
states and augment the model. A measure of performance
is given in terms of the capability of the model to predict
the observations. Numerical simulations are provided try-
ing to reproduce di�erent paradigmatic scenarios to prove
the e�ectiveness of the methodology. The results shows
that the approach is consistent with intuition and able to
well recover the observable topology of the network.

Future work will include a better insight into the conver-
gence features of the procedure and the implementation of
the system in a real world scenario.
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