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Abstract— This work addresses the problem of distributed
multi-agent localization in presence of heterogeneous measure-
ments and wireless communication. The proposed algorithm
integrates low precision global sensors, like GPS and compasses,
with more precise relative position (i.e., range plus bearing)
sensors. Global sensors are used to reconstruct the absolute
position and orientation, while relative sensors are used to
retrieve the shape of the formation. A fast distributed and
asynchronous linear least-squares algorithm is proposed to
solve an approximated version of the non-linear Maximum
Likelihood problem. The algorithm is provably shown to be
robust to communication losses and random delays. The use
of ACK-less broadcast-based communication protocols ensures
an efficient and easy implementation in real world scenarios. If
the relative measurement errors are sufficiently small, we show
that the algorithm attains a solution which is very close to
the maximum likelihood solution. The theoretical findings and
the algorithm performances are extensively tested by means of
Monte-Carlo simulations.

I. MATHEMATICAL PRELIMINARIES

Resorting to standard graph theory, the estimation problem
can be naturally associated with an undirected measurement
graph G = (V;E) where V∈ {1, . . . ,N} represents the nodes
and E⊂ V×V contains the unordered pairs of nodes {i, j}
which are connected to and measure each other. We denote
with Ni ⊆V the set { j | {i, j} ∈ E}, i.e. the neighboring set
of node i. An undirected graph G is said to be connected if
for any pair of vertices {i, j} a path exists, connecting i to j.
In the problem at hand, we consider a communication graph
among the nodes which coincides with the measurements
graph G. Moreover, broadcast and asynchronous communi-
cations are assumed among the nodes. We denote with | · |
the modulus of a scalar. Assuming M to be the cardinality
of E, the incidence matrix A ∈ RM×N of G is defined as
A = [aei], where aei = {1,−1,0}, if edge e is incident on
node i and directed away from it, is incident on node i and
directed toward it, or is not incident on node i, respectively.
We denote with the symbol ‖ · ‖ the vector 2-norm and
with [·]T the transpose operator. The symbol � represents
the Hadamard product. Given a vector v ∈ R2, the function
atan2(·) :R2→ [0,2π] returns its angle, i.e., v= ‖v‖e j atan2(v).
Given a matrix v ∈ R2×n, with vctr. we denote the vector
centroid, i.e., vcrt. =

1
n ∑

n
i=1 vi, where vi is the i- th row of

the matrix. The symbol σx denotes the standard deviation

†A. Franchi is with LAAS-CNRS, 7 Avenue du Colonel Roche, 31077
Toulouse CEDEX 4, France. antonio.franchi@laas.fr
∗R. Carli, A. Carron, L. Schenato and M. Todescato are with the

Department of Information Engineering (DEI) of the University of Padova,
Via Gradenigo 6/B, 35100 Padova, Italy. [ carlirug | carronan |
schenato | todescat ]@dei.unipd.it

of the generic measurement x. The operator E[·] denotes
the expected value, while proj(·) : R → R2 denotes the
function proj(θ) =

[
cosθ sinθ

]T . Finally, I denotes the
identity matrix of suitable dimensions.

II. PROBLEM FORMULATION
Consider the problem of estimating the 2D positions,

expressed in a common reference frame, of N nodes of
a sensor network. Each node of the network is endowed
with a set of sensors that provide both relative and absolute
measurements.
In the following, firstly, we introduce the statistical models
exploited for each type of measurements. Secondly, we
formulate the non linear Maximum-Likelihood estimation
problem. Thirdly, we introduce an suitable linear and convex
reformulation.

A. Measurement Model

We assume that the N nodes are provided with a GPS
module, a compass, a relative range sensor, and a relative
bearing sensor. We denote with pi = (xi,yi), i ∈ V, the 2D
position of node i in a common inertial frame, and with θi
its orientation with respect to the inertial North axis, which
in the following we assume to coincide with the x-axis. Each
sensor is described by the following statistical model:

1) The GPS measurement pGPS
i = (xGPS

i ,yGPS
i ) represents

a noisy measurement of pi = (xi,yi). We assume a
normal distribution of the GPS measurements, that is
pGPS

i ∼ N (pi,σ
2
pI).

2) The compass provides a noisy measurement θC
i

of θi. This is modelled according to an angular
Gaussian distribution (see, e.g., [1]) which approx-
imates the Langevin distribution [2]. This reads as
proj(θC

i )∼ N
(
proj(θi),σ

2
θ
I
)
.

3) The range sensor returns a noisy measurement ri j
of the distance between nodes i and j, which is
modelled according to a normal distribution, that is
ri j ∼ N (‖pi− p j‖,σ2

r ).
4) The bearing sensor returns a noisy measurement

δi j of the bearing angle of the node j in the lo-
cal frame of node i. For δi j we adopt an an-
gular Gaussian distribution model which reads as
proj(δi j)∼ N

(
proj(atan2(p j− pi)−θi),σ

2
δ
I
)
.

Remark II.1. Observe that, in order to reduce the set-up
cost, each node has access to highly noisy absolute measure-
ments together with relative measurements that are less prone
to noise than the absolute ones. In particular, the GPS sensors
are usually characterized by a standard deviation σp = 2 [m]
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[3], [4], while the compass by a standard deviation σθ = 0.05
[rad] [5]. To retrieve information about range and bearing
different methods can be used, e.g., depth-camera, laser,
ultrasound. Acceptable values for the standard deviation of
these measurements might be σr = 0.1 [m] and σδ = 0.03
[rad]. Due to the variability in the accuracy of the available
sensors, we will test our algorithm in a sufficiently wide
range of standard deviation values.
For the sake of simplicity, we consider that all the nodes are
endowed with a GPS module. However, a simple reformula-
tion of the problem would still guarantee that all the results
hold even if a reduced number of nodes are provided with a
GPS.

B. Maximum-Likelihood Estimator

We assume that all the measurements are independent
and their probability distributions are given in the previous
section. It is possible to formulate the localization problem
as a Maximum-Likelihood (ML) estimation problem [6]. Let
us define the state and measurements sets, respectively, as

x = {p,θ}= {pi, θi with i ∈ V} ,
y =

{
pGPS

i , θ
C
i , rhk, δhk with i ∈ V, (h,k) ∈ E

}
,

where p := [p1, . . . , pN ]
T and θ := [θ1, . . . ,θN ]

T . Then, the
negative log-likelihood cost function can be written as

J(x) :=− log f
(
y |x
)
= Jp + Jθ + Jr + Jδ + c, (1)

where

Jp =
N

∑
i=1

‖pi− pGPS
i ‖2

2σ2
p

,

Jθ =
N

∑
i=1

∥∥proj(θC
i )−proj(θi)

∥∥2

2σ2
θ

,

Jr =
M

∑
(i, j)=1

(ri j−‖pi− p j‖)2

2σ2
r

,

Jδ =
M

∑
(i, j)=1

∥∥proj(δi j)−proj(atan2(p j− pi)−θi)
∥∥2

2σ2
δ

,

and c is a constant term that does not depend on x and
y. The minimization of the function in (1) would provide
the maximum-likelihood estimator for the nodes absolute
positions and orientations, i.e.:

x̂ML = argminx J(x). (2)

The ML estimator benefits of some properties regarding its
mean and its asymptotic behavior. In particular, consider
the following equivalent parametrization of agents’ positions
using their centroid pctr. and corresponding deviation ∆pi.
This reads as

pi = pctr.+∆pi, ∑
i

∆pi = 0, (3)

Let us also define ∆p = (∆p1, . . . ,∆pN). Thanks to the new
parametrization, equation (2) is equivalent to:{

p̂ML
ctr. ,∆p̂ML, θ̂

ML}
= argmin

{pctr.,∆p,θ}
J(pctr.,∆p,θ), (4)

s.t. ∑
i

∆pi = 0.

The previous reformulation allows us to prove the following
lemma, which suggests how the ML estimator exploits the
GPS information to solve for the absolute positioning of the
formation centroid:

Lemma II.1. Consider the negative log-likelihood cost func-
tion (1). Then, the maximum likelihood solution x̂ML which
solves (4) is such that

p̂ML
ctr. = pGPS

ctr. , (5)

where p̂ML
ctr. := 1

N ∑
N
i=1 p̂i and pGPS

ctr. := 1
N ∑

N
i=1 pGPS

i .

Proof. Observe that only the term Jp of the log-likelihood
cost function depends on pctr.. Indeed, Jθ is not a function
of pi; while, both Jr and Jδ depend only on the difference
between pi and p j which, thanks to the equation (3) reads
as

pi− p j = pctr.+∆pi− pctr.−∆p j = ∆pi−∆p j.

It is then possible to consider only the log-likelihood rel-
ative to the GPS measurements. Specifically, if we define
pGPS

i = pGPS
ctr. +∆pGPS

i , it is possible to write

2σ
2
pJp =

N

∑
i=1
‖pctr.+∆pi− (pGPS

ctr. +∆pGPS
i )‖2

=
N

∑
i=1

(
‖pctr.− pGPS

ctr. ‖2 +‖∆pi−∆pGPS
i ‖2+

+2(∆pi−∆pGPS
i )T (pctr.− pGPS

ctr. )
)

= N‖pctr.− pGPS
ctr. ‖2 +

N

∑
i=1
‖∆pi−∆pGPS

i ‖2,

where we used the facts ∑i ∆pi = 0 and ∑i ∆pGPS
i = 0. To

minimize the first term on the right hand side we must have

pctr. = pGPS
ctr. ,

which proves the lemma.

We can also state some limit behavior in a scenario where
range, bearing and compass noises are very large or very
small:

Lemma II.2. For fixed GPS variance σp we have
1) lim

max{σθ ,σr ,σδ }→0
p̂ML

i = pGPS
ctr. +∆pi ,

2) lim
min{σr ,σδ }→+∞

p̂ML
i = pGPS

i .

Proof. In the first scenario max{σθ ,σr,σδ} → 0. This im-
plies that the distributions for compass, range and bearing
measurements converge to delta distributions, implying that

ri j→‖pi− p j‖, θ
C
i → θi, δi j→ θi +atan2(p j− pi).



From these expressions it easily follows that

p̂ j− p̂i→ p j− pi = ri je j(δi j−θC
i ), { j, i} ∈ E ,

i.e., the relative vectorial distances among the communicat-
ing nodes are perfectly known. Since the graph is connected,
it is possible to compute the exact vectorial difference among
any two agents in the network, and therefore also the exact
distance of any agent from the true centroid since:

∆p̂i = p̂i−
1
N ∑

j
p̂ j =

1
N ∑

j
(p̂i− p̂ j)→

1
N ∑

j
(pi− p j) = ∆pi.

Since p̂i = p̂ctr. + ∆p̂i and from Lemma II.1 we have
p̂ctr. = pGPS

ctr. , then it follows the first part of the lemma.
In the second scenario when min{σr,σδ} → +∞ becomes
arbitrary large, the probability distribution of range and
bearing degenerate into an uniform distribution with infinite
support. As so, the terms Jr and Jδ become negligible as
compared to Jp and Jθ . Since the positions pi do not appear
in Jθ , it follows that p̂i results from the minimization of
Jp, which gives p̂i = pGPS

i and, therefore, the claim of the
lemma.

Scenario 1) of Lemma II.2 states that in the case where
max{σθ ,σr,σδ}→ 0, the shape of the formation is perfectly
retrieved. In this case the only source of error between the
estimated formation and the ground-truth is given by the er-
ror between GPS centroid and the true centroid. Scenario 2)
states that if the relative measurements accuracies deteriorate,
the ML estimator will “trust” the GPS measurements only.
Unfortunately problem (2) is highly non linear and hard to
solve. In particular, it is known that, if the angles are noise-
free, the problem is linear [7]. Conversely, if the angles
are not known, the problem presents many local minima
[8], [9]. One possible way to tackle it, is using a standard
gradient descent approach since the gradient vector of the
log-likelihood function can be computed in closed form
using (1). However, such approach heavily suffers of bad
initialization. In fact, the presence of multiple local minima
in the cost function (1) causes the algorithm to stop in the
wrong minimizer.
In the following, we resort to a suitable approximation which
let us reformulate the problem in a classical linear-least
square framework.

C. An Approximated Linear Least-Squares Formulation

An approximated solution for the problem stated in (2),
which exploits a suitable model linearization, is now pre-
sented. The idea is to move from the polar coordinate system
to the equivalent Cartesian representation.
Indeed, assuming a perfect knowledge of range, bearing
and compass, it is possible to express the displacement di j
between agent i and j as

di j := pi− p j = ri j

[
cos(δi j +θi)
sin(δi j +θi)

]
. (6)

Since the measurements are affected by noise, it is necessary
to map the noise of range, bearing and compass into the

equivalent noise in Cartesian coordinates. Namely, given the
noisy version of (6), that is

di j = pi− p j +ni j, (7)

where ni j is the noise in Cartesian coordinate, we want to
find the expression for its covariance, E[ni jnT

i j] =Σi j, in terms
of the statistical description of range, bearing and compass
measurements noises. After a first order expansion we obtain

Σi j =

[
σ2

x (i, j) σxy(i, j)
σyx(i, j) σ2

y (i, j)

]
, (8)

where

σ
2
x (i, j) = σ

2
r cos2(δi j +θi)+ r2

i j(σ
2
δ
+σ

2
θ )sin2(δi j +θi),

σ
2
y (i, j) = σ

2
r sin2(δi j +θi)+ r2

i j(σ
2
δ
+σ

2
θ )cos2(δi j +θi),

σxy(i, j) =
(
σ

2
r − r2

i j(σ
2
δ
+σ

2
θ )
)

sin(δi j +θi)cos(δi j +θi).

Remark II.2. Since the linear approximation introduced is
based on a first order expansion, its validity holds under the
assumption of sufficiently small measurement errors.

Remark II.3. Note that Σi j is a function of the true values of
range, bearing and compass. Since it is not possible to have
access to these data, in a real setup these quantities must be
replaced by their corresponding measured values.

Once computed the displacements, it is possible to define the
weighted residuals as

Jd =
1
2 ∑
{i, j}∈E

‖pi− p j−di j‖2
Σ
−1
i j
.

Thanks to this, it is possible to define an approximation of
the negative log-likelihood in (1), which accounts for the
GPS measurements and the displacements, as

JLS(p) = Jp + Jd . (9)

The minimization problem becomes

p̂LS = argminp JLS(p) , (10)

which is a linear least-squares problem, thus convex, which
can be solved in closed form. Specifically, assuming G
connected, the optimal estimate is given by

p̂LS = (Σ−1
GPS +AT

Σ
−1A)−1(Σ−1

GPSpGPS +AT
Σ
−1d), (11)

where ΣGPS = σ2
pI, Σ is the matrix which accounts for all

the Σi j, and d and pGPS are the vectors obtained stacking
together all the relative distances defined in (7) and the GPS
absolute positions, respectively.

Remark II.4. Note that the LS estimates only the absolute
positions p without providing any estimate of the absolute
orientations. These are retrieved using the compass and
exploited to project the noise in rectangular coordinates.

Remark II.5. Observe that, even if the linear least-squares
problem returns an approximate solution for the problem of
equation (2), since the problem of equation (10) is convex,
its solution is unique.



For the LS estimator it is possible to show an optimal result
similar to the one stated in Lemmas II.1 and II.2 for the ML
estimator. We state the following:

Lemma II.3. Consider the cost function (9). Then, the
optimal solution p̂LS which solves (10) is such that

p̂LS
ctr. = pGPS

ctr. . (12)

Moreover, for fixed GPS variance σp we have

lim
max{σθ ,σr ,σδ }→0

p̂LS
i = pGPS

ctr. +∆pLS
i ,

lim
min{σr ,σδ }→+∞

p̂LS
i = pGPS

i .

Proof. The result follows with arguments similar to those
used in Lemma II.1 and II.2.

Observe that, to compute p̂LS as in equation (10), one needs
all the measurements, their covariances and the topology of
G to be available to a central computation unit. In the fol-
lowing section we present a solution which is amenable for
a distributed and asynchronous implementation. We assume
that a nodes i and j can communicate with each other only
if {i, j} ∈ E. Remarkably, the solution is robust to packet
losses and delays in the communication channel.
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