
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Informatica

Progettazione e sviluppo
di un sistema cromoterapico

mediante una rete di sensori wireless

RELATORE: Ch.mo Prof. Luca Schenato

LAUREANDO: Massimo Marra

Padova, 7 Dicembre 2010

UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

Master’s Degree in Computer Engineering

Design and implementation of a chromotherapy
system using a wireless sensor network

Supervisor: Prof. Luca Schenato

Author: Massimo Marra

ACADEMIC YEAR 2010-2011

I dedicate this thesis to my parents Danilo and Renata,
my brother Marco, my sister Silvia,

and to my love Marta

I

Abstract

The work of this thesis consists in the development and implementation of
a chromotherapy system based on a WSN. The system is independent from
the environment in which is installed and is very flexible. The nodes of the
system interact with each other to synchronize themselves and to dissemi-
nate the color sequence to display.
Synchronization can be managed and controlled through a Java interface
that allows the parametrization of many aspects of the algorithm.
The system is able to recognize if topology changes occur and is also able to
reconfigure itself accordingly without affecting the nodes synchronization.
This important characteristic is guaranteed by the algorithms proposed in
this work. The network synchronization is based on the offset compensation
of the local clocks of the nodes and is achieved through the local informa-
tion exchange between neighboring nodes. A fast convergence to a common
value of the virtual global clock, and a high accuracy is obtained thanks to
a dynamic hierarchical overlay structure.
The color therapy sequence is generated in real-time from a Java appli-
cation. This software divides the sequence and sends the portions to a
reference node whose task is to communicate them to the rest of the net-
work. The dissemination takes place with a multi-hop flooding process of
all the sequence portions. The system must introduces a delay between the
generation instant and the displaying instant of the sequence. This time in-
terval is necessary for the multi-hop communication to take place. Also the
color therapy functionality of the system is independent from the network

III

topology. Therefore the system can be implemented even in networks that
change over time.
The synchronization algorithm and the chromotherapy system have been
implemented on a Tmote sky/TinyOS v.2 architecture. The testing process
of all the functionalities was performed on a real WSN. The excellent behav-
ior of the system and the good performances obtained show the effectiveness
of the proposed design methodologies.

IV

Sommario

Questo lavoro di tesi è consistito nello sviluppo e nella relativa implemen-
tazione di un sistema cromoterapico basato su di una rete di sensori wireless.
Il sistema è indipendente dall’ambiente nel quale viene installato risultando
perciò molto flessibile nell’utilizzo. Ogni nodo della WSN interagisce con gli
altri cercando di creare una rete sincronizzata e permettendo la diffusione
e la visualizzazione di una sequenza di colori atraverso un device RGB es-
terno.
Il sistema può inoltre riconoscere se un cambiamento topologico sta avve-
nendo nella rete ed è in grado di riconfigurarsi di conseguenza senza influire
sulla sincronizzazione dei nodi. Questa importante funzionalità è garan-
tita dall’algoritmo di sincronizzazione proposto in questa tesi. Esso si basa
sulla compensazione dell’offset dei clock locali dei singoli nodi e sullo scam-
bio locale di informazioni temporali tra nodi vicini. L’ottima precisione
dell’algoritmo ed una veloce convergenza dei nodi ad un unico clock globale
di riferimento sono ottenute attraverso una struttura di overlay gerarchica.
Anche questa struttura assicura dinamicità al sistema essendo robusta a
variazioni topologiche. Il protocollo di sincronizzazione può essere gestito
e controllato attraverso un’applicazione Java che permette la parametriz-
zazione di molti aspetti dell’algoritmo.
Anche la sequenza cromoterapica utilizzata dai nodi viene creata in real-
time da un software Java. Questa applicazione, non appena ha generato una
porzione della sequenza composta da un certo numero di colori, la inoltra
ad un determinato nodo di riferimento il qui scopo è quello di comunicarla

V

ai restanti nodi della rete che dovranno mostrarla attraverso una periferica
RGB. La diffusione delle parti della sequenza è effettuata attraverso una co-
municazione di tipo flooding multi-hop. Il sistema ha la necessità di inserire
un piccolo ritardo tra l’istante della generazione di una porzione di sequenza
e l’istante corrispondente alla sua effettiva visualizzazione da parte dei nodi.
Questo lasso di tempo è necessario per permettere che avvenga la comuni-
cazione multihop. Anche la funzionalità cromoterapica è indipendente dalla
topologia della rete ed è robusta agli spostamenti spaziali dei nodi. Risulta
quindi possibile implementare questo sistema cromoterapico anche in reti
che possono cambiare la loro configurazione nel tempo.
L’algoritmo di sincronizzazione ed il sistema cromoterapico sono stati infine
implementati su di una architettura composta da mote Tmote sky e dal sis-
tema operativo TinyOS ver.2. L’intera realizzatione ottenuta è stata testata
su di una WSN reale. L’ottimo comportamento del sistema e le performance
ottenute dimostrano l’efficacia delle scelte progettuali adottate.

VI

Contents

Abstract III

Sommario V

Table of contents X

List of Acronyms XI

List of Figures XVIII

List of Tables XX

1 Introduction 1

Introduction 1
Contents of the chapters . 6

2 Wireless Sensor Network 7
2.1 Definition and characteristics of WSN 7
2.2 Architecture of a node . 9
2.3 Challenges for the WSN . 11
2.4 Network topologies . 12
2.5 Application fields . 14

3 Tmote Sky, TinyOS and NesC language 17
3.1 The Tmote Sky . 17

VII

3.2 TinyOS-2.x operating system 20
3.2.1 Versions . 20
3.2.2 Hardware abstraction 21
3.2.3 Component-base architecture 21
3.2.4 Traits of TinyOS . 22

3.3 Network Embedded Systems C 23
3.3.1 Definition and principal characteristics 23
3.3.2 Interfaces and components 24
3.3.3 Modules and configurations 25
3.3.4 Execution Model . 26
3.3.5 Split-phase operations 27

4 The overlay-based synchronization algorithm 29
4.1 Clocks and synchronization 29
4.2 Average TimeSync description 32

4.2.1 Relative skew estimation and compensation 33
4.2.2 Relative offset estimation and compensation 33

4.3 Offset Compensation Algorithm 34
4.3.1 Convergence problems 36
4.3.2 Solution: the overlay hierarchical structure 38
4.3.3 Calculation of the node reconfiguring interval length . 44
4.3.4 Topology changes . 49

5 Performance of the overlay-based algorithm 51
5.1 Performed tests . 51
5.2 Benchmark test description 52
5.3 Comparison of the tests . 54
5.4 Overlay-based algorithm vs. ATS 58

6 Color sequence dissemination 65
6.1 Sequence generation . 65
6.2 The multi-hop sequence communication 67
6.3 The timing of the color sequence portions 68
6.4 Further aspects of a real implementation 70

VIII

6.4.1 Multi-hop dissemination with random start but with-
out retransmission 70

6.4.2 Multi-hop dissemination with random start and with
retransmission . 71

6.4.3 Size of the buffer containing the sequence portions . . 72
6.5 Communication through the UART pins 73

6.5.1 Description and configuration of the interface 73
6.5.2 The arbitration of the USART of the MSP430 75

7 The software description 81
7.1 The synchronization software 81

7.1.1 Packets format . 82
7.1.2 Poller node . 87
7.1.3 Client node . 88
7.1.4 Server station . 92
7.1.5 Code porting . 93

7.2 The color sequence control software 95
7.2.1 Packets format . 97
7.2.2 Master node . 98
7.2.3 Slave-repeater node 99
7.2.4 Workstation . 100

8 Testing of the developed system 103
8.1 Performed tests . 103
8.2 Packet loss . 106

8.2.1 Linear Array . 106
8.2.2 Grid network . 108
8.2.3 Rising of the packet frequency 111

8.3 Precision of the nodes . 116
8.4 Delays introduced in the flooding process from each hop . . 118
8.5 Variations of the responsiveness of the operating system . . . 121

9 Conclusions 125

Bibliography 131

IX

A Tests on a 3x3 mesh 137

B Architecture of the entire developed chromotherapy system141

C Example of sequence diffusion 143

D Behavior of the chromotherapy system 145

X

List of Acronyms

ADC Analog-to-digital converter

AmI Ambient Intelligence

API Application Programming Interface

ATS Average TimeSync

CBSE Component-Based Software Engineering

CSV Comma-Separated Values

DAC Digital-to-analog converter

DS Distributed Systems

EEPROM Electrically Erasable Programmable Read-Only Memory

EDS Electrostatic Discharge

FIFO First-In First-Out

GUI Graphical User Interface

HAA Hardware Abstraction Architecture

HAL Hardware Abstraction Layer

HIL Hardware Independent Layer

XI

HPL Hardware Presentation Layer

IFA Inverted F Antenna

ISM Industrial Scientific Medical

LED Light Emitting Diode

lsb least significant bit

MAC Media Access Control

MCU Micro Controller Unit

MDB Memory Data Bus

MIG Message Interface Generator

ms milliseconds

NTP Network Time Protocol

O-b Overlay-based

OC Offset Compensation

OLS Ordinary Least Squares

OS Operating System

p2p Peer-to-peer

PTP Precision Time Protocol

RF Radio frequency

RGB Red Green Blue

RSSI Received Signal Strength Indicator

SFD Start Frame Delimiter

SPI Serial Peripheral Interface

XII

UART Universal Asynchronous Receiver Transmitter

USART Universal Synchronous Asynchronous Receiver Transmitter

USB Universal Serial Bus

ubicomp Ubiquitous computing

WSN Wireless Sensor Network

WSAN Wireless Sensor and Actuator Networks

XIII

List of Figures

2.1 Example of a WSN system. 8

2.2 Architecture of a mote. 9

2.3 Example of possible WSN topologies. 13

2.4 WSN implemented in Nelly Bay, Magnetic Island to control
the barrier reef [37]. 15

3.1 Front and back of the Tmote Sky platform. 18

3.2 Functional Block Diagram of the Tmote Sky module, its com-
ponents, and buses. 19

3.3 Scheme of a split-phase operation. 28

4.1 Clocks dynamics as a function of absolute time t on the left,
and relative to each other on the right. 30

4.2 An example of long initial convergence. The graph show a
polling interval of about 23 minutes. 37

4.3 Example of hierarchical structure built on top of a WSN. . . 38

4.4 Example of the behavior of a node. The blue edge has more
weight than the brown one. The yellow line is the less im-
portant. 42

4.5 Network example. 45

4.6 Temporal evolution of how the nodes of the network update
their states when a root failure occur. 46

5.1 Mesh network of 35 nodes. 53

XV

5.2 Global evolution of test number 1. 55
5.3 Global evolution of test number 2. 56
5.4 Global evolution of test number 3. 56
5.5 Global evolution of test number 4. 57
5.6 Averages of the maximum pairwise deviation among nodes

per test. 57
5.7 Average of the maximum pairwise errors of ATS, OC and O-b

referenced to the synchronization rate changes. 60
5.8 Zoom of the trends of ATS and O-b algorithms for high sync

rates. 61
5.9 Regression line of ATS and O-b algorithms. 62
5.10 Intersection of the two line of ATS and O-b algorithms. . . . 62
5.11 Average error per hop of the estimation of the virtual clock

referenced to the root node estimate. 63

6.1 Example of a multihop communication. 67
6.2 Example of the buffer size with Tp > dTOT + dSO. 72
6.3 Example of the buffer size with Tp 6 dTOT + dSO. 73
6.4 Functionality of the 10-pin expansion connectors. Alternative

pin uses are shown in gray. 74
6.5 Diagram of a serial byte encoding. 75
6.6 Functional block diagram, of the MCU MSP430F161x series. 76
6.7 Schematic description of how a client obtain and release a

resource. 79

7.1 Synchronization actors. 82
7.2 Working principle of data collection. 1. The Poller sends

broadcast request for data collection (PollReqMsg). 2. Each
client receives the request and responds to the poller (PolRe-
spMsg). 3. The data retrieved from the poller are forwarded
to the server. 88

7.3 Developed Java application which controls the synchroniza-
tion protocol. 93

7.4 Architecture of the colors sequence management software. . . 96

XVI

7.5 Developed Java application which controls the colors sequence
of the chromotherapy system. 101

8.1 Percentages of lost packets per hop on a linear array without
the second retransmission of the sequence portions. 107

8.2 Percentage of lost packets per hop on a grid network with and
without the second retransmission of the sequence portions. 109

8.3 Number of lost packets per hop on a grid network with re-
transmission. Comparison among tests with different initial
delay values. 110

8.4 Percentage of lost packets per hop on a grid network rising
the color rate. Comparison among tests with different packet
frequencies. 112

8.5 Percentage of lost packets per hop on a grid network reducing
the number of colors per packet. Comparison among tests
with different packet frequencies. 113

8.6 Percentage of lost packets per hop on a busy grid network.
Comparison among tests with different packet frequencies. . 115

8.7 Precision of the nodes per hop on a grid network. Comparison
among several tests. 117

8.8 Global average delay introduced from each hop in a grid net-
work. 119

8.9 Average introduced delay per number of hop nodes. 119
8.10 Regression line for the estimations of the di values. 120
8.11 Global average delay introduced from each hop in a linear

array network. 121
8.12 Global average sending delay per hop on a grid network. . . 122

A.1 O-b algorithm - Synchronization interval 7 sec. 137
A.2 O-b algorithm - Synchronization interval 15 sec. 137
A.3 O-b algorithm - Synchronization interval 30 sec. 138
A.4 O-b algorithm - Synchronization interval 60 sec. 138
A.5 O-b algorithm - Synchronization interval 1.5 min. 138
A.6 O-b algorithm - Synchronization interval 2 min. 139

XVII

A.7 O-b algorithm - Synchronization interval 4 min. 139
A.8 O-b algorithm - Synchronization interval 6 min. 139
A.9 O-b algorithm - Synchronization interval 8 min. 140
A.10 O-b algorithm - Synchronization interval 12 min. 140

B.1 Architecture of the entire chromotherapy system. 142

XVIII

List of Tables

4.1 Comparison among synchronization algorithms 35

5.1 Algorithm configurations of the tests. 52
5.2 Average values of the maximum pairwise deviation among

nodes per tests. 58
5.3 Average of the maximum pairwise errors referenced to the

synchronization rate changes. 59

8.1 Parameters setups of the performed test on the developed
chromotherapy system. 105

8.2 Number of nodes per hop in the grid network. 106
8.3 Lost packets on a linear array with and without the second

retransmission of the sequence parts. 107
8.4 Lost packets on a linear array with retransmission. Com-

parison of test 10 (Nc = 20, Tc = 300, dTOT = 500), 11
(Nc = 20, Tc = 300, dTOT = 1000) and 12 (Nc = 20, Tc = 300,
dTOT = 2000). 108

8.5 Lost packets on a grid network with and without the second
retransmission of the sequence parts. 109

8.6 Lost packets on a grid with retransmission. Comparison of
test 10 (Nc = 20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc =

300, dTOT = 1000) and 12 (Nc = 20, Tc = 300, dTOT = 2000). 111
8.7 Lost packets on a grid network rising the color rate. Com-

parison of test 7 and test 11. 112

XIX

8.8 Lost packets on a grid network reducing the number of colors
per packet. Comparison of test 3(Nc = 10, Tc = 200, dTOT =

1000), 6 (Nc = 15, Tc = 200, dTOT = 1500) and 9 (Nc = 20,
Tc = 200, dTOT = 2000). 113

8.9 Lost packets on a grid network reducing the number of colors
per packet. Comparison of test 1 (Nc = 10, Tc = 100, dTOT =

700) and test 4 (Nc = 15, Tc = 100, dTOT = 750). 115
8.10 Precision of the system in ticks. Comparison of test 3, 5, 6,

7, 9, 12 and test 13. 116
8.11 Precision of the system in ticks. Comparison of test 1, 2, 4

and test 10. 117
8.12 Average of the amounts of time involved in a message sending

(in milliseconds). Comparison of all the tests. 123

XX

Chapter 1
Introduction

The recent technological improvement in the low cost miniaturization of
electronic devices and in the wireless communication, has made possible the
opportunity to create low-power consumption sensors with a good efficiency.
The integration of computation, sensing, communication and storing activ-
ities on a single small device has opened new horizons for the Distributed
Systems (DS)[1]. These kind of appliances are the fundamental elements of
a Wireless Sensor Network (WSN).

A WSN consists of spatially distributed autonomous sensors to cooper-
atively monitor physical or environmental conditions. Every single unity of
a WSN can communicate with each other. Before the advent of this tech-
nology, the capability to cooperate among sensors was constrained by the
use of cables for the information transmission. The nodes of a WSN have
instead introduces many new fundamental characteristics, the mainly are:

• they are connected through their radio chips using free radio frequen-
cies;

• they are miniaturized;

• they are less expensive;

• they can be deployed in wide areas, and must be easy to install;

• they need less maintenance;

• the network that they form must be scalable;

• they can be easily attached even to moving parts.

1

CHAPTER 1. INTRODUCTION

So it is easy to understand why WSN are widely studied, and the reason
of their diffusion not only in R&D activities. WSN have some strengths, but
have also weaknesses. In fact they are generally powered with batteries, and
it is well known that with a limited power source, the energy consumption
becomes a great problem. Another complication is the node short radio
communication range necessary to limit power consumption. These aspects
may lead to unreliable communication network.

WSN are a limited part of a greater field: the Pervasive Computing [2]
also called Ubiquitous computing (ubicomp). This is a post-desktop model
of human-computer interaction in which information processing has been
thoroughly integrated into everyday objects and activities. In the course of
ordinary activities, someone utilizing ubiquitous computing engages many
computational devices and systems simultaneously, and may not necessar-
ily even be aware that they are doing so. This model is usually considered
a revolutionary advancement from the desktop paradigm. In fact perva-
sive computing devices are not personal computers as we tend to think of
them, but very tiny devices1 all communicating through increasingly inter-
connected networks. So networks give rise to an intelligent environment,
able to interact with the man and the objects, trying to allow a perfect ful-
fillment of human needs. This is also known as Ambient Intelligence (AmI)
which is a human-centric computer interaction design characterized by sys-
tems and technologies that must be integrated into the environment to rec-
ognize the human actions and the situational context in order to change in
response of them. This model must also be personalized and finally in some
cases should anticipate the humans desires. Even for example the concept
of smart city, like CitySense[3], belong to AmI.

A WSN is a ductile instrument that could be exploited in many different
application. It is sufficient a simple Internet search to find out that these
networks are used in a lot of industrial sectors such as the domotics2, agri-

1They can be mobile or embedded devices, even invisible, present in almost any type
of imaginable object, for example cars, tools, appliances, clothing and various consumer
goods.

2Also called home automation or home systems.

2

CHAPTER 1. INTRODUCTION

culture, livestock, logistics, environmental monitoring, construction, public
works and infrastructure management and monitoring. Finally are also used
in medicine and military applications.
A domotics use for example, that is increasingly became popular, consist in
the integration into a single system of one or more personal computers, and
in particular of typical consumer electronics such as TVs, audio and video
equipment, gaming devices, smartphones and PDAs. In addition, we can
expect that all kinds of devices such as kitchen appliances, surveillance cam-
eras, clocks, light controllers, and so on, will all be hooked up into a single
DS. Others examples are projects as SIMEA[35] or OPTICONTROL[36],
that have the aim to study, design and realize novel sensor network sys-
tems and innovative data analysis algorithms, that allow precise profiling
and evaluation of the main environment and energetic parameters in build-
ings. The goal is improving the indoor climate control and reduce energy
consumption while maintaining high user comfort and work productivity at
modest basic investment and operating costs.

The work presented in this thesis try to implement a wireless network
in which every node has the control of a small RGB Light Emitting Diode
(LED) device that is used to show a unique color sequence through the
whole extension of the network. So two aspects become fundamental for us:

1. The coordination among nodes

2. The real-time nature of the system

We use WSNs as infrastructure for our project. This choice permits to
exploit their advantages as for instance the reliability, the multi-hop com-
munication and the adaptability.
The work is made in cooperation with an Engineering office that develop,
among other things, chromotherapy devices. The aim of the project is to
create a system that is something different from the commercial products
that are available in the market today. In fact generally the devices for the
color therapy are wired and centralized. Some other systems already uses
wireless light devices but are remote controlled, and for this reason the ex-
tension of these systems is constrained by the radio range of the controller.

3

CHAPTER 1. INTRODUCTION

The possibility that a chromotherapy system can inherits all the capabilities
of a network infrastructure is the innovative aspect that has driven our work.

The major contribution of this work is the development of a real-time
chromotherapy system that lets to choose among some color effects, and to
set up parameters as for instance the rate of color changes.
Chromotherapy3 is based on the fact that certain colors could trigger moods
or alter metabolism of the human body. In this method seven fundamental
colors of the spectrum is associated with specific healing properties:

1. Violet promotes enlightenment, revelation, and spiritual awakening.
The Holistic healthcare, for instance, use violet to soothe organs, relax
muscles, and calm the nervous system.

2. Indigo is also sedative and calming. It is said to promote intuition.

3. Blue promotes communication and knowledge.

4. Green because it is located in the middle of the color spectrum, green
is associated with balance and calm.

5. Yellow is a sensory stimulant associated with wisdom and clarity.

6. Orange promotes pleasure, enthusiasm, and sexual stimulation.

7. Red promotes energy, empowerment, and stimulation.

Is possible to observe that what we implement is a very original appli-
cation from the others presented until now. A Chromotherapy system, is
something radically dissimilar from an application that for instance sense
and collect data.
The developed system is therefore able to generate a sequence of different
colors in real-time with the possibility to accept instructions from a user
through a software interface. So it is possible that the user fixes the color
of the network according to his/her wants. A further development of the
system could also create real-time colored sequences in relation to external
events as for instance sounds or music.
In order to show a unique color sequence across all the network a master
node sends broadcast messages containing portions of that sequence. The

3Sometimes called color therapy, light therapy or colorology.

4

CHAPTER 1. INTRODUCTION

wireless sensors that receive these messages repeat them with the purpose
to forward the sequence to other nodes. It is a simple mechanism used to
flood information in a multi-hop manner. We have also made a study of
the timing of the master node messages. It becomes crucial to disseminate
correctly the sequence across all the network without loose some packets
because for instance are sent too often. So we must introduce an initial
delay between the generation process and the displaying of each portion of
the sequence. And this interval depends from the topology and from the
extension of the WSN.
All the sequence parts received by a nodes are replicated trough the exter-
nal LEDs sending tern of Bytes via the Universal Asynchronous Receiver
Transmitter (UART) interface.
Every master message contains in addition to the sequence portion, a ref-
erence global time. It has the task to inform the “slaves” nodes when they
must start to show the colors contained in the packets. So the synchroniza-
tion of the network assumes a topic role for this project: RGB devices must
be controlled by the sensors with the constraint that the global shade of the
color showed in the entire network must change without differences visible
by the human eyes. So it is crucial that all the motes act together, scan-
ning the sequence with the maximum precision. Every color of the sequence
must be showed by every node always in the same instant equal for all the
sensors.
In the literature regarding synchronization algorithms for WSN there are
many possible choices that we could implement. For the chromotherapy
system was chosen to simplify the Average TimeSync (ATS)[4] algorithm.
As first step, ATS was modified removing the skew compensation and so
working only with offset compensation. This alternative has a low com-
putational complexity and at the same time grant a sufficient precision for
our purpose. In the second step, after a poor initial convergence capacity
to a common global clock was verified, was implemented an overlay logical
network that creates a hierarchical structure over the WSN. A predefined
root node became the reference node in the synchronization process. The
other nodes consume received information about the neighborhood time-

5

CHAPTER 1. INTRODUCTION

stamp according to a hierarchical model. If for instance a node A is closer
to the root than node B, for another neighborhood node C that is able to
listen messages from A and B (but not from the root), the informations
received from A are more trustworthy than the informations get from B.
This approach ensure a fast convergence of the network to a common virtual
reference clock.
The entire system was implemented and tested on a Tmote/TinyOS-2.x ar-
chitecture in order to verify if it works and what performance we are able
to reach.

Contents of the chapters

The structure of the thesis is organized in seven chapter:

• Chapter 2: presents a brief introduction to the WSN. We familiar-
ize with the application fields and the challenge that this technology
introduce.

• Chapter 3: describes the Tmote Sky platform, the Tiny Operating
System (OS) and finally the NesC program language.

• Chapter 4: presents the most used synchronization algorithms for
WSN included the ATS one. Is also described the algorithm imple-
mented in our work, the convergence problem and the approach to fix
it.

• Chapter 5: explains the performance of the implemented synchroniza-
tion algorithm.

• Chapter 6: describes the generation of the color sequence, the diffusion
of it across the network and the way of how the colors are displayed.

• Chapter 7: explains briefly the implemented NesC code and the Java
interfaces created to manage and set up the synchronization of the
network and the creation of the color sequence.

• Chapter 8: shows the tests results of our work running on a real WSN
and the limits of this architecture.

• Chapter 9: presents the conclusion of this work of thesis and the
possible further developments.

6

Chapter 2
Wireless Sensor Network

2.1 Definition and characteristics of WSN

A WSN is a network of small nodes (or motes) with wireless communication
capabilities and equipped with sensors. They can pick up data from the en-
vironment and process them through an on-board processor. These small
devices are widely produced and distributed, and have a negligible cost of
production. Each sensor has a limited and not-renewable energy reserve
and after it is placed, it must work in autonomy. To obtain as much data as
possible even thousands or tens of thousands of sensors are deployed. This
type of networks are rapidly spreading because they offer a series of unde-
niable advantages: mobility, which allows the terminal to move, flexibility
and low implementation costs.
However, wireless networks also face some problems. One of these is un-
doubtedly the characteristics of the transmission medium, which is unique
and shared by all connected nodes. The existence of a single channel nec-
essarily limits the maximum number of user that can utilize the service
simultaneously. Similarly, the presence of more users leads to a reduction in
transmission speed. In fact the capacity of the transmission channel must
be shared between everyone who are using it.

There is also to consider the problem of security in case of absence of
specific controls, it is easy for an attacker to intercept information transmit-
ted in the ether or to access services without authorization. We should also

7

CHAPTER 2. WIRELESS SENSOR NETWORK

consider that the communication quality can also be influenced by external
factors, such as electromagnetic interference and mobile obstacles. Finally,
the energy consumption of radio transmission equipment is typically higher
than wired one.
Each device has a control module, a communication module and one or
more sensors that allow to create large networks that are able to commu-
nicate with each other through communication protocols developed for this
purpose. The sensor networks can significantly improve the quality and the
fidelity of information: for example providing real time data from hostile
environments and reducing the cost to collect them. A WSN is only a part
of a more complex system, called WSN System. It is composed by the
WSN, the channel of the communication between the WSN and a database
of collected data (that can be even an Internet server), and the interface
between the database and the user. A CaRiPaRo project called WISE-WAI
[5] is a clear example of what we have just presented.
Schematically a WSN system can be represented as in Figure 2.1.

Figure 2.1: Example of a WSN system.

It is important to underline that a WSN is also able, through appropri-
ate interfaces, to interact with the user: and we can assume that it is the
only way to consider useful the sensing of the environment. By analyzing in
detail the components of a WSN, it becomes clear the differences between

8

CHAPTER 2. WIRELESS SENSOR NETWORK

network nodes responsible to manage the sensors and maintain the network
infrastructure, from those who have the task to collect and transmit to the
central server the data received from other nodes. Each of these can in-
teract, according to the communication protocol adopted, with other nodes
configured in a flat, hierarchical or mesh topology. The primary objective
of each node is still to send their data to a collection point within the WSN
called Gateway. It has the task to send all the data collected through a
wired1 or a wireless connection2 to a central system, usually a server, which
acts as a database. In the most advanced WSN the data flow and commands
may also be transmitted from node to node, or from central server (and so
the user) to nodes.

2.2 Architecture of a node

A node consists of four main modules:

Figure 2.2: Architecture of a mote.

• Sense module: this is usually composed of two subunits: sensors-
actuators and Analog-to-digital converter (ADC). A sensor is capable
to detect and measure environment variables, and then transforms
them into an electrical signal. Instead actuators are devices capable
to act on the environment in different way, for instance actuators can
be valves, speakers, as well as mechanical arms.
The number of sensors and actuators of a node determines its capa-
bilities, but also the cost, the size and the power consumption. The

1Ethernet, USB, LAN and firewire are some examples.
2For example GPRS, UMTS and HSDPA connection.

9

CHAPTER 2. WIRELESS SENSOR NETWORK

ADC is used to translate in digital form the electrical signals gener-
ated by sense device. Similarly, this unit is often connected to a DAC,
which converts digital signals generated by the microprocessor into an
electrical one in order to control actuators.

• Computation module: it is an Micro Controller Unit (MCU) that
executes procedures and tasks. Microprocessors are often excluded
from WSN due to their cost, furthermore microcontrollers consume
less power than CPU and motes usually need to execute simple pro-
cesses. In addition, microcontrollers are suited for WSN, because some
parts of them may be turned off when not needed, reducing energy
consumption and preserving battery life.
The MCU is associated with a storage unit, generally integration of
RAM and ROM, used to hold data, applications and the operating
system. The memory usage involves high energy consumption, thus
embedded memory blocks have limited capacity.

• Communication module: it connects the node to the network and
can be an optical or a Radio frequency (RF) device. Among all node
components, the radio chip is the device with the highest energy con-
sumption. To reduce the cost and power utilization well-established
and low complexity modulations are used and no high speed transmis-
sion are implemented. This module generally works on three different
frequency ranges: 400 MHz, 800-900 MHz, 2.4 GHz or Industrial Sci-
entific Medical (ISM) bands3.

• Power module: it is a very important component for a sensor node,
commonly made up by commercial batteries such a AA potentially
supported by a photo-voltaic module. This last one perform the bat-
teries recharge with the purpose to extend the mote power life.

The particular characteristics of the nodes require the development of
platform specific applications with the aims to use less storage space and
energy as possible. This implies the need to limit the usage of various
interfaces (for example radio, sensors and actuators) and the processor.
Even the operating system must have a very small storage image and must

3For these bands no government licenses are required

10

CHAPTER 2. WIRELESS SENSOR NETWORK

grant low power consumption during the execution of processes.

2.3 Challenges for the WSN

Most of the challenges are consequence of the WSN limited resource avail-
ability while others are constantly faced by the majority of the network
technologies. The following list outlines the most important challenges that
are presented today in the design and implementation of WSNs.

Battery Life

Nodes in the WSN are powered by batteries, and the lifetime of the network
depends on the usage of the available energy. In wide wireless sensor net-
works, it is important to minimize the number of batteries replacement. In
order to reach an energy autonomy one or more years long, we must ensure
a low duty-cycle operating mode for the sensors. The use of sleep mode for
the MCU and the radio becomes crucial.

Scalability

Some applications require thousands or more of wireless sensors. These
large scale WSN present challenges not seen in WSN with a few sensors.
Algorithms and protocols that work fine on small networks do not neces-
sarily work well in large ones. A typical example is the Dijkstra’s shortest
path routing algorithm that works well in small networks while is not effi-
cient in large network because of its energy consumption. For wide WSN
for instance is preferable to implement location-based routing algorithms,
in which the position of each node is known and is used to found paths to
transmit information. Similar scalability problems occur for other features
of the networks.

Connectivity among networks

WSNs need to be interconnected so that the data reaches the destination to
be stored, analyzed, and to take appropriate action. We can imagine that

11

CHAPTER 2. WIRELESS SENSOR NETWORK

the WSNs can be interconnected with many different network technologies
such as phone, Internet, ad hoc wireless networks. This network interfacing
is not trivial: new protocols and mechanisms must be designed to connect
and transfer data among the WSNs. Normally these connections are realized
through gateways, which require new capacity for understand and translate
different communication protocols.

Reliability

The wireless sensors are inexpensive devices with a fairly high failure rate.
Moreover, in many applications, these devices are launched on an area from
a plane, or similar vehicles. As a result, different nodes fail, or alter their
normal capability. The reliability of the nodes also depends on the amount
of energy available on the node.

Variety

The new WSN are composed of wireless sensors with different capabilities
and features. This differentiation requires new algorithms and protocols as
for example cluster-based architectures that use devices with more power
to aggregate and transmit data on behalf of nodes with limited resources.
This strategy, however, include the need of clustering and data aggregation
algorithms that are not trivial to design.

Privacy and Security

The privacy and security concerns are topic aspects in the network research
field. However, the security mechanisms typically require a lot of resources,
which are instead limited in wireless sensors. So there is the need for new
security algorithms that require little computational power and energy.

2.4 Network topologies

As explained previously a network of sensors can be reflected in a flat, tree
or mesh topology (see Figure 2.3).

12

CHAPTER 2. WIRELESS SENSOR NETWORK

The simplest is the flat one, which provides that all but one nodes are

Figure 2.3: Example of possible WSN topologies.

equal, and there is a master node that acts as coordinator. It can coor-
dinate the transmissions of the others motes, and has the assignment to
transfer data from the WSN to the server. A very common configuration of
this type is called star network, because all the nodes communicate directly
with the master. We can observe that is impossible to create large size net-
works because they are constrained by the radio coverage range. Moreover
networks are not very reliable because the coordinator is a single point of
failure.
We can describe a mesh or Peer-to-peer (p2p) networks as structures in
which each node can potentially communicate with every other node within
its radio coverage area4. This topology increase network reliability due to
the redundant paths available for the transmission of a message. It is pos-
sible, by using routing mechanisms, to determine what is the most energy
efficient route, which is the shortest and so on, in order to raise up the
network performance. The reliability and robustness provided by multiple
paths among nodes requires however the implementation of more complex
algorithms.
In the tree topology, as the name suggests, the nodes form a logical tree
structure. The messages usually leave a node and climb the tree and reach

4If they are all interconnected among themselves the network is a full mesh.

13

CHAPTER 2. WIRELESS SENSOR NETWORK

the root5, which is the data collector and coordinator of the network. For
this reason, the nodes have a workload that increases with the decrease of
their depth. Compared to the mesh, the advantage of this topology is the
reduction of possible communication paths, enabling the development of less
complex management systems.

2.5 Application fields

The great versatility of wireless sensor involves a large number of possible
applications for WSN in many different scientific disciplines. Some of these
applications can be grouped into the following categories:

Health Care Applications The use of sensor networks in this field
are aimed to provide an interface for people with disabilities, monitoring
physiological data, or for instance to help hospital administration. A well
known example is the CodeBlue project of the Harvard University [44]. It
is also possible to use sensors to identify allergies.

Military Surveillance Sensor networks were born in military research
laboratories. The simple and fast deployment, the self-organization and
fault tolerance capabilities made WSNs a promising technique for mili-
tary applications. Possible applications range from monitoring of the allied
forces, to the surveillance of the battlefield. Is possible to use a network of
sensors in hostile places to recognize and to control the enemy movements,
or recognize the type of suffered attacks thanks for instance to chemical,
biological, and explosive vapor detection [21].

Environment control In this area, sensor networks could be used for
some applications involving monitoring the movement of birds, small an-
imals, insects and study their particular habitat. It can also possible for
instance to monitor a forest fire or detect movement in the glaciers. Belong
to this sector also the study of natural disaster events such as the volcanic
eruptions. In agriculture one of the objectives can be for example to mon-
itor the level of pesticides in the water or the air pollution. An example is

5The root is also called sink.

14

CHAPTER 2. WIRELESS SENSOR NETWORK

shown in Figure 2.4.

Figure 2.4: WSN implemented in Nelly Bay, Magnetic Island to control the bar-
rier reef [37].

Indoor localization and tracking In particular, location-based ap-
plications are among the first and most popular applications of WSNs since
they can be employed for tracking enemies in battlefield, locating moving
objects in buildings (e.g. warehouses, hospitals), and tracking people inside
buildings. An example of implemented systems can be found in [11].

Monitoring of industrial equipment The wireless sensors can be
applied to industrial tools and machinery to analyze the behavior of com-
ponents subjected to mechanical stress, improve performance and prevent
breakdowns and failures [20].

Commercial Application All the applications with commercial aim
belong to this group.

However we emphasize that the quality and potentiality of transmis-

15

CHAPTER 2. WIRELESS SENSOR NETWORK

sion among the sensors of a wireless network are strongly constrained by
the environment conditions in which they are deployed. In particular, the
factors that affect significantly the quality of the implementations may be
the distance between nodes and the obstacles between them, the power
transmission, the electromagnetic interference and finally the power supply
problems.

16

Chapter 3
Tmote Sky, TinyOS and NesC
language

3.1 The Tmote Sky

The mote platform Tmote Sky[26] (Figure 3.1) was designed by the develop-
ers of TinyOS of the University of California in Berkeley, and produced by
MoteIV Corporation. Previous versions are the platform Telos, Telos Revi-
sion A and Revision B. Since 2007, MoteIV changed its name to Sentilla[38]
and has stopped production and support for these wireless sensors in favor
of a new hardware platform designed for Java applications. However, the
new platform is backward compatible with Tmote Sky, and also we can still
buy mote TelosB, that has the same functionality of the Tmote Sky, from
Crossbow[39].

The module incorporates the 16-bit RISC MCU MSP430F1611 from
Texas Instruments, which works at a frequency of 8MHz. This microcon-
troller has 48 KBytes of FLASH memory, 10 KBytes RAM, and 12-bit
ADC/DAC.

The low-power, low voltage and low-cost radio chip used by the Tmote
Sky for wireless communications is the CC2420 produced from Chipcom.
The C2420 is compliant with the IEEE 802.15.4 physical layer and provid-

17

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

Figure 3.1: Front and back of the Tmote Sky platform.

ing the Media Access Control (MAC) layer dictated by the IEEE standard.
The transmission is on the 2.4GHz band of IEEE 802.15.4 standard which
allow to use channels from 11 to 26. The actual data rate is limited to 250
kbps. Not all features of IEEE 802.15.4 are implemented, and to achieve
full compliance, the remaining functions must be implemented by software.
The CC2420 provides extensive hardware support for packets handling, data

18

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

buffering, burst transmissions1, data encryption and authentication, clear
channel assessment, link quality and packet time information.

Figure 3.2: Functional Block Diagram of the Tmote Sky module, its components,
and buses.

As shown in Figure 3.2 the chip is controlled by the MSP430 through
the Serial Peripheral Interface (SPI) port, and a series of I/O lines and
interrupt. Through the configuration registers can be programmed the re-
ception and transmission approach (for example if Acknowledges are needed
or not), the channel, the communication power, and other parameters. The
default configuration provides compliance with IEEE 802.15.4. The capa-
bility to set the transmission power is a very desirable feature because, as
just said, the consumption of the radio chip dominates the total consump-
tion of the mote. It is also possible to know the Received Signal Strength
Indicator (RSSI) of every received message; this feature is very useful for
some kind of application as for instance localization.
The Tmote Sky can be powered by two AA batteries. The power should be

1They are characterized by short transmissions and long inactivity periods.

19

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

between 1.8 V and 3.6 V, but must be at least 2.7 V to program the flash
memory of the microcontroller or the external flash. When the module is
connected to a USB port of a PC can receive power from this interface,
in this case the operating voltage is 3 V. Power can also be supplied via
pins number 1 and 9 of the expansion connector, or through the terminals
dedicated to the battery.
The antenna is an Inverted F Antenna (IFA) and although it has not a
perfect omnidirectional pattern, may attain 50-meter range indoors and up
to 125-meter range outdoors.
The EEPROM used in Tmote Sky is the M25P80 STMicroelettronics. It is
a flash memory that can store 1024 KBytes of data, and is composed of 16
segments, each of 64 kBytes. The flash shares SPI communication lines with
the CC2420 transceiver. So care must be taken when we want to read or
write on the flash. Typically is implemented a software arbitration protocol
for the SPI bus of the microcontroller. To get the energy savings should be
limited as much as possible the memory usage.
Tmote Sky module can be equipped with a humidity and temperature sen-
sors produced by Sensirion AG. They may be directly mounted on the Tmote
module. The models used are SHT11 SHT15 different in the accuracy of
the measurements. Even a light sensor can be mounted directly on the card
and provides connections for two photodiodes.

3.2 TinyOS-2.x operating system

3.2.1 Versions

TinyOS-2.x is the natural evolution of TinyOS-1.x, the most popular OS
for wireless sensor networks and embedded systems. The name comes from
the abbreviation of Tiny Operating System, it is open source and it was de-
veloped, in cooperation with Intel Research, by the University of California
in Berkeley. At the moment the latest version of the operating system is
2.1.1 that is not backward compatible with version 1.x. This is due to the
fact that was made a complete rewrite of the operating system to improve

20

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

organization and to optimize the use of the resources.

3.2.2 Hardware abstraction

The hardware abstraction of TinyOS 2 generally follow a three-level abstrac-
tion hierarchy[27, 34], called the Hardware Abstraction Architecture (HAA):

• Hardware Presentation Layer (HPL) is an abstraction layer placed
immediately above the hardware platform that allows us to have the
complete control on the underlying hardware such as I/O pins or sys-
tem registers. This level is hardware-dependent and does not abstract
any of the features of the platform, but only masks the control code.

• The Hardware Abstraction Layer (HAL) is placed above HPL and
provides higher-level abstractions that are easier to use than the HPL
but still provide the full functionality of the underlying hardware.
HAL is still hardware-dependent.

• Hardware Independent Layer (HIL) is placed on top of HAL and pro-
vides abstractions that are hardware independent. This generalization
means that the HIL usually does not provide all of the functionality
that the HAL can. HIL components have no HW naming prefix, as
they represent abstractions that applications can use and safely com-
pile on multiple platforms. At this level, code optimization is not
possible.

3.2.3 Component-base architecture

TinyOS architecture is based on entities called components, in fact it is com-
posed of a lot of small components that application developers could reuse
every time they desire. Component-Based Software Engineering (CBSE) is
focused on the design and implementation of software systems using compo-
nents already ready to use. These elements are standardized, independent,
reusable, able to adapt to any architecture chosen for the application devel-
opment.
The component-based systems are easy to assemble, change and enlarge,

21

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

and so have lower production costs. The component architecture of TinyOS
allows the minimization of the necessary code as required by the small mem-
ory of the wireless sensors. In fact, when an application is installed on a
sensor even an image of TinyOS is compiled together, but it includes only
those components of the OS that are strictly necessary for the application
execution. For this reason, the software installed on a sensor take up only
few Bytes of memory. In addition TinyOS is specifically designed to consider
all the constraints concerning the resources of the wireless sensors, first of
all the low power energy availability. The libraries of components included
in this OS range over network protocols, distributed services, sensor drivers,
and data acquisition tools. Obviously all the components can be modified to
get customized implementations that are able to solve better specific tasks.

3.2.4 Traits of TinyOS

The main features of TinyOS-2.x are:

Scheduler

The scheduler implements a FIFO policy without preemption. Each task
has its own reserved space in the queue and can not be queued more than
once if it is already present in the FIFO structure. So to enqueue many
instances of the same task, the code that implements this task must call the
enqueue command during the execution of itself.
It is possible to develop another kind of scheduler and replace the FIFO one
because in TinyOS it is a component and so we can modify it.

Virtualization of resources

In TinyOS for many components was introduced the concept of resource
virtualization. This creates an instance of an object that provides the re-
quired interface every time it is necessary.
With this approach Virtual abstractions even hide multiple clients from each
other through software virtualization. Every client of a virtualized resource

22

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

interacts with it as a dedicated resource. All the virtualized instances are
then multiplexed on top of a single underlying resource. Because the vir-
tualization is realized through software, there is no upper bound2 on the
number of clients using the abstraction.
This approach simplifies the resource management but it has some negative
aspects. For example, a virtualized timer resource introduces CPU overhead
from dispatching and maintaining each individual virtual timer, as well as
introducing jitter whenever two timers are fired at the same time.

Power Management

All resources of the node, including the microcontroller and the radio chip,
provide interfaces to manage their status. In particular TinyOS distin-
guishes microcontrollers power-management between the peripherals one.
The microcontrollers in fact have different states of energy consumption,
while the devices have only two states: on and off.

3.3 Network Embedded Systems C

3.3.1 Definition and principal characteristics

NesC is an extension to C language designed to embody the structuring con-
cepts and execution model of TinyOS and optimized for the small amount
of resources available in a wireless sensor.
When an application is compiled, the components of TinyOS are included
with it and the result forms the entire software of the sensor. Furthermore
it is not possible to install multiple independent applications in the same
sensor3. In NESc there is neither dynamic memory allocation nor pointers
to functions. This approach, is not very flexible, but allows a significant
energy and memory saving and software robustness. Moreover, all the re-

2Except for the memory and the efficiency constraints.
3We must underline that in order to overcome this constraint, researchers of the

University of Padua have designed a special protocol called SYNAPSE that is able to
reprogram a WSN using Fountain Codes [22].

23

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

sources requests and the call graph are already known at compilation time.
Finally, it is thus guaranteed a better generation and analysis of the code.
The principles of nesC and TinyOS are similar, so the next paragraphs are
concepts that are valid for both.

3.3.2 Interfaces and components

In CBSE each component is an independent part of the application software.
Each component is defined by two parts: the first specifies the interfaces
provided and used by the component while the second represents the internal
implementation.
Interfaces are bidirectional structures used by components to communicate
with each other. A single component may use or provide multiple interfaces
or multiple instances of the same interface. The interfaces of a component
are its access points.
Each interface specifies two type of functions supported by the component:

1. Commands are functions that must be implemented by the compo-
nent that provides that interface.

2. Events are functions that must be implemented by the component
that want to use the interface.

So a component that implements an interface must provide a set of imple-
mented functions (commands) and requires that the component uses this
interface implements another type of functions (events) that are invoked
upon the occurrence of certain events.
In fact, the component that supplies an interface must only notify events,
but what is necessary to do after the event must be implemented by which
are using the interface.
The command Signal is used to notify an event.

Typically, the commands are called from “up to down” or to be more pre-
cise from an application component to a component closer to the hardware,
while the events are reported upwards.

24

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

This structure is fixed for each component and highlights the relationship
with the features of the physical components of the sensor node, so each
component has some functionality and can generate events that must be
managed.

3.3.3 Modules and configurations

The programs consist of components that are assembled together4 to make
up the whole application. So it can be represented as a graph of components.
Each component consists of two elements, a module and a configuration.

The purpose of a module is to define the logic of a component, perform
operations, implement interfaces, and use other components. Whereas the
configuration aim is to assemble a component with other components it uses
(wiring).
A NesC application is made up of two files, one for the module and one for
the configuration. Each module or configuration file, has two different sec-
tions: one for the component specification and one for the implementation.
The first of them5 contains a list of elements, which can be an interface the
component provides, or an instance of another used component. To utilize
an element is used the keyword uses, while to provide an element is used
the keyword provides.
The implementation section6 of the module contain the real implementation
of the component functionalities, while for the configuration it contains the
wiring directives.
Every NesC application is always characterized by having a configuration
component that serves as the root node of the program structure.

4The connections among elements of different components are also called wiring.
5The section for component specification is created with the construct module

[nome_mod] {...} for modules, and configuration [nome_conf] {...} for configurations.
6It is created with the construct implementation {...} for both the module and the

configuration.

25

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

3.3.4 Execution Model

The NesC code can be divided in two classes[28]:

• Synchronous Code, code (functions, commands, events, tasks) that
is only reachable from tasks;

• Asynchronous code, code that is reachable from at least one inter-
rupt handler.

A scheduler for NesC can execute tasks in any order, but must obey to the
run-to-completion rule7.
Instead, if a FIFO scheduler is executing any code, when the system signals
an interrupt, the interrupt handler code is executed immediately suspending
any synchronous code that was previously running.
To avoid that the execution of code is suspended, we must use the atomic
statement. In fact this approach ensured the execution of all the operations
contained in the atomic block.

The synchronous code can be the body of a command/synchronous event
or code executed in tasks. Asynchronous code is instead the interrupt rou-
tines.
A task is an independent locus of control defined by a function of storage
class task returning void and with no arguments [28]. It is posted (with the
post statement) for a later execution of a portion of code. The post com-
mand programs task execution by inserting it into a FIFO queue8 and then
returns immediately. The Scheduler execute tasks in a particular order; the
executing task can not be suspended by any other task. So tasks have all
the same priority, and among them are non-preemptive. Because tasks are
not-preempted and run to completion, they are atomic among themselves,
but are not atomic if an interrupt occurs. A task is implemented when a
component has to perform a job which does not have to be done at the
moment of its invocation.

7The standard TinyOS scheduler follows a FIFO policy.
8If for example we are using the default scheduler.

26

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

The function is another NesC statement whose code is synchronous. It
is defined within a module and can only be used by this module to perform
internal operations. The difference between a function and a task is that
when a function is invoked, its instructions are immediately executed with-
out delay. The function is therefore a method to perform a short internal
routine.

Although non-preemption eliminates data races among tasks, there are still
potential race condition9 and data race10 between synchronous and asyn-
chronous code. These problems are detected and reported when the soft-
ware is compiled. The compiler also reports a compilation error for any
synchronous call command, or synchronous event notification, within asyn-
chronous code. This happens because any code that start from asynchronous
code is also asynchronous.

3.3.5 Split-phase operations

All operations that has long latency are optimized with the split-phase tech-
nique. It is based on the separation between command that request some-
thing, and event that signal the satisfaction of a previously request (see
Figure 3.3). Generally interface commands are requests to perform a task;
if the commands is split-phase, the control returns immediately to the
caller program. An event is raised (and signaled to the caller) only when
the completion of this command is done. The split-phase code is often
more verbose and complex than sequential one, however, has some advan-
tages. For example this method reduce the use of the execution stack, and
make the system more responsive.

9A race condition occur when the system’s work depends on the order in which code
sections are executed. A not valid execution order can involve a not consistent system.

10Is is a particular case of race condition that occur when data are read and written
from two different entity without access control.

27

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

Figure 3.3: Scheme of a split-phase operation.

28

Chapter 4
The overlay-based synchronization
algorithm

4.1 Clocks and synchronization

The synchronization is an important aspect of a DS like WSN. For example
collect environmental data from a wireless sensor network without any time
references typically does not carry real information. The clock of comput-
ers and other devices is based on a hardware oscillator. This autonomous
component can generate a periodic pulse, with no input signal applied. Gen-
erally it uses crystal oscillators because they are stable and their costs are
low.

Clock Model

A clock essentially measure time intervals. It consists of an ideal counter τ
which is periodically incremented. Generally with τ(t) we intend a reading
of this local clock made at the instant t. The counter is subject to an
unpredictable deviation of the refresh rate. These variations may depend
by many factors as for instance temperature, power supply, magnetic fields,
voltage, aging, wear. However, alterations remain within certain small limits
and can therefore be neglected.

29

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

So we can approximate the clock of the node i as:

τi(t) = αit+ βi (4.1)

where αi is the skew of the clock of the node i, and βi is the offset. The
Skew denotes the clock frequency, instead the offset is the distance from a
referenced instant t.
Anyway nodes can’t calculate the αi and βi values because they have not
access to a reference timer. However, it is still possible to obtain indirect
information about them by comparing the local clock of one node i with
respect to another clock j. In fact, if we solve Equation 4.1 for t, in example
t = τi−βi

αi
and we substitute it into the same equation for node j we get:

τj =
αj

αi

τi + (βj −
αj

αi

βi) = αijτi + βij (4.2)

which is still linear (right side of Figure 4.1) and where αij and βij are
respectively the relative skew and the relative offset between node i and j.

Figure 4.1: Clocks dynamics as a function of absolute time t on the left, and
relative to each other on the right.

The synchronization of a network with n nodes can be global, but can also
be local. In this second case only clocks of a subset of nodes1 must match.
There is another type of clock that is important to define: the software clock.
A synchronization algorithm can adjust directly the local clock. However is
possible to construct and modify a software clock τ̂ based on the local clock.
The software clock is a monotonic increasing function that transforms the
local clock τ(t) into τ̂(t) = aτ(t) + b, with a and b generic parameters.

1Generally neighborhood nodes.

30

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Existing algorithm

There is many algorithms in the literature that regard the synchronization
aspects. It is due to the fact that time is a crucial subject for the net-
working sector, and even more for the WSN. We can mention the well
known Network Time Protocol (NTP)[29, 9, 10] or the Precision Time
Protocol (PTP)[40] algorithm designed for wired networks. But these algo-
rithms are not suitable for wireless network because of their stiffness and
even because they are designed with no power saving aims.
In the last years much R&D effort has been spent to develop algorithms for
the WSNs. The most important are:

1. Reference Broadcast Synchronization (RBS) [9]

2. Tiny-Sync and Mini-Sync (TS/MS) [13]

3. Time-Sync Protocol for Sensor Network (TPSN) [14]

4. Lightweight Time Synchronization for Sensor Network (LTS) [15]

5. Flooding Time Syncronization Protocol (FTSP) [33]

6. Reachback Firefly Algorithm (RFA) [17]

7. Solis, Borkar, Kumar protocol [19]

Another algorithm that was designed and implemented in the University
of Padua is the Average TimeSync [4, 30] one. It is fully distributed and
asynchronous, and even has very poor memory and CPU requirements. Its
strengths are the adaptability, reliability but over all the great precision
that is able to reach. We underline the fact that the possibility to respond
to network topology changes is very useful in the WSN world.
It is a consensus2 algorithm and its principle is to converge to an average
time among all the node of the network.
All nodes operate in the same way according to a peer-to-peer architecture,
and every node is able to initiate a synchronization session. A node com-
municates to its neighborhood the local time-stamp with a message that is
sent at a fixed rate (called timesync period). The smaller is the interval
between synchronization messages, the better is the precision. For example

2Consensus is a problem in distributed computing that encapsulates the task of group
agreement in the presence of faults [45].

31

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

ATS with timesync equal to 30 seconds is more precise than an ATS imple-
mentation with timesync equal to 90 seconds.
The ATS does not flood time information from a root node to the leaves.
Information is contained in all the network nodes which exchange packets
among neighborhoods3. Each node changes its software clock to the estab-
lished consensus value. The main idea of the algorithm is to level all values
of the different software clocks to their average.
The diffusion method can reach the global synchronization through the in-
terconnection of synchronized parts of the network. After a few cycles of
diffusion, all the node clocks have the same value.

4.2 Average TimeSync description

This algorithm wants to synchronize all the nodes of a network with respect
to a virtual reference clock that we can represent as:

τi(t) = αt+ β (4.3)

Every node estimate the virtual clock using a linear function of its own local
clock:

τ̂i(t) = α̂iτi(t) + ôi (4.4)

The goal of ATS is to find the couple α̂i and ôi for all the node.

In necessary to underline that to implement ATS on a network, the wireless
sensor device must support the MAC-layer time-stamping. In fact when
a packet P is sent from i to j, it is assumed that the reading of the local
clock τi(t1) (when P is sent), the packet transmission and the reading of the
local clock τj(t2) (then P is received) are instantaneous. In other words that
t1 = t2.

3Is important to notice that the synchronization is done locally under the node point
of view.

32

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

4.2.1 Relative skew estimation and compensation

Every node i tries to estimate the relative skews αij with respect to its neigh-
bor nodes j. This is accomplished by storing the current local time τj(t1)

of node j into a broadcast packet, then the node i that receives this packet
immediately record its own local time τi(t1). Therefore, node i records in
its memory the pair τi(t1), τj(t1). When a new packet from node j arrives
to node i, the same procedure is applied to get the new pair τi(t2), τj(t2).
The estimate of the relative drift ηij is:

η+ij = ρnηij + (1− ρn)
τj(t2)− τj(t1)

τi(t2)− τi(t1)
(4.5)

where the symbol η+ij indicates the new value assumed by the variable ηij,
and ρn ∈ (0, 1) is a tuning parameter. The algorithm to compensate the
skew is very simple, in fact every node stores its own virtual clock skew
estimate α̂i, defined in Equation 4.4. As soon as it receives a packet from
node j, it updates α̂i as follows:

α̂+
i = ρvα̂i + (1− ρv)ηijα̂j (4.6)

where α̂j is the virtual clock skew estimate of the neighbor node j. The
initial condition for the virtual clock skews of all nodes are set to α̂i(0) = 1.

4.2.2 Relative offset estimation and compensation

According to the previous analysis, after the skew compensation algorithm is
applied, the virtual clock estimators have all the same skew, and so they run
at the same speed. At this point it is only necessary to compensate possible
offset errors. Once again, we adopt a consensus algorithm to update the
virtual clock offset, previously defined in Equation 4.4, as follows:

ô+i = ôi + (1− ρo)(τ̂j − τ̂i) = ôi + (1− ρo)(α̂jτj + ôj − α̂iτi − ôi) (4.7)

33

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

where τj and τi are computed in the same instant.

4.3 Offset Compensation Algorithm

The first step of this work concerns the implementation of a synchronization
algorithm. This aspect is fundamental for the color therapy network that
we want to realize. In fact in order to ensure that all the nodes show always
the same color, the developed application makes the next mainly steps:

1. A software creates in real-time a sequence;

2. The sequence is sectioned, and these parts are sent over messages.
Every message incorporates even the initial global time at which start
to show the portion contained;

3. When a node receive this kind of message, it processes it, waits the
initial global time inserted and then starts to show the sequence of
colors through its RGB device.

We can understand that all the principal operation done with the purpose to
produce the chromotherapy effect are very closely dependent on a common
global time. For this reason a method to calculate a virtual reference clock
is necessary.
In the selection of the algorithm to implement, the work made by F.Fiorentin
[8] was used as foundation. In his thesis was presented all the weaknesses,
the strengths, and the performance of the most important algorithms for
WSN synchronization. Furthermore, in the analysis of the complexity and
performance of the different synchronization methods, was proved that one
of the most light is ATS.
Table 4.1 show a comparison between them. The Skew column indicates if
the algorithm compensate the skew and the complexity column indicates the
number of elaboration made in a network of n nodes by an algorithm that
executes m synchronization cycles4. Instead the channel column displays

4For ATS k is the maximum number of neighborhood of a node. This must be con-
sidered because for every neighborhood j ATS needs to store an historical global time
pair (τj(told), τi(told)) for the computation of the skew estimation.

34

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Skew Complexity Channel Memory Scalability Topology
RSB yes (mn2) (m+mn) O(n) low yes
TPSN no (4m(n− 1)) (m+mn) O(1) sufficient yes
TS/MS yes (4m(n− 1)) (m+mn) O(1) sufficient yes
LTS yes (4m(n− 1)) (m+mn) O(1) sufficient yes
FTSP yes (2mn) (mn) O(1) high yes
RFA no (2mn) (m+mn) O(n) high no
Solis et al yes (2mn) (mn(n− 1)) O(n) high no
ATS yes (m(n+ k)) (mn) O(k) high no

Table 4.1: Comparison among synchronization algorithms.

the amount of messages that pass through the channel while the mem-
ory column shows the memory usage. Finally the remaining two columns
indicate if the method has a good scalability and if it is topology dependent.

We have to analyze these results and understand that algorithms with skew
compensation are too precise and too complex for our purpose. On the other
hand, algorithms that compensate only the offset are generally topology de-
pendent. For these reasons we have decided to simplify the ATS method,
that grants low memory and CPU usage, is not dependent by the network
topology and is fully distributed.
Our goal is to be able to change the network color, and all the nodes must
act together. The application must mask the fact that every node work
individually.
Furthermore an individual that are seeing the network color sequence, should
not see differences between the turning on of the same tint in two different
RGB devices.
This important aspect was considered when we choose the way to synchro-
nize the network. In fact if we suppose that the human eyes can see with a
frequency of at about 40 Hz (25 ms), is sufficient, under the synchronization
point of view, that our application has a millisecond precision.
The local clock of Tmote Sky is provided by the 32 KHz external crystal
oscillator, which has a granularity of about 30µs per tic. As obtained in [4],
ATS with a synchronization interval of 30 seconds can reach a precision of

35

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

±10 ticks which are 600µs.
Our specification let us to be less precise. So we modify ATS trying to
reduce the complexity even further.
When the nodes are showing the sequence, they should be as coordinate
as possible among themselves, but it is difficult because they are load with
work if the color rate is high. So the synchronization process should be as
light as possible in order to obtain a fast system.

Starting from an implementation of ATS made in [8], we remove the
skew estimation and compensation (expression 4.5 and 4.6) and we kept
only the offset ones (expression 4.7). As we will see in chapter 5 the preci-
sion of what we obtain is worse than the original method but is enough for
our aims. Instead is fundamental that we have less operations to do when a
node receive a synchronization message because now the skew computation
is miss out. We have reduced the size of the synchronization message of 4
Bytes too, from 23 bytes, now it is made up by 19 Bytes: 17% less5. Finally
Offset Compensation (OC) doesn’t need historical information regarding
neighborhood, so the memory usage is reduced from O(k) to O(1).
In summary, the only offset compensation involves a continuous resynchro-
nization of the network nodes with a period proportional to the required ac-
curacy. Unlike many other techniques that tend to the maximum precision,
in OC the communication and computation needs for the synchronization
of the single node were significantly reduced by taking advantage of the
relaxation of the constraint of accuracy.

4.3.1 Convergence problems

In both the ATS and OC implementation, we have discover that in some
particular cases, after the synchronization was started, the convergence of
all the nodes to a virtual reference clock asks a very long time period which
we can consider unacceptable.
In Figure 4.2 we show a test in which after at about 23 minutes of execu-

5In Subsection 7.1.5 we show that our implementation has removed another Byte from
the synchronization message.

36

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

tion, OC algorithm has still a maximum pairwise synchronization difference
among nodes of about 10.000 ticks.

Figure 4.2: An example of long initial convergence. The graph show a polling
interval of about 23 minutes.

As we can see, it seems that two portions of the network were synchronized
locally at two different sub-global reference clocks. One of these network
portion is visible on the topside of the graphic, while the other is on the
downside. The nodes between them, that “jump” continuously from side to
side, were not able to reduce the time gap. The situation presented can take
even some hours to converge, and this is too much time. We cannot wait
hundreds of minutes before start the chromotherapy effect because of the
synchronization. Even more in an application that has commercial purposes
it should be avoided.
We have just said that every node of the network sends a synchroniza-
tion message every some seconds6. When a node is powered on, it be-
gins to transmit this message starting from a randomly chosen instant
tstarti . For an entire WSN of N nodes we can define the sequence Tstart =

[tstart1 , tstart2 , tstart3 , ..., tstartN] as the set of all the tstarti for i = 1, ..., N . A par-

6This interval can be defined by the user through a Java interface, and is called
timesync.

37

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

ticular case of Tstart can produce the situation in example. The algorithms
OC and ATS as designed cannot prevent this scenario a priori.
So is not possible to forecast in which order the nodes will synchronize them-
selves, and is not hence possible to avoid that, in particular cases, some part
of the network is going to synchronize locally without great influence7 of
other nodes.

4.3.2 Solution: the overlay hierarchical structure

We implement an overlay logical network that create a hierarchical struc-
ture over the “peer-to-peer” configuration built by the OC application8. This
approach was adopted to solve the convergence problem presented in Sub-
section 4.3.1.
So if we have for instance a network with a topology showed in Figure 4.3,
Overlay-based algorithm (O-b) create over it a new structure in which a
root node became the datum point for the virtual reference clock.

(a) Original network topology (b) Hierarchical overlay structure

Figure 4.3: Example of hierarchical structure built on top of a WSN.

7The low influence is caused by an unlucky sequence of starting times chosen by the
different motes composing the WSN.

8Because of their similar behaviors, from here on out, for simplicity we are going to
call “pear-to-pear network” (p2p) the fully distributed network created from the offset
compensation algorithm.

38

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

The next two key concepts are considered during the development of this
part of the project:

• A new typology of node is introduced in the network: the root node.
Intuitively we can understand that the more it is connected with others
nodes, the better it is. In fact thinking to a mesh network, if the root
is put in the center of the structure, the maximum distance between
itself and the furthest node is reduced. And there is more precision
if the farthest node is at a limited number of hops from the root.
Otherwise, if the root is put on a vertex of the mesh, the distance
root-farthest node is the highest.
So in order to put the root in a reasonable place, in our project this
task is done by the user. We know that there is a lot of algorithm for
the leader election as for instance the well known Bully algorithm [23],
the Chang and Roberts algorithm [24] or algorithm for DS as [25], but
we want to maintain the application light and thin, so for now this
last functionality was not implemented.

• Even if now the network is not only peer-to-peer but has assumed
a hierarchical logic configuration too, it must remain dynamic. In
addition a node has to adapt itself if a topology change occurs.

We don’t want to remove the “peer-to-peer” behavior of the WSN, but
only force a faster convergence to a reference clock if a root is present among
the nodes. In other words, the root clock becomes “more important” than
the others. This is what we are going to call “soft-hierarchy” approach.
However when no one node is a root, the implemented system is able to
work like the overlay structure does not exist. The overlay-based network
is even able to recognize a root failure and then starts to work in a p2p-like
manner. Finally if a node was moved in the space, the network adequate
itself to the new topology configuration. During these adjustment periods
no one node loose the synchronization.
Our hybrid approach inherits all the characteristics from the two structures,
and so is able to compensate the weaknesses of one model with the strengths
of the other. The system converge very fast, and is precise like a hierarchical
network, while is flexible and reliable as a distributed one.

39

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Bootstrap

The overlay structure is based on an additional information inserted in the
synchronization message: the number of hops of the sender. So with only
one adding Byte to the payload of the message we can forge another logical
structure over the distributed network created by OC9.
The particular value “127” is used for the hop field. In fact when a node T
sends a message with the number of hop set to 127, means that T doesn’t
know the existence of a root.
The bootstrap process starts from the root: when it begins to send its syn-
chronization messages with the number of hop set to 0, the nodes which
receive these messages understand that there is a root (they receive a mes-
sage with a number of hop smaller than 127). So they set their hop fields
to 1 (zero plus one). The process go ahead with a ripple effect. In fact
now some others nodes will receive the messages with the hop field set to
1, understanding that a root join the network and setting their number of
hop equal to 2. And so on for all the hops of the network.
This protocol lets to the system to handle with multiple roots without net-
work crashes or problems. In fact if for instance there are two different
roots, each node will synchronize itself with more precision to the nearest
root. For this reason we must suppose that all the multiple roots must be
synchronized among themselves with the highest possible precision. If this
constraint is not satisfied, network portions can synchronize themselves in-
dependently from each others.

Node behavior

A node that knows that there is a root in the network, when receives a
synchronization message from a node closer to the root, consider this in-
formation very trustworthy. Otherwise, when it receives a time-stamp from
one node further, uses the data as it was less important. Finally the mes-
sages received from nodes as far as itself from the datum point, it processes

9No additional messages are needed to create the hierarchical structure. This piggy-
backing approach optimize the overlay implementation.

40

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

the data with a peer-to-peer approach.
In order to use these guidelines for the Overlay-based (O-b) algorithm, we
have to modify a parameter of OC. In the original implementation of OC
the ρo value of Equation 4.7 was a scalar parameter with values included in
the interval (0, 1)10. The overlay logical network that we have implemented,
calculate this parameter with the next formula:

(1− ρo) =
1

2
γ − (

1

2
δ DiffHop) (4.8)

where γ and δ are two tuning parameters in [0, 1], and DiffHop is the dif-
ference between the hops of the processing node and the number of hops of
the message sender. We want to underline that DiffHop can have only 3
possible values: 1, −1 and 0.
In fact is not possible that |DiffHop|> 1. For instance, if node T that is at
2 hops receive a message from node Z that is at 4 hops, there is something
wrong. If T receive messages from Z, is reasonable that even Z receive mes-
sages from T, and so Z cannot be at 4 hops but must be at 3 hops (the
number of hop of T plus one).
Figure 4.4 is an example of how the node indicated by the red row precess
data. For Equation 4.8 we have that the information received from the
blue edge (DiffHop=-1) have the most weight for A, while data that comes
from the yellow edge (DiffHop=1)are the less trustworthy. With nodes at
the same number of hops (brown edge and DiffHop=0) node A act as the
overlay structure doesn’t exist.

The hybrid network tuning

The developed software provides a special feature thanks to which is possi-
ble to adjust the weight of the two network types merged in the hybrid one.
So is possible to decide how much influence has the distributed part com-
pared to the hierarchical. This functionality is very useful to understand
the behaviors of the implemented system in respect to the different setups.

10Generally the value is fixed equal to 0.5 .

41

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Figure 4.4: Example of the behavior of a node. The blue edge has more weight
than the brown one. The yellow line is the less important.

The possible hybrid configurations are:

• Fully Distributed: This configuration corresponds to the original
algorithm that implements the offset compensation without the over-
lay structure. In this case all the nodes have the same role in the
distributed synchronization protocol. The values of the parameters
of Equation 4.8 to set (1 − ρo) = 0.5 are: δ = 1 and γ = 0. So for
instance node 6 in Figure 4.4 sets (1− ρo) = 0.5 for the blue, red and
yellow edges.

• Fully Hierarchical: In this case a node gives to the overlay-structure
the maximum importance. For this reason it drops any information
received from motes further from the root than itself. So node A in
Figure 4.4 sets (1− ρo) = 1 for the blue edge, and (1− ρo) = 0 for the
yellow one. The weight of the brown branch is (1− ρo) = 0.5 because
node 7 is further from the root as A. In this configuration δ = 1 and
γ = 1.

• Soft Hierarchy: This set-up can create all the possible configurations

42

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

of the weights relative to the distributed and the hierarchical struc-
tures through the adjustment of the δ and γ parameters of Equation
4.8.

• Soft Hierarchy with overlay dependence: This set up is a cross-
breeding between the Soft Hierarchy configuration and the Fully Hi-
erarchical one. This case gives the maximum possible weight to the
hierarchical structure. Furthermore a node still consider the informa-
tion received from nodes at a greater number of hops from the root.
So node 6 in Figure 4.4 sets (1 − ρo) = 1 for the blue edge11, and
0 < (1−ρo) < 1 for the yellow one12. The weight of the brown branch
remains (1− ρo) = 0.513.

Root and node failure

Now we suppose to have the implemented overlay-based software with a
root active. When the root or a node fails, the system is able to identify
the problem and reconfigure itself.
The method adopted is as simple as effective. If a node A doesn’t receive any
synchronization messages from another motes closer to the root, it enters in
a temporary phase in which it considers all the received sync messages as
the overlay structure was deactivated. So during the transitory interval the
node behavior is as it was in the Fully Distributed configuration. The dura-
tion of this phase is the time required from its neighborhoods to understand
the root (or node) failure. After this stand-by state, node A restarts to
consider the possibility that a new root joins the network. This procedure
has to be done by all the nodes of the network. At the end of the process
all the network nodes update their states knowing that the root does not
exist anymore.
The length of the transitory interval is critical in order to ensure the cor-
rectness of the updating procedure. A mistake may occur if it is not long
enough. For example after a too short transitory interval a node A, search-
ing for a new root, can consider information received from a not updated

11In this case the parameters of Equation 4.8 are: γ = 1 and δ = 1 if DiffHop=-1
12In this case γ ∈ (0, 1) and δ ∈ (0, 1) if DiffHop=1
13In this caseγ = 1 and δ ∈ (0, 1) if DiffHop=0

43

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

neighborhood B. Node B is still convinced that a root is present. So if A
listen B, will think that there is a new root, but it is not true. In fact A is
going to process data still concerning the failed old root.
For this reason we focus our efforts in the investigation of how long must
be the stand-by interval to ensure a correct network update.

4.3.3 Calculation of the node reconfiguring interval length

We know that every node sends a synchronization message at a frequency
determined by the timeSync value. We call tlast the last instant in which a
node A has received a message from another node closer to the root. We es-
tablish that, starting from tlast, A understand if the root has failed, waiting
an interval 2timeSync long (called awakeroot interval)14 without receiving
messages from nodes at a higher level in the hierarchy. Every time A receives
a new message from a node at a higher hierarchical level, tlast is refreshed
and A restarts again the awakeroot period count.
After A has understood the root failure, enters in the standby state. But,
for how long?
To answer to the last question we can define tA the instant in which A at
level lA understands the root death, and tZ the time in which a node Z at
level lA + 1 recognizes that the root is failed. The standby interval for A
must be equal to the maximum possible difference tZ − tA. This amount of
time is necessary to ensure that A will not start searching for a new root
before all its neighborhoods at level lA + 1 were updated.
To convince us of this fact we must go a little bit deeper into the topic.

Each node can realize that the root has leaved the network at any time.
We cannot forecast this instant. So we must investigate the worst case, that

14The awakeroot interval is 2timeSync long because we don’t want that the killing root
procedure starts if a synchronization message is lost accidentally. This constraint ensures
a greater security that the root has really left the network. If two consecutive messages
were lost, the network starts the topology change procedure and the nodes enter in the
stand-by state. After this interval if they receive a message from the old root they start
a new construction of the hierarchical structure.

44

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

as we have just said corresponds to the maximum tZ − tA value.
We call Best_Case i(li) the minimum amount of time that can elapse from
the root fall to the moment in which node i at level li can understand what
happened.
Instead Worst_Case i(li) define the maximum amount of time that can
elapse from the root fall to the moment in which a node i at level li recog-
nize the topology change.
Consider a network topology as in Figure 4.5.

Figure 4.5: Network example.

We suppose that along the path A (nodes 1, 2, 3), all nodes are able to
update themselves in their Best_Case i(li). While all nodes in the path B
(nodes 10, 20, 30) are updated at their Worst_Case i(li). The node number
40 continues to believe that the root is alive as long as node 30 was updated.
In fact node 3 update itself much earlier than node 30.
So for example we can ask us, how long must node 3 wait before leaving the
standby state?
Node 3 has to wait a standby interval equal to Worst_Case40(40)−Best_Case3(3).
This amount of time permit to the node number 40 to update itself. So when
node 3 starts its next root search is sure that it can not be contaminated
by information about the old root.

45

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Assisted by the diagram in Figure 4.6, we try to found the laws of Best_Case i(li)

and Worst_Case i(li).
The colored strips indicate the awakeroot interval that permit to the nodes

Figure 4.6: Temporal evolution of how the nodes of the network update their
states when a root failure occur.

to understand from the higher level neighborhoods that the root has left
the network.
The root disappear from the network at the instant 0.
After the root failure, node 1 and node 10 recognize in the same instant the
topology change. In fact their awakeroot periods start always in the same
instants: the receptions of a root message.
So for node 1:

Best_Case1(1) = Worst_Case1(1) = 2

and for node 10:

Best_Case10(1) = Worst_Case10(1) = 2

Because we have supposed that into path A there are nodes that realize the

46

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Best_Case i(li), we must consider that these nodes send a synchronization
message with the new updated information immediately (or an ε) after they
understand the failure.
On the other hand, the nodes of the path B must send an updated sync
message as late as possible to realize the Worst_Case i(li). So they send it
after an amount of time equal to timesync − ε.

Best Case

The recurrence relation of the Best_Case i(li) is:

Best_Case i(n) =

Best_Case i(n− 1) + 1 + ε, if n > 1

2, if n = 1
(4.9)

Obviously the case n = 0 doesn’t exist.
Now we want to explain the meaning of the values added in the case n > 1

focusing our attention on the row relative to the node 2 of Figure 4.6. We
want to understand the Best_Case2(2).
The awakeroot period is 2 timesync long, but it start one timesync before
the Best_Case1(1). In particular it begin when node 2 receives the last
not updated sync message from the node number 1. The ε contribute is
imputable to the capability of the node 1 to send immediately the updated
information.
So referred to the instant Best_Case1(1), the total contribute added is
2− 1 + ε = 1 + ε.

The recurrence relation can be compacted in the next one:

Best_Case i(n) = (n− 1) + 2 + ε = n+ 1 + ε (4.10)

47

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Worst Case

The recurrence relation of the Worst_Case i(li) is:

Worst_Case i(n) =

Worst_Case i(n− 1) + 2− ε, if n > 1

2, if n = 1
(4.11)

Here the explanation of the values added in the case n > 1 is very simple.
Because the nodes, like for example 10 and 20, delay as much as possible
the sending of the messages. The contribute added is equal to the length of
the awakeroot period minus ε.

The recurrence relation can be compact in the next one:

Worst_Case i(n) = 2(n− 1) + 2− ε = 2n− ε (4.12)

Standby state interval length

At last we can measure how long must be the interval that we called tZ − tA

and that correspond to the Worst_Case(n+ 1)− Best_Case(n).
So:

Worst_Case(n+ 1)− Best_Case(n) = 2(n+ 1)− ε− [n+ 1 + ε]

= 2n− n+ 2− 1− ε

= n+ 1− ε

(4.13)

In other words every node must wait an amount of time equal to

(its number of hops + 1)×tymesync

in order to perform a correct killing root procedure.

48

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

4.3.4 Topology changes

Thanks to all we have seen until now, we can assert that even if a node, or
more than ones, are moved in the space, the overlay-based network is able
to reconfigure itself. For some nodes could change nothing, for other could
start the standby interval. At the end of this transitional period all the
nodes are able to understand their new position and the overlay structure
is updated. In addition, no one node loose the synchronization. In fact
during the standby they continue to synchronize themselves accordingly to
the fully distributed approach.

49

Chapter 5
Performance of the overlay-based
algorithm

The first experimental part of this thesis concerns the performance of the
synchronization algorithm previously exposed. All tests were performed on
nodes Tmote Sky of Moteiv. They are equipped with a 16-bit Texas Instru-
ments microcontroller MSP430. The clock source used is the external crystal
oscillator mounted directly on-board, which has a frequency of 32 kHz and
can operate even when the microcontroller is switched off. The TinyOS 2.1.1
operating system provides the appropriate components to take advantages
from the MAC-layer time-stamp of received and sent messages. We have
developed a Java interface thanks to which we have the possibility to test
some different network configuration. As we have presented in Subsection
4.3.2, through this features we are able to choose the influence of the Fully
Distributed configuration or of the overlay structure on the behavior of the
nodes.

5.1 Performed tests

The test we have done are several, but we want to report the four most
important ones. They are relative to the next four network setups:

TEST 1 Here we have studied the original OC algorithm. In this configura-

51

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

tion all the nodes act as they have all the same importance (Fully
Distributed configuration).

TEST 2 Here instead we test the overlay-based algorithm with the Soft Hierar-
chy with overlay dependence. In this test the parameters of Equation
4.8 are γ = 1 and δ = 0 if DiffHop=1.

TEST 3 This test investigate the behavior of the system when there is only the
overlay structure involved (Fully Hierarchical configuration).

TEST 4 Here, in respect to TEST 2, we observe the network behavior in the
case of a Soft Hierarchy with overlay dependence configuration with
γ = 1 and δ = 0.5 when DiffHop=1.

The exact parameters algorithm configuration are summarized in Table 5.1:

TEST 1 TEST 2 TEST 3 TEST 4
Fully Distributed X - - -
Fully Hierarchical - X X X
Overlay Dependence - X - X
(1− ρo) higher level 0.5 1 1 1
(1− ρo) peer 0.5 0.5 0.5 0.5
(1− ρo) lower level 0.5 0.5 0 0.25

Table 5.1: Algorithm configurations of the tests.

5.2 Benchmark test description

As in [4, 8], the algorithm was tested on a grid of 35 nodes arranged in a
matrix of 5 rows and 7 columns (Figure 5.1).
In our test each node of the grid is within the radio range of any other.
That is why we have modify the algorithm so that each node considers only
the messages from adjacent nodes (horizontal and vertical) in the matrix
structure. The others received messages are discarded. For example, node
1 can only communicate with nodes 2 and 8, while node 2 communicates
only with nodes 1, 3, 9. And so on.

52

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

Each node transmits synchronization packets every 30 seconds. These mes-
sages are sent in an independent and asynchronous manner from the others.
The experiments run at about three hours with the following scenario1:

Figure 5.1: Mesh network of 35 nodes.

1. at time 00:00 all nodes are turned on.

2. between 01:00 and 01:30 the 40% of randomly chosen nodes are restarted.
Around 2 minutes are wait between reboots.

3. at 01:45 all the nodes from M17 to M23 become neutral (do not send
and receive sync messages).

4. at 02:15 the nodes from M17 to M23 reactive the synchronization
process.

One other mote is used in the experiments to collect data that we want to
study: the base station2. It sends a query message with period t = 10 sec

1In TEST 2, TEST 3 and TEST 4 the phases number 2 and 3 don’t involve the root
node.

2The base station mote is link to a PC via USB port.

53

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

and all the others nodes respond to this query by time-stamping their global
time clock values. An average of 1% of the total amount of the queries made
by the Base Station does not receive a reply from a node, or was not received
by the last one. This is probably due to the large number of collisions in
the radio channel. In fact each node is within the radio range of any other
and hence the availability of the channel for all the nodes decreases. Each
node transmits to the base station in addition to its global clock value, some
other values of variables used by the algorithm. The aim of these additional
information is to make easier the analysis of the correctness of the algorithm.

5.3 Comparison of the tests

For every one of the four tests, we want to present the trend of the estimated
global time value of the different nodes compared to a reference node. This
last one is the node number 1.
In every graphic is possible to note that after an initial phase of adjustment
of the global clock value, every node converges to the same value remaining
always within a small number of ticks of difference from the reference node.
In Figure 5.2, 5.3, 5.4, 5.5 are showed respectively the performed test num-
ber 1, 2 ,3 and 43.
From these graphics we can see that where the overlay logical network is
“switched off” (TEST 1) the convergence of all the motes to a common value
is much longer than the others cases. It took about 200 rounds of 10 sec
which corresponds to about 33 minutes. Instead TEST 2 and TEST 4 are
able to reach a common stable global clock value in only 50 cycle of 10
sec, so 8 minutes. The 75% less than TEST 1. Obviously, TEST 3, whose
overlay has the highest possible influence on the algorithm, is the fastest to
converge. It is able to do that in very few minutes, only 4 ones.
Thanks to these figures we can also observe that when the distributed ap-
proach is the only one that influences the network, this last one seems to

3All the values has node 1 as reference node. This choice are done in order to do an
impartial judgment of all the test. Obviously, for test with the overlay structure enabled,
a graph with values referred to the root node shows still better result. They are not
reported for correctness.

54

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

have an elastic behavior. As a matter of fact in the graph, after the phase
two and three of the test, the trends of the nodes look as they sway a little
and low frequencies oscillations are visible. So when a mote is out of syn-
chronization, and come into the network, introduces a little deviation into
its neighborhoods common global clock estimations. And these new effect
affects even the rest of the nodes. However in some minutes the algorithm
is able to reach a new synchronized stable state.
Finally we can even conclude that the more the hierarchical structure influ-
ence the hybrid configuration, the more the network results rigid and stable
under the synchronization point of view.

Figure 5.2: Global evolution of test number 1.

55

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

Figure 5.3: Global evolution of test number 2.

Figure 5.4: Global evolution of test number 3.

56

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

Figure 5.5: Global evolution of test number 4.

To understand which is the most precise network setup, we write a MAT-
LAB script that calculates the average of the maximum pairwise deviation
among nodes. The script is applied when the algorithm is running in a
stable state, so to the rounds between number 200 and 300.
The results are showed in Figure 5.6.

Figure 5.6: Averages of the maximum pairwise deviation among nodes per test.

All the configuration have obtained a good precision, and the values that
the script returns are summarized in Table 5.2.

57

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

TEST 1 TEST 2 TEST 3 TEST 4
Average 16.9000 10.5941 8.7879 8.6040

Table 5.2: Average values of the maximum pairwise deviation among nodes per
tests.

Even we thought that the maximum precision was achieved by the net-
work of TEST 3, we found that the best results came from TEST 4. Prob-
ably it is due to the fact that the little feedback a node grants to the others
nodes at a lower hierarchical level, permits to the network to be more united.
In other words the nodes have the capability to hold together but in any
case they remain very influenced by the root node.
For these reason we chose test number four as the best configuration, and
our project implement this synchronization setup. Furthermore some other
analysis were made on our choice.

5.4 Overlay-based algorithm vs. ATS

In order to study the performance of the algorithm when the synchroniza-
tion message interval change, a lot of experiments were made on a mesh of
3×3 nodes.
Every test had a duration of 30 minutes on average. Between one test and
another was changed only the rate of the synchronization packet forwarded
while all the other parameters were unchanged. The values of the synchro-
nization rate used were:

• 7 seconds (Figure A.1);

• 15 seconds (Figure A.2);

• 30 seconds (Figure A.3);

• 1 minute (Figure A.4);

• 1.5 minutes (Figure A.5);

• 2 minutes (Figure A.6);

• 4 minutes (Figure A.7);

58

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

• 6 minutes (Figure A.8);

• 8 minutes (Figure A.9);

• 12 minutes (Figure A.10);

For each test we obtain two graphs (see Appendix A): one represents the
differences of the global clock estimations of each node referred to the global
clock value estimated by node number 1, while the second chart shows the
maximum pairwise error of every query4.The network polling is made at a
10 seconds rate to gather the global clock estimation of every node.
Data collected from the tests were then analyzed to obtain the tendency of
the average of the maximum pairwise errors referenced to the synchroniza-
tion rate changes.
We analyze the configurations of TEST 4 and TEST 1 comparing them with
the ATS performance [8].
Table 5.3 summarizes the data obtained and they are also shown in Figure
5.7.

Algorithm ATS OC O-b
7 sec 1.6407 1.5924 1.2271
15 sec 1.9286 2.8765 1.7296
30 sec 1.8081 4.3071 3.3814
60 sec 1.7115 9.4618 5.3705
90 sec 2.0327 13.327 8.7632
120 sec 2.3539 15.1914 13.3145
240 sec 2.3383 19.1824 25.5862
360 sec 3.1204 54.6007 13.8398
480 sec 3.262 43.2209 26.5109
720 sec 4.1895 100.9182 18.8048

Table 5.3: Average of the maximum pairwise errors referenced to the synchro-
nization rate changes.

As we can see, while the ATS maximum pairwise error is always under a
value of 10 ticks, the only compensation of the offset has the greatest errors

4It is the maximum difference between the global time estimate values of each pair of
nodes.

59

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

Figure 5.7: Average of the maximum pairwise errors of ATS, OC and O-b ref-
erenced to the synchronization rate changes.

for low synchronization rates. This is due to the fact that the skew compen-
sation permits to the software clock of the different nodes to correct their
drift remaining closest to the value of the virtual reference clock. Instead
OC when the sync messages are rare, can’t obtain a good precision.
The Overlay-based (O-b) algorithm does not correct the skew either, but
thanks to its hierarchical nature has an error trend of about 20 ticks even
for high sync rates. In this case the drift of the clocks is less evident because
the offset is adjusted in a very precise manner.
Is very important to notice that it has no sense to concentrate our attention
on the low sync rates for algorithm like OC and O-b, because they don’t
tune the skew. But we can analyze more in detail the behaviors of the al-
gorithms for high frequencies of the sync packets.
In Figure 5.8, we show a particular of ATS and O-b limited to synchro-
nization rates higher than a minute. In particular, we observe that in some
cases O-b algorithm trend is under the ATS one. So, we want to understand
when O-b is more precise than Average TimeSync.

To do that, we found the equation of the regression line using the Ordinary

60

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

Figure 5.8: Zoom of the trends of ATS and O-b algorithms for high sync rates.

Least Squares (OLS) method. From [8] we have that the regression line of
ATS algorithm is:

y = 0.0034x+ 1.7106

The regression line of O-b (Figure 5.9) has the next equation:

y = 0.1061x− 0.0380

Solving the system of linear equation, we found the intersection of the two
lines. y = 0.0034x+ 1.7106

y = 0.1061x− 0.0380
⇒ P = (17.03, 1.77)

So for synchronization periods smaller than 17 sec, we can obtain a higher
precision with O-b than ATS (Figure 5.10). It is correct even because for
high values of the synchronization rate, offset compensation enables opti-
mum performance in spite of algorithm with skew compensation that are not
able to make a correct estimation of the clock drifts of neighboring nodes.
Finally as reported in [8], for low values of the sync frequency can be said
that the ATS algorithm behaves as if there was only the offset compensation.

61

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

Figure 5.9: Regression line of ATS and O-b algorithms.

Figure 5.10: Intersection of the two line of ATS and O-b algorithms.

For the implementation of a system that require the highest precision as
possible, O-b algorithm is not the best choice. ATS has better performance,
but is more weighty under the computational point of view.

62

CHAPTER 5. PERFORMANCE OF THE OVERLAY-BASED ALGORITHM

For the aims of this thesis, O-b is so the chosen option to implement. In
fact we want a very light synchronization method with a good (but not the
best) precision.
As last observation, while ATS has demonstrated to be an algorithm with a
good locality[8], for O-b is not so. In the chart of Figure 5.11 we has sum-
marized the average errors per hop of the estimation of the virtual clock
referenced to the root node estimate5.

Figure 5.11: Average error per hop of the estimation of the virtual clock refer-
enced to the root node estimate.

We can see that no locality is shown. Probably this is due to the great in-
fluence of the skew drift compared to the precision of the algorithm. On the
other hand, we can underline the importance of these values that demon-
strate how much is precise this algorithm even without using the skew com-
pensation. All the average errors per hop are under 2 ticks of difference
from the root node. An optimal result.

5The processed data are relative to TEST 4 - round from 100 to 350.

63

Chapter 6
Color sequence dissemination

The second part of the thesis concerns the design of a mechanism to permit
the dissemination of a particular color sequence on the entire wireless sen-
sor network. The fundamental peculiarity of this sequence is that it is not
known a priori, but is generated contextually to its diffusion.
As next step we develop a method to manage the information regarding
the colors to show, and the UART communication with the external RGB
device.
All the mechanisms described are designed to run on an already synchro-
nized WSN.

6.1 Sequence generation

The sequence that we want to compose is just a succession of colors that
should create a particular visual effect. The various color shades change at
a fixed rate that we call rc. So, assuming a finite sequence, we can formalize
it as

S = {Ct1
1 , Ct2

2 , Ct3
3 , ..., Ctn

n } with n finite number (6.1)

where Ci is the i -th color tone of S that must be shown at the instant ti.
The rate is therefore rc =

1
ti+1−ti

for i=1,...,n-1.
If we suppose that S is known a priori, is clear that is very trivial to create
the color therapy system. In fact is only necessary to create S off-line and put

65

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

it in the software code before the compilation and the motes programming
phases.
In our case, the list of colors is created run-time just as it must be shown.
For this reason is possible to try to communicate every single color Ci to
all the nodes of the network, but it is an inadequate method for our project
aims. As a matter of fact, if rc is high, the network traffic increases too much
and the collisions can prevent the communication. Now, if we suppose for
example that we entirely create S, and then we communicate it to all the
nodes of the WSN, we obtain also a bad solution.
So the communication process necessarily introduce a time leg between the
sequence generation and the instant in which S is displayed.
In order to limit this delay, the only reasonable possible way consists in the
fragmentation of the sequence. As soon as a portion is created, it must be
sent to all the nodes of the network. Finally they show the colors contained.
So if the sequence is divided into f parts, Equation 6.1 becomes

S = {S t̂1
1 , S

t̂2
2 , S

t̂2
3 , ..., S

t̂f
f } (6.2)

where S t̂i
i is the i -th fragment of S whose first color must be shown at the

instant t̂i.
Because all the S t̂i

i contain a fixed number m of colors, then:

S t̂i
i = {Ctl+1

l+1 , C
tl+2

l+2 , C
tl+3

l+3 , ..., C
tl+m

l+m } (6.3)

where l = [(i − 1)m]. We observe that thanks to this method, when we
communicate a sequence portions, we only need to know all the colors of
S t̂i
i , the value of t̂i, and the rate rc. In fact the instant tl+1 = t̂i and all the

others tl+2, ..., tl+m can be calculated in this way:

tl+j = t̂i +
1

rc
(j − 1) with j = 2, ...,m (6.4)

The next section wants to present how we can inform all the nodes of the
WSN about the entire color sequence1.

1a scheme of the behavior of the chromotherapy system is presented in Appendix D

66

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

6.2 The multi-hop sequence communication

Supposing to have a node M that knows all the S t̂i
i . If M sends all the S

portions into different packets through its radio interface, only its neighbors
can receive these information. In particular only the nodes that are located
the radio range of mote M. For these reasons, if the network is large, and
the M radio is not able to cover all the distances among nodes, we must use
a multi-hop communication approach to flood the network with S.
Thanks to this method, communication between M and another node is
carried out through a number of intermediate nodes whose function is to
relay information from one point to another.

Figure 6.1: Example of a multihop communication.

In fact as shown in Figure 6.1 the source node cannot send directly a
message to the destination, but the delivery is only possible passing through
a path along some repeater nodes (Ri).
So if M wants that S arrives to all the motes of the network, every node
that receive the packets must repeat it to its neighborhoods in order to for-
ward the information. With this multi-hop methods we can distribute the
sequence in all the WSN.
The flooding of the information must be done paying attention to one com-
mon threat: the network collapse. As a matter of fact, even if a node A
receives the same message T more than once, T must be forwarded from A
only ones. If this control is not implemented, the network communication
inexorably crashes.

67

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

6.3 The timing of the color sequence portions

Now is necessary to define two types of nodes with different tasks:

1. The master node: every implementation of our chromotherapy sys-
tem needs only one node of this type. It must be connected to a PC.
The PC is the real generator of the sequence, and composes a succes-
sion of hues at a rc rate. As soon as a Si portion is ready, the PC
sends it to the master via USB. The master immediately translate
the USB packet into a radio packet and calculate t̂i. The t̂i+1 − t̂i

value defines how much time is grant to the diffusion of that sequence
portion across the network. Finally send the radio message containing
S t̂i
i .

2. The slave-repeater nodes: their tasks are to receive the S t̂i
i , repeat

them to their neighborhoods, and show the sequence portions at the
correct instants.

The t̂i value of S t̂i
i is very important because it introduce a delay from the

generation instant of Si permitting the information diffusion. Now we want
to explain how it is calculated defining dTOT as the initial delay that a
master node must introduce in order to allow the sequence flooding on the
entire network. This time interval must be enough to permit that a Si can
reach all the motes in the network. In fact if we send a part of S with a
delay introduced from t̂i smaller than dTOT , necessarily the Si can’t arrive
in time to some motes, in particular to the motes further from the master.
After the calculation of the dTOT value, that is explained later, we can figure
out the t̂i as:

t̂i = (value of the global reference clock) + dTOT (6.5)

As just said, the t̂i is computed every time the master receives a new se-
quence portion via USB.
But now, how can we find the dTOT value?
We suppose that the communication from one hop to another (the next one)

68

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

do not takes always the same time2. If we call di the delay introduces by
the node at i hops further from the master, then:

di 6= dj with i 6= j (6.6)

Because every hop introduces a certain delay in the multi-hop communica-
tion, we can understand how long is the total delay dTOT necessary for the
diffusion of each S t̂i

i of our sequence S.
For sure we can say that

dTOT =
k∑

i=1

di (6.7)

with k number of hops of the WSN.
For Equation 6.1, every sequence portion contains a fixed number m of color
tones to show. So every part of S has a time duration, and hence a period,
defined as:

Tp =
1

rc
m (6.8)

in fact if a S t̂i
i contains m colors that must be shown at a rate rc, then

it correspond to a portion of S which is 1
rc
m instants of time long. This

value determines also the frequency of the packets (fp = 1
Tp

) containing the
various portions.
In the case that Equation 6.5 is not respected and

t̂i 6 (value of the global reference clock) + dTOT

some S t̂i
i could be lost by nodes placed far away from the master.

We want to underline that in an ideal system, where no delays are introduced
by the operating system of the nodes, we assert that formula 6.5 is sufficient,
but in a real implementation it is not correct. Even the OS delay introduced
for processing the sequence must be considered; so in a real implementation,
in order to obtain a high fidelity chromotherapy system, Equation 6.5 must

2Because of the structure of a WSN there can be more than one node in each hop.
For this reason when we speak about the value of the delay di we intend the average of
the delays introduced by the nodes at i hops further from the root.

69

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

become:

t̂i > (value of the global reference clock) + dTOT + dSO (6.9)

with dSO the delay introduces by the operating system to process the color
data contained in Si.

6.4 Further aspects of a real implementation

After we have implemented the solution presented in Section 6.3, we notice
that too much sequence portions were lost, even in the hops closer to the
master node. Probably this behavior is due to the high congestion made
into the communication media.

To solve this problem we added two additional features to our system:

• Every new S t̂i
i packet is transmitted two times by all the nodes. The

second retransmission takes place after a time tretrasm from the first
one.

• When a node must send a S t̂i
i for the first time, it waits a random

amount of millisecond (called twait) in order to reduce the collision
possibilities.

These two new properties invalidate Equation 6.7.
Because the twait is chosen randomly, the following equations refer to the
worst case.

6.4.1 Multi-hop dissemination with random start but

without retransmission

This configuration implements the multi-hop sequence dissemination as pre-
sented in Section 6.2, but every time a node must transmit a packet regard-
ing the color sequence S, it waits a random quantity of time before the
sending. The value of the wait is an arbitrary twait ∈ [0, tmax

wait).

70

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

Equation 6.7 becomes:

dTOT = tmax
waitk +

k∑
i=1

di (6.10)

6.4.2 Multi-hop dissemination with random start and

with retransmission

This configuration implements instead the multi-hop sequence dissemina-
tion with the random transmission instant explained in Subsection 6.4.1,
but adding a further capability: every sequence message is retransmitted
twice from each node. The repetition of the message occurs an amount
of time tretrasm after the first transmission. So in this manner we want to
reduce the packet loss and so we rise up the possibility that all the nodes
receive the entire sequence, even if collisions occur.
We want to focus out attention on the fact that the implemented com-
munication method of Section 6.2 is only a best-effort3 mechanism. So it
guarantees nothing about the correct flooding of sequence S on the entire
WSN. The retransmission “trick” tries to involve more security and reli-
ability under the color sequence distribution point of view. In this case
Equation 6.7 becomes:

dTOT = (tmax
wait + tretrasm)k +

k∑
i=1

di (6.11)

Its not easy to find out the optimal values for all the variables that we
have presented in our study because they depend from the network extension
and topology. But thanks to our tests performed on a real WSN (see chapter
8), we try to understand some other experimental aspects of the behavior
of our developed system.
Finally we want emphasize that equations 6.10 and 6.11 regard the worst

3Best effort delivery describes a network service in which the network does not provide
any guarantees that data is delivered or that a user is given a guaranteed quality of service
level or a certain priority. In a best effort network all users obtain best effort service,
meaning that they obtain unspecified variable bit rate and delivery time, depending on
the current traffic load [42].

71

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

case, so is possible to obtain a sufficiently reliable system even overstepping
a little these constraints. It depends on how much fidelity we want in our
chromotherapy system.

6.4.3 Size of the buffer containing the sequence por-

tions

As we have seen in Subsection 3.3.1, the architecture TinyOS/NESc is very
stiff. For this reason when we define the specification of our color therapy
system, we also must decide the size of the buffer containing the received
sequence portions. This value has to be fixed because no dynamic memory
allocation is possible with TinyOS. So, if we receive new Si while the buffer
is full, this message is dropped or replaces a part of S that was not still
shown through the RGB device.
In case of Tp > dTOT + dSO, we need only sizebuf = 2. One cell is for the
portion that the RGB device is scanning, while the other are used for the
next message that will arrive.
If for example we are shown portion Sx, we can receive and put into the
buffer a new portion Sx+1, but for sure, before we receive Sx+2 the RGB
device has finished the Sx scanning and so a cell is freed.
The example in Figure 6.2 show a case with dTOT + dSO = 2 (red stripes)
and Tp = 3 time units. The Tp value defines also the amount of time needed
to scan and show a sequence portion contained in a packet (gray stripes).
When a new portion arrive (downward arrow every 3 time units), there is
always a free cell.

Figure 6.2: Example of the buffer size with Tp > dTOT + dSO.

72

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

If instead Tp 6 dTOT + dSO, we have that

sizebuf =

⌈
dTOT + dSO

Tp

⌉
+ 1 (6.12)

The size of the buffer in necessary to “remember” all the sequence portions
when the dTOT + dSO dissemination time is a long interval greater than Tp.
Similarly to the previous case, Figure 6.3 show an example with dTOT +

dSO = 1.2 (red stripes) and Tp = 0.5 time units (gray stripes). So in this
case, from Equation 6.12, sizebuf = 4.

Figure 6.3: Example of the buffer size with Tp 6 dTOT + dSO.

6.5 Communication through the UART pins

6.5.1 Description and configuration of the interface

At a rc rate, all the colors of every S t̂i
i are sent to an external device. This

task are performed via UART interface. The Tmote Sky has two expansion
connectors and a pair of on-board jumpers that may configured so that ad-
ditional devices (analog sensors, LCD displays, and digital peripherals) may

73

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

be controlled by the Tmote Sky module [26]. In Figure 6.4, we presented
the expansion connector we used.

Figure 6.4: Functionality of the 10-pin expansion connectors. Alternative pin
uses are shown in gray.

Through the PIN number 4 (and the ground of PIN 9) we send out
the colors of the sequence S. In fact every colors of Equation 6.1 can be
represented by

Cti
i = {Ri, Gi, Bi} (6.13)

where Ri, Gi and Bi are respectively the value of the red, green and blue
components of Ci. One byte is used for each one of these components.
To send the three byte via UART we only transmit each individual bits in
a sequential fashion. At the destination, the RGB device re-assembles the
bits into complete bytes. Each byte can be sent as a start bit, an amount
of 8 data bits, an optional parity bit, and one or more stop bits. The start
bit (a 0 bit) signals the receiver that a new character is coming. The next
eight bit, represent the byte we want to send. Following the data bits may
be a parity bit that we don’t have used. The next one or two bits (in our
case two) are always in the mark (logic high, i.e., ‘1’) condition and called
the stop bit(s). They signal the receiver that the byte is completed. (Figure
6.5)

The motes send the data bits starting from the least significant bit (lsb).
The transmission of the data was realized using the Msp430Uart0C() com-
ponents. We have choose to use a baud rate set to 19200 bps, no parity bit,
and 2 stop bits.

74

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

Figure 6.5: Diagram of a serial byte encoding.

6.5.2 The arbitration of the USART of the MSP430

Why arbitration?

The arbitration is a method that permits the multiple usage of a resource to
different clients. In TinyOS there are three mechanisms (called abstractions)
for managing shared resources [31]:

• An abstraction is dedicated if it is a resource which a subsystem needs
exclusive access to at all times. In this class of resources, no sharing
policy is needed since only a single component ever requires use of the
resource. Examples of dedicated abstractions include interrupts.

• Virtual abstractions hide multiple clients from each other through
software virtualization. Every client of a virtualized resource inter-
acts with it as if it were a dedicated resource, with all virtualized
instances being multiplexed on top of a single underlying resource.
An example is the Timer resource. Because the virtualization is done
in software, there is no upper bound on the number of clients using the
abstraction, barring memory or efficiency constraints. Virtualization
generally provides a very simple interface to its clients. This simplicity
comes at the cost of reduced efficiency and an inability to precisely
control the underlying resource.

• A sheared resource is necessary when many clients need precise con-
trol of a resource. Clearly, they can not all have such control at the
same time: some degree of multiplexing is needed. A motivating ex-
ample of a shared resource is a bus.

In our chromotherapy project we need to access to both the radio (SPI
mode) and the UART (UART mode) interface switching between them at

75

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

a very fast frequency. This frequency depends from the rc value. But as we
can see in Figure 6.6 the two interfaces share the USART resources of the
MCU.

Figure 6.6: Functional block diagram, of the MCU MSP430F161x series.

More in detail, the MSP430F1611 microcontroller has two different US-
ART: USART0 and USART1. Both of them are sheared abstraction re-
source. The USART1 is used by the USB interface that is very useful in
debugging, so we choose to use USART0 to control the radio and the exter-
nal device.

Implementation aspects

As consequence of what we have presented until now, we understand that
when we use the UART, we can not access to the radio and vice-versa. But
in order to be able to receive all the parts of the color sequence S, a node
should listen the radio channel as much as possible. On the other hand,
a node that must show S at a color frequency for instance equal to 5Hz
(period 200ms), must access to the UART interface 5 times per second.
We have only a chance to implement:

76

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

• Request the USART0 only when we need to send a RGB color to the
external device, and then release it as soon as possible

• The radio must obtain the USART0 resource as much as possible when
is not used to send RGB colors.

But who does control and manage the resource access? This work is
made in TinyOS by a resource arbiter that is responsible for multiplexing
between the different clients of a shared resource, in this case the USART
of the MSP430. It determines which client has access to the resource at
which time. While a client holds a resource, it has complete and unfettered
control. Arbiters assume that clients are cooperative, only acquiring the re-
source when needed and holding on to it no longer than necessary. Clients
explicitly release resources: there is no way for an arbiter to forcibly reclaim
it. So it is very important that every time a client need to send a color via
UART, it must request the USART and immediately release it.
Furthermore, TinyOS offers even a helpful feature, that consist on the pos-
sibility to define a resource default owner. It is a specific client that needs to
be given control of the resource whenever no one else is using it. By default
the Radio is the default owner of the USART0 module.
In Figure 6.7 we have an example of how the USART0 resource is accessed
by the clients. The steps are now explained a little bit in detail:

1. The resource is normally owned by the default owner (gray stripes)

2. When the client C needs the resource USART0, asks it with the call
Resource.request() to the arbiter

3. When the resource is available for the client, the arbiter signals the
happening with an event and reserves the USART0 to C (red stripe).

4. The client can now use the resource, for instance to send a byte
through the UART interface

5. After the sending C must release the resource with the call Resource.re-
lease()

6. The USART0 is now used by the default owner

During the implementation, we had a lot of problems with the arbitration
that is not a trivial procedure to realize. Anyway we have always find out

77

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

solutions. For example, in order to communicate the Cti
i = {Ri, Gi, Bi} to

the external device, we must realize a “logic high” for the UART interface.
But every time we release the USART0 resource, the UART interface was
“turned off”, and so its logic became low. This situation was misunderstood
from the RGB device convinced in the receiving of a start bit of a new byte.
The mistake was resolved with two directives inserted in the initialization
of the components composing our code:

TOSH_MAKE_UTXD0_OUTPUT();

TOSH_SET_UTXD0_PIN();

Another problem happened when we sent the terns of bytes through the
UART pins. In fact, after each sending, TinyOS rises the event async event
void UartStream.sendDone(uint8_t buf, uint16_t len, error_t error){. .
.} in which we release the USART resource to the arbiter. But a mistake
occurs, in fact we have understood, using an oscilloscope connected to the
UART pins, that the third byte was not sent entirely4. To solve this prob-
lem we force a microsecond wait interval between the rising of the async
UartStream.sendDone event and the release of the USART. In this way all
the three bytes are sent entirely via the UART interface.

4It was reported to the tinyos-help community too, but there is not still solution.

78

CHAPTER 6. COLOR SEQUENCE DISSEMINATION

Figure 6.7: Schematic description of how a client obtain and release a resource.

79

Chapter 7
The software description

The system software consists in four NESc components which form the core
of the project, however was necessary to build an entire suite of other Java
applications to realize the synchronization of the nodes, the management
of the overlay logical network and the realization of the chromotherapy
effect. In fact the final implementation consist on a set of interdependent
programs. Furthermore the software package allow also the collection of
information necessary for monitoring and checking the correctness of the
network behavior.
All the code was written for mote Tmote Sky, but with some changes can
run even in other devices.
Thanks to the CBSE nature of NESc/TinyOS, we can present first the
synchronization software, and then the chromotherapy components. This
choice involve a clearer explanation of the code. The structure of the entire
system with all the element involved is presented in Appendix B.

7.1 The synchronization software

The architecture (Figure 7.1) of the synchronization code are made up by
three different actors:

• A node called poller, or base station, generates periodic radio requests
to control the different parameters of the synchronization protocol.
It must also receive the answers provided by each client. All these

81

CHAPTER 7. THE SOFTWARE DESCRIPTION

Figure 7.1: Synchronization actors.

information are sent via USB to a server. The poller has also to
receive the overlay structure configuration parameters from the server
and send this message to all the other nodes.

• An amount of nodes called Clients perform the synchronization pro-
tocol. The protocol was developed as an independent component that
provides synchronization services through an appropriate interface. In
each client run a software that allow:

– to receive the requests generated by the Poller

– to obtain the synchronization information by using the synchro-
nization component

– to transmit to the Poller the information collected

– to receive the overlay structure parameters and modify itself as
consequence.

• A PC running a Java application that has to retrieve, save and process
all the information received from the poller. It let to the user to change
the parameters modifying the overlay structure configuration.

7.1.1 Packets format

All the elements of the architecture described above communicate with each
other exchanging packets. Each NesC component has to define the structure
of the packets that want to handle. It is necessary to be able to identify the
correct incoming packets and to be able to access to their fields (listed in
the structure).
The written code uses a lot of different packets. So multiple services use
the same radio to communicate. TinyOS provides the Active Message (AM)
layer to multiplex access to the radio. The term “AM type” refers to the
field used for multiplexing. AM types are similar in function to the Ethernet

82

CHAPTER 7. THE SOFTWARE DESCRIPTION

frame type field, IP protocol field, and the UDP port in that all of them are
used to multiplex access to a communication service [43].
To define a packet we can use parametrized interface where the parameter
is the value of the field “AM Type” of the packet. An example is reported:

implementation {

...

components new AMSenderC(AM_BLINKTORADIO);

...

}

This permit to write comprehensible code mode easily. In fact we avoid to
use a single component for all the received and sent messages. In TinyOS
2.x, was introduced the standard message buffer message_t. The message_t
structure is defined in tostypesmessage.h as:

typedef nx_struct message_t {

nx_uint8_t header[sizeof(message_header_t)];

nx_uint8_t data[TOSH_DATA_LENGTH];

nx_uint8_t footer[sizeof(message_footer_t)];

nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t;

The headers, footers and metadata fields cannot be accessed directly but
through the appropriate interfaces. The data field of message_t stores the
packet payload. It is TOSH_DATA_LENGTH bytes long. The default size
is 28 bytes. A TinyOS application can redefine TOSH_DATA_LENGTH
at compile time with a command-line option to ncc:

-DTOSH_DATA_LENGTH=x

Now are presented and briefly explained the packets used for the synchro-
nization.

TimeSyncStart

typedef nx_struct TimeSyncStart{

83

CHAPTER 7. THE SOFTWARE DESCRIPTION

nx_uint8_t flag;

nx_uint8_t poller_rate;

nx_uint8_t sync_rate;

} TimeSyncStart;

This packet is sent from the server (user station) to the poller node and
allow the management of the clients. The fields are used to control the
poller that can:

• starts to send periodic requests to the clients at a poller_rate fre-
quency;

• suspends the polling procedure;

• initializes the synchronization of the nodes with period sync_rate;

• stops the synchronization activity;

• resets all the clients.

PollReqMsg

typedef nx_struct PollReqMsg{

nx_uint16_t pollNum;

nx_uint8_t flag;

nx_uint8_t field;

} PollReqMsg;

When the poller has to make a polling round, it increases the value of field
pollNum and sends this broadcast packet. Each client receives it sends back
a packet called PollRespMsg containing its own sync parameters. flag
and fields are used to issue commands to client nodes as for instance reset,
start or end the synchronization process.

PollRespMsg

typedef nx_struct PollRespMsg{

nx_uint16_t nodeId;

nx_uint16_t pollNum;

nx_uint32_t globalTime;

84

CHAPTER 7. THE SOFTWARE DESCRIPTION

nx_uint32_t tau;

nx_uint32_t tau_star;

nx_int32_t offset;

} PollRespMsg;

This is the response sent from the client to the poller after a PollReqMsg.
The package contains the ID of the sender, the number of the polling cycle
and a set of parameters defining the synchronization status of the node:

• globalTime is the sender estimate of the global time

• tau is the time-stamp of the local clock referred to the PollReqMsg

reception

• tau_star is local time-stamp relative to the last reception of a SyncMsg

• offset is the estimate of the virtual reference clock offset.

SyncMsg

typedef nx_struct SyncMsg{

nx_uint16_t nodeId;

nx_uint16_t seqNum;

nx_uint32_t tau;

nx_uint32_t tau_star;

nx_int32_t o_hat;

nx_bool isSync;

nx_int8_t hop;

} SyncMsg;

It is the synchronization packet exchanged among the client nodes. Each
node sends one of them every sync_rate seconds. All the nodes start to
send these messages at a random instant. For this reason each mote sends
this kind of packet in a different moment from each other. The information
contained are:

• nodeId ID of the node

• seqnum sequential number of the SyncMsg

• tau local time value at the sending instant

85

CHAPTER 7. THE SOFTWARE DESCRIPTION

• tau_star local clock value of the last reception of a SyncMsg from
another node

• o_hat estimate of the virtual clock offset

• isSync Boolean value that indicates whether the node is synchronized
or not.

• hop number of hops far from the root in the overlay structure

OverlayMsg

typedef nx_struct OverlayMsg{

nx_bool structDip;

nx_bool p2pFeed;

nx_uint8_t rootID;

nx_uint8_t gamma;

nx_uint8_t delta;

}OverlayMsg;

This packets is sent from the poller to the clients in order to modify the
setup of the overlay structure. In fact thanks to this message the poller can
elect a new root and modify all the parameters of Equation 4.8. Furthermore
is able to decide if the network must be dependent from the hierarchy or
from the Fully Distributed configuration according to Subsection 4.3.2. The
meanings of the fields are:

• structDip if it is set to TRUE the clients became overlay dependent

• p2pFeed if it is set to TRUE the clients start to consider time infor-
mation received from node further from the root than itself according
to the other parameters.

• rootID this field is used to elect a new root or to remove the old one
in the overlay structure.

• gamma this value correspond to the γ parameter of Equation 4.8

• delta this value correspond to the δ parameter of Equation 4.8

86

CHAPTER 7. THE SOFTWARE DESCRIPTION

7.1.2 Poller node

The code of the poller is developed in accordance with CBSE. The com-
ponent PollerAppC wires together the different interfaces. The module
PollerC defines the management program of the node.
The main components used in PollerAppC are:

• MainC is the main control component necessary in any TinyOS pro-
gram. It interact with the OS boot sequence

• LedsC used to control the LEDs

• TimerMilliC allows the creation of instances of a timer for managing
the node, the polling cycle and the switching on (and off) of the LEDs

• CC2420TimeSyncMessageC is used to control the radio

• SerialActiveMessageC component to control the USB communica-
tion

• PollerC component to manage the communication with the client
nodes

Tasks of the poller

The most important task of the application is to act as bridge between the
client nodes (that synchronize themselves) and the server (that stores data).
More in detail the other poller tasks are:

• DATA RETRIEVAL: The module PollerC handles data collec-
tion requests to send to the client nodes. These requests are sent at
a fixed rate (poller_rate). Every time it sends a polling request, the
value of the field pollnum is increased. In fact this attribute is an iden-
tifier of the polling session. This feature of the poller can be turned
on and off with the Java interface.

• SYNCHRONIZATION MANAGEMENT: Using PollReqMsg

message, we can manage the synchronization protocol of the clients.
For example, is possible to force a global reset of the synchronization
procedure.

• OVERLAY MANAGEMENT: The packet OverlayMsg (received
from the server) is used to inform all the clients that the setup of the

87

CHAPTER 7. THE SOFTWARE DESCRIPTION

hierarchical structure has to be change. Furthermore the poller is able
to remove the root from the WSN or to elect a new one1.

• DATA COLLECTION AND FORWARDING: The poller is
able to receive all the PollRespMsg and SyncMsg packets from
the clients. All received packets are forwarded to the server via the
USB port. Because of the large number of messages to store and
forward, the poller implements a queue where incoming packets are
buffered. It was also implemented a special task called uartSendTask
which frees the queue by sending these messages to the server.

An example of the data collecting is shown in Figure 7.2.

Figure 7.2: Working principle of data collection. 1. The Poller sends broadcast
request for data collection (PollReqMsg). 2. Each client receives
the request and responds to the poller (PolRespMsg). 3. The data
retrieved from the poller are forwarded to the server.

7.1.3 Client node

The client implementation is totally different from the poller one. The soft-
ware is made up of a configuration component called ClientAppC, and a

1This procedure is also possible through the pressing of the user button of a client
node (Figure 3.1). In our implementation, only if there is not a root in the network a
node accepts an election command. This control is made to avoid the election of two
different roots.

88

CHAPTER 7. THE SOFTWARE DESCRIPTION

module ClientC that defines the program features. In addition to standard
components, such as MainC, LedsC, TimerMilliC, CC2420TimeSyncMes-

sageC, are used also:

• OverlayBasedC which is the heart of the O-b synchronization pro-
tocol

• RtLightControlC which allows to control the generation, the diffu-
sion and the visualization of the color sequence

• ClientC which is the management component of the node

Tasks of the client

The client initializes and communicates with the component Overlay-

BasedC through the interfaces provided. Here are described some impor-
tant functions of the client:

• POLLING REQUEST MANAGEMENT When is received a
PollReqMsg, the client calculates the arrival instant according to
the local clock. Then it check the flag field value to understand if is
necessary to start, stop or reset the synchronization process. Further-
more the field value of PollReqMsg is checked to verify if time_sync
interval is changed. Afterwards the node starts the construction of the
package PollRespMsg filling the fields with the values returned by
the synchronization component.

• OVERLAY MANAGEMENT This task is based on a single byte
of the SyncMsg packet: the hop field. Every node has a local vari-
able lh containing its distance (in hop) from the root. When a node
receives this information, and the synchronization procedure is acti-
vated, it compares lh with the received hop field value. Then the
possible actions are (see Subsection 4.3.2 and 4.3.4):

1. construct the overlay infrastructure

2. identify a topology change that can be:

– root failures

– space movements of some network nodes

3. enter into the standby period

89

CHAPTER 7. THE SOFTWARE DESCRIPTION

• SYNCHRONIZATION The synchronization is accomplished by
OverlayBasedC component. The process is based on the infor-
mation contained in the SyncMsg packet. The OverlayBasedC

component performs the sending/receiving of the SyncMsg messages,
processes them, and provides a set of interfaces offering the synchro-
nization service.
Each node sends periodically a sync packet to its neighborhoods.
When one node receives a SyncMsg can consider or drop it depending
on the sender ID. This action is performed to force a particular net-
work topology2. Afterwards was checked the integrity of the message
and the data contained (as explained in detail in Subsection 7.1.5).
If the packets pass all the controls, the data contained is processed.
So now the nodes can update the synchronization parameters as for
instance the offset estimate.

Interfaces of OverlayBasedC component

The interfaces provided are:
Init: is a standard interface used in TinyOS that allows the initialization of a
component calling the command error_t init(). In this case the initialization
simply sets the values of all the variables to 0.
StdControl: is a standard interface used in TinyOS to switch on and off
the components. These operations are possible through calls to commands
error_t start() and error_t stop().
GlobalTime: This interface was defined in the implementation of the FTSP
algorithm of the TinyOS repositories. It is defined as follows:

interface GlobalTime{

async command uint32_t getLocalTime();

async command uint32_t getGlobalTime(uint32_t time);

}

where
2It is necessary because in our experiments we want to test a mesh network. But in

the testbed all network nodes can communicate directly with each other

90

CHAPTER 7. THE SOFTWARE DESCRIPTION

• GetLocalTime() returns the local time of the node.

• getGlobalTime(time) returns an estimate of the virtual reference clock
converting the time parameter.

TimeSyncInfo: is a control interface that provides the values of variables of
the O-b algorithm.

interface TimeSyncInfo{

async command bool getStatus();

async command int32_t getOffset();

async command uint32_t getGTime(uint32_t);

async command uint32_t getLTime();

async command uint8_t getSeqNum();

async command uint32_t getTauStar();

async command uint32_t getTau();

async command uint8_t getHop();

}

We describe briefly the meanings of the commands:

• GetStatus() returns TRUE if the node is Synchronized, FALSE oth-
erwise

• getOffset() returns the offset estimate of the node

• getGTime(time) returns the virtual clock estimate referred to the time
parameter

• getLTime() returns the local clock value of the node

• getSeqNum() returns synchronization session identifier of the node

• getTauStar() returns the value of the tau_star variable

• getTau() returns the value of the tau variable

• getHop() returns the number of hops between the node and the root

syncer: this last interface allows the synchronization management.

interface Syncer

{

command bool start();

91

CHAPTER 7. THE SOFTWARE DESCRIPTION

command bool stop();

command bool isRunning();

command error_t reset();

command error_t setSyncRateValue(uint8_t newRateValue);

command bool isSync();

}

The commands explanation follows:

• start() starts the periodic sending of the SyncMsg and allows to the
node to receive the external synchronization messages

• stop() stops the sending and the reception of the SyncMsg packets

• isRunning() returns TRUE if the node is sending its SyncMsgs,
FALSE otherwise

• reset() restarts the synchronization process and resets the variables of
the protocol

• setSyncRateValue(newRateValue) sets the rate of the SyncMsg mes-
sages to the newRateValue

• isSync() returns TRUE if the node has start the synchronization pro-
cess (not only the sending of the SyncMsg packets), FALSE otherwise

7.1.4 Server station

This station is connected via USB to the poller. The server executes a Java
software to collect and display the information obtained from the poller.
TinyOS offers a set of features to process received data from a node through
serial communication. In fact this OS makes this process easier providing
tools for automatically generating message objects from packet descriptions.
Rather than parse packet formats manually, we can use the Message Inter-
face Generator (MIG) tool to build a Java, Python, or C interface to the
message structure. Given a sequence of bytes, the MIG-generated code will
automatically parse each of the fields in the packet, and it provides a set of
standard accessors and mutators for printing out received packets or gener-
ating new ones.
TinyOS also provides a Java application called oscilliscope that collects

92

CHAPTER 7. THE SOFTWARE DESCRIPTION

and displays data received from sensors. This application was modified to
manage the poller information. It creates one text file containing all the
information received from each node. In addition to the text file is saved
also a mat one that allow us to process data directly in MATLAB. The
Java application provides a simple Graphical User Interface (GUI) with
buttons to manage the behavior of the nodes. So we can for instance setup
the configuration of the overlay structure, elect a new root or manage the
synchronization procedure. A rough graph of the main parameters of the
synchronization algorithm is also shown as we can see in Figure 7.3.

Figure 7.3: Developed Java application which controls the synchronization pro-
tocol.

7.1.5 Code porting

The implementation of ATS from which we start to develop our system, was
written in TinyOS version 2.0.2. In this moment the last tinyOS version
is 2.1.1. A first problem found in our work was to be able to compile the
ATS code written from Fiorentin’s thesis [8]. In fact some very important
functionality offered by the old version are now deprecated.
Version 2.0.2 provided particular procedures to use MAC-layer time-stamp
when messages are received and sent. The system had a mechanism that
was able to report the event Start Frame Delimiter (SFD) and record the

93

CHAPTER 7. THE SOFTWARE DESCRIPTION

relative local time. This event corresponds to the transmission/reception
of the first bit of an input/output packet. So for each message M received
from a node, was possible to detect the local time when the first bit of the
message was received. This value of time, called time-stamp, was stored au-
tomatically in a 16-bit field of the arrived message. Instead when a message
was sent, tinyOS 2.0.2 offered the opportunity to perform a piece of code
when the SFD event occurred. In this situation Fiorentin’s code changed
a field of the message to send, and in particular it included in the trans-
mitted message the time value correspondent to the generation of the SFD
event. This method was adopt to obtain the MAC time-stamp of inbound
and outbound messages.
The developers of TinyOS understand that the SFD interrupt handler was
exposed by the radio stack as an asynchronous event. This solution was
problematic, because higher-level application components that wired the
interface containing this event could break the timing of radio stack due to
excessive computation in interrupt context. So with version 2.1.1 was intro-
duced a new message component: the CC2420TimeSyncMessageC. This last
one, through the interface TimeSyncPacket, provides two new command:

• eventTime: This command should be called by the receiver of a mes-
sage. The time of the synchronization event3 is returned as expressed
in the local clock of the caller. This command must be called only on
the receiver side and only for messages transmitted via the TimeSync-
Send4 interface. It is recommended that this command be called from
the receive event handler. In other words this command permits to
obtain the values of the local clocks of the sender and receiver referred
to a particular event.

• isValid: It returns a boolean to be aware if the value returned from
the eventTime command is trusted. Under certain circumstances the
received message cannot be properly time stamped, so the sender-
receiver synchronization cannot be finished on the receiver side. In
this case, this command returns FALSE. This command must be called

3It is a parameter of the packet which holds the time of some event as expressed in
the local clock of the sender.

4Even this interface is provided by the CC2420TimeSyncMessageC component.

94

CHAPTER 7. THE SOFTWARE DESCRIPTION

only on the receiver side and only for messages transmitted via the
TimeSyncSend interface. It is recommended that this command be
called from the receive event handler.

With these commands we can benefit of the MAC time-stamp without
the control of the SFD event as was in the previous version of the operating
system. TinyOS 2.1.1 became even more stable and reliable under this point
of view.
Furthermore, thanks to the new component CC2420TimeSyncMessageC, in
our implementation of OC we removed from the synchronization message
structure also a superfluous Byte used to menage the time-stamp informa-
tion.
After some tests made when the entire chromotherapy project was imple-
mented, we found that occasionally the isValid command does not work
properly. So even if it return the TRUE value, saying that the received
packet is ok, it was not so. The packet was probably malformed and the
value returned from the eventTime command was abnormal. In this situa-
tion, the node which is processing the packet, is not synchronized any more.
In order to solve this problem5 a simple control is made even if the isValid
command return positive: the value returned by the eventTime command
can’t differ too much from the local clock value, else the packet is ignored.
This check drops the abnormal values returned from the eventTime com-
mand.

7.2 The color sequence control software

The architecture of this part of the software (Figure 7.4) is similar to the
synchronization one. Anyway we must underline that the master node is
totally independent from the root one. So they could be two different nodes
connected to two different stations. This choice was done to improve the
modularity and the flexibility of the entire system.
The component that realize the chromotherapy effect must be used only on
a synchronized network.

5It was reported to the tinyos-help community too, but there is not still solution.

95

CHAPTER 7. THE SOFTWARE DESCRIPTION

In Appendix C is shown an example of how the color sequence is diffused
in the entire WSN.

Figure 7.4: Architecture of the colors sequence management software.

Grouping of nodes

The implemented chromotherapy systems as designed are able to manage
different groups on nodes. So for every master is possible to control only
nodes that belong to a specific group. This choice permit the coexistence in
the same place of different chromotherapy systems that are able to operate
without interferences.
The only constraint is that the groups are created during the compilation
and installation phases. In fact is more secure to avoid run-time changes to
the groups configuration.
The specifications of the thesis project required the possibility to create
16777216 different pairs master-nodes. The first solution to manage a so
great number of groups was to insert in each sent message a 3 Bytes field
used as “mask”. All the nodes that have the same value into this field
belong to the same group. Thanks to this mechanism each node considers
only messages that have a determined mask.
Afterwards we found another alternative for the grouping. We are able to
reduce from 3 to 2 the bytes of the field added to the packets. The third byte
was replaced by the DEFAULT_LOCAL_GROUP byte. TinyOS messages
contain a group ID in the header, which allows multiple distinct groups of
motes to share the same radio channel. The default group ID is “0x7D”
but is possible to set the group ID by defining the preprocessor symbol
DEFAULT_LOCAL_GROUP. So the concatenation of this byte with the
2 bytes field is used to group 16777216 different sets of motes.

96

CHAPTER 7. THE SOFTWARE DESCRIPTION

7.2.1 Packets format

UARTrtLightMsg

typedef nx_struct UARTrtLightMsg{

nx_uint16_t delay;

nx_uint32_t roundNumber;

nx_uint8_t sampleNumber;

nx_uint8_t sampleRate;

nx_uint8_t seqRedColor[20];

nx_uint8_t seqGrnColor[20];

nx_uint8_t seqBluColor[20];

}UARTrtLightMsg;

This message is sent from the workstation (user station) to the master node.
It contains all the information about the sequence portion still generated.
When the master receives these information, it copies all sequence data into
a new radio message. Afterwards was calculated and inserted into the radio
packet even the instant in which the portion must be displayed by the other
motes. The computation of this value is explained in Section 6.3. Finally
the new message is sent through the CC2420 radio chip. The information
contained in the UARTrtLightMsg are:

• delay: this field contains the value of the initial delay (Equation
6.9) chosen by the operator

• roundNumber: it contains the number of the sequence part. It is
used to identify the portion. Thanks to this field a mote can under-
stand if it has already receive this portion or not

• sampleNumber: it is the number of valid colors contained in the
packets

• sampleRate: it is the value of the variable rc presented in Section
6.1

• seqRedColor[20]: the buffer containing the RED bytes

• seqGrnColor[20]: the buffer containing the GREEN bytes

• seqBluColor[20]: the buffer containing the BLUE bytes

97

CHAPTER 7. THE SOFTWARE DESCRIPTION

RtLightMsg

typedef nx_struct RtLightMsg{

nx_uint16_t groupMask;

nx_uint8_t nodeId;

nx_uint32_t roundNumber;

nx_uint32_t turnOnTime;

nx_uint8_t sampleNumber;

nx_uint8_t sampleRate;

nx_uint8_t seqRedColor[20];

nx_uint8_t seqGrnColor[20];

nx_uint8_t seqBluColor[20];

}RtLightMsg;

The master node uses this packets to put inside all the information received
via USB from the station. Then master fills the field turnOnTime with t̂i

according to Equation 6.9. Afterwards the message was sent to the slaves-
repeaters nodes. They retransmit the message to their neighborhoods as
soon as possible. Finally they process the message showing at the right
time the colors contained.
The fields explanation follows:

• groupMask: they are 2 bytes used to form the mask

• nodeId: the ID of the sender. This information is used only to force
a specific topology to the WSN during the testing phase

• turnOnTime: this is the global time at which a mote must start to
display the sequence portion contained

The others fields have the same meanings of the UARTrtLightMsg packet.
Both a master and a slave-repeater node are based on the same compo-

nent RtLightControlM. Now we explain briefly their tasks and then we
present the component in detail.

7.2.2 Master node

This node must be connected to the PC, this is the only topology constraint
of the system. All the other nodes can be anywhere. Furthermore is impor-

98

CHAPTER 7. THE SOFTWARE DESCRIPTION

tant to underline another crucial aspect: this node must be synchronized
with the rest of the network (for the poller node it was not).
The master has the task to inject in the network the RGB sequence. It
brings the USB UARTrtLightMsg message, copies all the sequence data
into a new RtLightMsg and calculates the global time at which the WSN
must start to show the sequence part. After the filling of the turnOnTime
field, the RtLightMsg message is sent through the radio channel.
So the reliability of this type of node becomes essential. In the chosen ar-
chitecture is quite simple to find node with abnormal comportment. This
is due to the fact that Tmote Sky is a circuit board without any protection
against Electrostatic Discharge (EDS). In order to protect and insulate the
motes we should cover or built a chassis around each one. Without this
expedient the master node can be considered a possible weak point of the
network.
The master node software is very similar to the slave-repeater one. It is in-
stalled on the mote with the special compiler directive #define MASTER.
This command incorporates in the master nodes also the components needed
to communicate with the workstation.

7.2.3 Slave-repeater node

This kind of nodes consider only messages with a predefined groupMask

value. As soon as they receive a RtLightMsg message they also control
the roundNumber field. If they have just received at least one time that se-
quence portion, they drop it. This control is important to ensure a correct
flooding of the information avoiding a network crash. If the message is new,
they read the turnOnTime value. They wait (using a timer) this instant
and then they start to send through the UART pins the colors data con-
tained in the RGB buffers. These colors are received by an external RGB
LED device. The slaves for each received RtLightMsg send via UART an
amount of sampleNumber RGB colors at a sampleRate rate.
The slaves after a reception of a RtLightMsg, repeat as soon as possible
this packet to the others nodes placed in the next network hop.

99

CHAPTER 7. THE SOFTWARE DESCRIPTION

RtLightControlC component

This component realizes the chromotherapy effect across the entire WSN.
It provides the Init and the StdControl interfaces. It also offers the
interface Msp430UartConfigure that permits the configuration of the
USART resource used when a client must send bytes to the external device.
On the other hand it uses interfaces from many others different compo-
nents. In fact it uses three Timers and the on-board Leds. Through
the CC2420TimeSyncMessageC our RtLightControlC component is
able to communicate via radio. The component Msp430Uart0C() permits
the UART communication. RtLightControlC also uses the Overlay-

BasedC component to have time information. Finally it uses the Seri-

alActiveMessageC to let to the master to receive USB messages.

7.2.4 Workstation

This part of the system is the interface offered to the user in order to man-
age the colors sequence. A Java application creates a random color sequence
that is broken run-time into pieces. Every part is sent as soon as possible
from the station to the master via USB.
The software was implemented using the swing libraries. Swing is the pri-
mary Java GUI widget toolkit. It is part of Sun Microsystems’ Java Foun-
dation Classes an Application Programming Interface (API) for providing a
graphical user interface for Java programs. Swing was developed to provide
a more sophisticated set of GUI components than the earlier Abstract Win-
dow Toolkit. Swing provides a native look and feel that emulates the look
and feel of several platforms, and also supports a pluggable look and feel
that allows applications to have a look and feel unrelated to the underlying
platform.
Thanks to our Java software we are able to show some different visual effect
across the WSN or to set a specific color (chosen from the user) in all the
RGB devices. Every color can be composed configuring the value of the
red, green and blue byte. Every one has 255 possible values. The GUI
application is presented in Figure 7.5.

100

CHAPTER 7. THE SOFTWARE DESCRIPTION

Figure 7.5: Developed Java application which controls the colors sequence of the
chromotherapy system.

101

Chapter 8
Testing of the developed system

The second experimental part of our work was made with the aim to observe
the different comportments of the system under various workloads. All tests
were performed on nodes Tmote Sky of Moteiv.

8.1 Performed tests

In order to understand the behavior of the system, every time the master
sends a new RtLightMsg message containing a color sequence part, we
gathered from each slave-repeater mote these information:

• The number of the received sequence portion. It is used to understand
how many packets are lost from each mote.

• The local time instant of the message reception, called r instant.

• The global time estimation of r, called n instant.

• The global time instant at which the motes must start to show the
portion contained, called t instant.

• The difference t− n, called d.

• The number of millisecond that a node wait before the message repeti-
tion, called w value. Its aim is to reduce the collision of the messages.
This value is retrieved to understand more precisely the delay intro-
duced from each hop in the flooding process.

• The local time instant referred to the call TimeSyncAMSend.send()

103

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

of the repetition of the RtLightMsg, called s instant.

• The local time instant of the TimeSyncAMSend.sendDone event re-
ferred to the repetition, called sd instant. The difference sd−s is used
to evaluate the responsiveness of the mote.

• The local clock value referred to the processing instant of the first
color of the sequence part, called d1. The difference d1 − (r + d) is
used to evaluate the precision of the mote.

We collect the data thanks to the TinyOS printf library. It provides a
terminal printing functionality to TinyOS applications through motes con-
nected to a PC via their serial interface. Messages are printed by calling
printf commands using a familiar syntax borrowed from the C programming
language. An example of the obtained files follows:

5 r 54964499 t 55157523 n 55098447 d 59076 w 23 s 54965896 sd 54966714 d1 55023557

6 r 55099191 t 55291013 n 55233138 d 57875 w 20 s 55100454 sd 55101037 d1 55157030

7 r 55231549 t 55424050 n 55365496 d 58554 w 23 s 55232867 sd 55233580 d1 55290053

8 r 55363152 t 55556850 n 55497099 d 59751 w 7 s 55364212 sd 55365054 d1 55422886

9 r 55496163 t 55689849 n 55630110 d 59739 w 25 s 55497604 sd 55498605 d1 55555877

10 r 55630173 t 55822848 n 55764120 d 58728 w 26 s 55631641 sd 55632642 d1 55688870

11 r 55762786 t 55955584 n 55896732 d 58852 w 2 s 55763686 sd 55764528 d1 55821637

12 r 55898345 t 56089839 n 56032291 d 57548 w 16 s 55899515 sd 55900112 d1 55955878

13 r 56030225 t 56222632 n 56164171 d 58461 w 4 s 56031135 sd 56032182 d1 56088645

14 r 56162492 t 56355412 n 56296437 d 58975 w 21 s 56163707 sd 56164521 d1 56221414

The files was then processed with a Java parser that creates the relative
Comma-Separated Values (CSV)-like files. This step was necessary in or-
der to import easily the files in MATLAB. An example of the file obtained is:

5;54964499;55157523;55098447;59076;23;54965896;54966714;55023557

6;55099191;55291013;55233138;57875;20;55100454;55101037;55157030

7;55231549;55424050;55365496;58554;23;55232867;55233580;55290053

8;55363152;55556850;55497099;59751;7;55364212;55365054;55422886

9;55496163;55689849;55630110;59739;25;55497604;55498605;55555877

10;55630173;55822848;55764120;58728;26;55631641;55632642;55688870

11;55762786;55955584;55896732;58852;2;55763686;55764528;55821637

12;55898345;56089839;56032291;57548;16;55899515;55900112;55955878

13;56030225;56222632;56164171;58461;4;56031135;56032182;56088645

14;56162492;56355412;56296437;58975;21;56163707;56164521;56221414

104

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

The performed tests are several. For each experiment the parameters of
the UARTrtLightMsg (Subsection 7.2.1) are set as summarized in Table
8.1.

Colors per Color period Initial Delay
packet (Nc) (Tc) [ms] (dTOT) [ms]

test 1 10 100 700
test 2 10 150 750
test 3 10 200 1000
test 4 15 100 750
test 5 15 150 1100
test 6 15 200 1500
test 7 20 100 1000
test 8 20 150 1500
test 9 20 200 2000
test 10 20 300 500
test 11 20 300 1000
test 12 20 300 2000
test 13 20 400 2000

Table 8.1: Parameters setups of the test performed on the developed chromother-
apy system.

All the 13 tests was done on 4 different chromotherapy system network
configurations:

1. Linear array network without (W/O) the second retransmission (Sec-
tion 6.4) of the sequence portion messages

2. Linear array network with (W) the second retransmission of the se-
quence portion messages

3. Grid network without the second retransmission of the sequence por-
tion messages

4. Grid network with the second retransmission of the sequence portion
messages.

The Linear array network is composed by only 11 motes (master plus one
node per hop). The master node is placed in the head of the array. Instead

105

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

the 35 motes of the grid network deployed as the testbed presented in Section
5.2. The master node in this case is the number 1 of Figure 5.1. The number
of nodes per hops is hence:

Hop 1 2 3 4 5 6 7 8 9 10
Number of nodes 2 3 4 5 5 5 4 3 2 1

Table 8.2: Number of nodes per hop in the grid network.

We collect the data from only one node belonging to each hop. The node
is randomly chosen because we suppose that the nodes at the same number
of hops far from the master have similar behaviors.

8.2 Packet loss

8.2.1 Linear Array

We have investigated if the second retransmission of the sequence portion
message brings benefits to our system or not. We analyze test 91 (Nc = 20,
Tc = 200, dTOT = 2000) on a linear array network without retransmission.
We have seen that some packets were lost starting from the second hop
(Figure 8.1). This poor performance is compared to the result obtained in
the same linear array with the second retransmission of the sequence part
messages. As shown in Table 8.3, the second experiment has no packet loss.

It is important to notice that even in the linear array without retrans-
mission, some hops do not loose any packet. For example the 8-th and 9-th
hops doesn’t process 19 packets as the 7-th hop. But the loss is introduced
by the 7-th one.

1This choice was made because our experiments have confirmed that test 9 parameters
configuration is generally not problematic for the chromotherapy system.

106

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Figure 8.1: Percentages of lost packets per hop on a linear array without the
second retransmission of the sequence portions.

L.A. W/O retransm. L.A. with retransm.
hop 1 0 (0%) 0 (0%)
hop 2 1 (0.22%) 0 (0%)
hop 3 8 (1.74%) 0 (0%)
hop 4 17 (3.70%) 0 (0%)
hop 5 18 (3.92%) 0 (0%)
hop 6 18 (3.92%) 0 (0%)
hop 7 19 (4.14%) 0 (0%)
hop 8 19 (4.14%) 0 (0%)
hop 9 19 (4.14%) 0 (0%)
hop 10 23 (5.01%) 0 (0%)

Table 8.3: Lost packets on a linear array with and without the second retrans-
mission of the sequence parts.

107

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Afterwards we studied the number of lost packets of test 10 (Nc = 20,
Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300, dTOT = 1000) and 12
(Nc = 20, Tc = 300, dTOT = 2000) on a linear array with retransmission.
These three setups have all 20 colors per packet, a color period of 300 ms,
but different initial delays introduced from the master. Test 10 has only
500 ms of delay, while test 11 has 1 second and test 12 has 2 seconds. The
obtained results are presented in Table 8.4.

test 10 test 11 test 12
hop 1 0 (0%) 0 (0%) 0 (0%)
hop 2 0 (0%) 0 (0%) 0 (0%)
hop 3 0 (0%) 0 (0%) 0 (0%)
hop 4 0 (0%) 0 (0%) 0 (0%)
hop 5 0 (0%) 0 (0%) 0 (0%)
hop 6 0 (0%) 0 (0%) 0 (0%)
hop 7 0 (0%) 0 (0%) 0 (0%)
hop 8 44 (9.22%) 0 (0%) 0 (0%)
hop 9 396 (83.02%) 0 (0%) 0 (0%)
hop 10 477 (100.00%) 0 (0%) 0 (0%)

Table 8.4: Lost packets on a linear array with retransmission. Comparison of
test 10 (Nc = 20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300,
dTOT = 1000) and 12 (Nc = 20, Tc = 300, dTOT = 2000).

The experiments demonstrate that in a reliable network configuration
where no collision can occur, the length of the initial delay is fundamental
to grant the sequence flooding in all the extension of the network. If this
value is too small, the sequence messages can not reach in time the further
hops. In fact for test 10 the mote at the 10-th hop does not receive any
RtLightMsg packet.

8.2.2 Grid network

Then we studied the packet loss in the grid network of 35 motes too. In
this topology we have more than one node per hop, so collisions can take
place. This situation generally involve a greater packet loss in respect to a
network where no collision can occur.

108

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

First of all we compare the test 9 (Nc = 20, Tc = 200, dTOT = 2000) results
obtained first in a grid without the retransmission of the sequence portions,
and second in a grid network that implements this feature. The result are
summarize in Table 8.5.

Grid W/O retransm. Grid with retransm.
hop 1 0 (0%) 0 (0%)
hop 2 8 (1.75%) 0 (0%)
hop 3 9 (1.97%) 0 (0%)
hop 4 10 (2.19%) 0 (0%)
hop 5 10 (2.19%) 2 (0.43%)
hop 6 11 (2.40%) 3 (0.64%)
hop 7 12 (2.63%) 4 (0.86%)
hop 8 20 (4.38%) 6 (1.29%)
hop 9 24 (5.25%) 13 (2.80%)
hop 10 30 (6.56%) 16 (3.44%)

Table 8.5: Lost packets on a grid network with and without the second retrans-
mission of the sequence parts.

Figure 8.2: Percentage of lost packets per hop on a grid network with and without
the second retransmission of the sequence portions.

In Figure 8.2 were displayed the behaviors of the two experiments and
demonstrates that the retransmission involve a more reliable sequence flood-
ing process. So hereafter we abandon the implementations without the re-

109

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

transmission of the sequence messages.

We can also observe that our system is able to perform a complete se-
quence displaying at 4 hops further from the root. As reported in the Tmote
Sky datasheet [26], the antenna of this kind of devices may attain at about
50-meter range indoors. So if we are able to reach the 4-th hop without
sequence packet loss, we can potentially realize a system with a 200-meter
range extension. Moreover this result was obtained with a test configura-
tion which realizes a fast color change, in fact the color frequency is 5Hz. 5
colors per second is more than enough for a chromotherapy system.

As for the linear array we try the sequence packet configurations of test
10 (Nc = 20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300, dTOT = 1000)
and 12 (Nc = 20, Tc = 300, dTOT = 2000) even in the grid network (Figure
8.3).

Figure 8.3: Number of lost packets per hop on a grid network with retransmis-
sion. Comparison among tests with different initial delay values.

Because of the collisions, in these cases more packets were lost if com-
pared to the linear array. Furthermore when the delay is only 500 ms, no
one sequence message is able to reach the 9-th hop (one less than the array),
and only the 33% of them were received from nodes at the 8-th hop. The
collected data are presented in Table 8.6.

110

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

test 10 test 11 test 12
hop 1 0 (0%) 0 (0%) 0 (0%)
hop 2 0 (0%) 0 (0%) 0 (0%)
hop 3 0 (0%) 1 (0.29%) 0 (0%)
hop 4 0 (0%) 0 (0%) 1 (0.32%)
hop 5 11 (3.05%) 1 (0.29%) 1 (0.32%)
hop 6 21 (5.82%) 1 (0.29%) 2 (0.64%)
hop 7 45 (12.47%) 2 (0.59%) 3 (0.96%)
hop 8 280 (77.56%) 4 (1.17%) 5 (1.61%)
hop 9 361 (100.00%) 5 (1.47%) 8 (2.35%)
hop 10 361 (100.00%) 8 (2.35%) 13 (4.18%)

Table 8.6: Lost packets on a grid with retransm. Comparison of test 10 (Nc =
20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300, dTOT = 1000)
and 12 (Nc = 20, Tc = 300, dTOT = 2000).

We notice that in a grid network there can be more than one path from
the master to a node. So is possible for instance that a node A at 4 hops can
lose less packets than a node B at 3 hops far from the master. This is due
to the fact that A receives the messages that B has lost from another neigh-
borhood different from B. An example of this situation happened between
hop 3 and 4 of test 11.

8.2.3 Rising of the packet frequency

There are two possibility to increase the packet frequency:

1. Reducing the value of the color frequency

2. Reducing the number of colors of each sequence portion

The experimental results of the two different approach are now presented.

Rising the color rate

In Figure 8.4 and Table 8.7 are compared test 11 (Nc = 20, Tc = 300,
dTOT = 1000) and test 7 (Nc = 20, Tc = 100, dTOT = 1000) performed on
the grid. These configurations have both the number of colors per packet
set to 20, and the delay equal to 1 second. The difference is that test 11 has

111

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

a color period set to 300 ms while for test 7 is 100 ms. The packet period
from Tp = 6s becomes Tp = 2s.
Even if the frequency is tripled, test 7 looses in average only the 0.7824% of
the packets more than test 11. So even if a lower rate is better, the system
has a good response when the colors rate increases.

Figure 8.4: Percentage of lost packets per hop on a grid network rising the color
rate. Comparison among tests with different packet frequencies.

test 7 test 11
hop 1 0 (0%) 0 (0%)
hop 2 0 (0%) 0 (0%)
hop 3 0 (0%) 1 (0.2933%)
hop 4 3 (0.3145%) 0 (0%)
hop 5 6 (0.6289%) 1 (0.2933%)
hop 6 7 (0.7338%) 1 (0.2933%)
hop 7 10 (1.0482%) 2 (0.5865%)
hop 8 22 (2.3061%) 4 (1.173%)
hop 9 29 (3.0398%) 5 (1.4663%)
hop 10 34 (3.5639%) 8 (2.346%)

Table 8.7: Lost packets on a grid network rising the color rate. Comparison of
test 7 (Nc = 20, Tc = 100, dTOT = 1000) and test 11 (Nc = 20,
Tc = 300, dTOT = 2000).

112

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Reducing the number of colors per packet

In this case we want to understand if the number of colors contained in the
packets affects the behavior of the chromotherapy system. So we compare
test 3 (Nc = 10, Tc = 200, dTOT = 1000), 6 (Nc = 15, Tc = 200, dTOT =

1500) and 9 (Nc = 20, Tc = 200, dTOT = 2000). The results are shown in
Figure 8.5 and Table 8.8.

Figure 8.5: Percentage of lost packets per hop on a grid network reducing the
number of colors per packet. Comparison among tests with different
packet frequencies.

test 3 test 6 test 9
hop 1 0 (0,00%) 0 (0,00%) 0 (0,00%)
hop 2 0 (0,00%) 0 (0,00%) 0 (0,00%)
hop 3 0 (0,00%) 2 (0,31%) 0 (0,00%)
hop 4 1 (0,10%) 3 (0,47%) 0 (0,00%)
hop 5 3 (0,29%) 4 (0,63%) 2 (0,43%)
hop 6 4 (0,39%) 6 (0,94%) 3 (0,65%)
hop 7 20 (1,96%) 11 (1,73%) 4 (0,86%)
hop 8 30 (2,93%) 14 (2,20%) 6 (1,29%)
hop 9 43 (4,20%) 17 (2,67%) 13 (2,80%)
hop 10 51 (4,99%) 20 (3,14%) 16 (3,44%)

Table 8.8: Lost packets on a grid network reducing the number of colors per
packet. Comparison of test 3, 6 and 9.

113

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

These tests have the same rc value but the number of colors contained
into a RtLightMsg is 10, 15 and 20 respectively2. For this reason Tp is 2
seconds in test 3, 3 seconds in test 6 and 4 seconds in test 9.

All the tests have a packet loss percentage under the 1% until the 7-th
hop. After this bound the test number 3, that has the higher number of
packets per seconds, is a little bit less reliable than test 6 and 9. But it
looses always less than the 5% of the total number of the sequence packets.
We suppose that when the packets rate increases, a node must access to the
UART interface most frequently. For this reason the USART is arbitrated
a greater number of times per seconds and the radio resource can therefore
listen the channel for less time. That is why the amount of lost packets
increase with the increasing of the frequency of the RtLightMsg packets.

If we want to observe the behavior of the system under a higher work-
load, we can compare test 1 (Nc = 10, Tc = 100, dTOT = 700) and test 4
(Nc = 15, Tc = 100, dTOT = 750). The RtLightMsg packets for test 1 are
sent every second, while for test 4 are sent every 1.5 seconds. The trends
are shown in Figure 8.6.

Even in these experiments the system has the same behavior until the
7-th hop. After this limit what happens is not a significant fact because of
the small initial delay values of test 1 and 4.
So we can underline that, even if the loss is greater than what we have
obtained in the previous experiment of Table 8.8, for little variations of fp
the system remain stable. Although if the workload is high.

The data of this experiment is presented in Table 8.9:

2The value of the delay in this situation is negligible because even if it changes from
one test to another, it is always greater than a second. So the flooding process is able to
cover all the grid.

114

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Figure 8.6: Percentage of lost packets per hop on a busy grid network. Compar-
ison among tests with different packet frequencies.

test 1 test 4
hop 1 0 (0,00%) 0 (0,00%)
hop 2 0 (0,00%) 1 (0,03%)
hop 3 1 (0,05%) 2 (0,07%)
hop 4 6 (0,32%) 6 (0,20%)
hop 5 9 (0,49%) 14 (0,46%)
hop 6 23 (1,24%) 38 (1,26%)
hop 7 67 (3,62%) 112 (3,72%)
hop 8 120 (6,48%) 155 (5,14%)
hop 9 181 (9,77%) 177 (5,87%)
hop 10 1155 (62,37%) 1075 (35,67%)

Table 8.9: Lost packets on a grid network reducing the number of colors per
packet. Comparison of test 1 (Nc = 10, Tc = 100, dTOT = 700) and
test 4 (Nc = 15, Tc = 100, dTOT = 750).

115

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

8.3 Precision of the nodes

In this section we want to understand the precision of the system in the dif-
ferent situations. We say that a node is precise if it processes the first color
of the sequence portion in the exact global clock instant chosen from the
master node and inserted into the field turnOnTime of the RtLightMsg

packets.
To calculate the deviation between when the sequence parts should be
shown, and when the node really display them, we consider the d1− (r+ d)

values (Section 8.1).
During our analysis we notice that in the majority of the test the nodes are
very precise at each hop. As presented in Table 8.10, the average deviation
of each node is about 25 ticks (0.78 ms). We report the results of test 3
(Nc = 10, Tc = 200, dTOT = 1000), 5 (Nc = 15, Tc = 150, dTOT = 1100), 6
(Nc = 15, Tc = 200, dTOT = 1500), 7 (Nc = 20, Tc = 100, dTOT = 1000), 9
(Nc = 20, Tc = 200, dTOT = 2000), 12 (Nc = 20, Tc = 300, dTOT = 2000)
and 13 (Nc = 20, Tc = 400, dTOT = 2000).

test 3 test 5 test 6 test 7 test 9 test 12 test 13
hop 1 25.56 24.85 25.30 26.73 23.47 25.83 24.35
hop 2 26.21 24.24 23.86 25.98 23.72 23.51 24.92
hop 3 25.24 24.76 24.59 25.75 24.98 23.28 24.21
hop 4 24.95 24.29 24.76 25.60 24.62 23.49 25.38
hop 5 25.17 24.94 25.77 26.11 25.38 24.70 24.86
hop 6 26.68 25.19 25.25 26.46 24.93 26.31 24.93
hop 7 26.10 24.76 26.27 26.75 25.15 24.79 25.45
hop 8 25.57 24.40 24.48 26.53 23.74 24.25 25.14
hop 9 26.46 24.25 24.01 26.42 24.73 25.80 23.78
hop 10 28.05 24.09 24.65 25.54 25.63 24.38 24.56

Table 8.10: Precision of the system. Comparison of test 3, 5, 6, 7, 9, 12 and
test 13.

The global average per hop of these test are showed in Figure 8.7.
Instead we realize that in some other cases, like test 1 (Nc = 10, Tc =

100, dTOT = 700), 2 (Nc = 10, Tc = 150, dTOT = 750), 4 (Nc = 15, Tc = 100,
dTOT = 750) and 10 (Nc = 20, Tc = 300, dTOT = 500) the behavior of the

116

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Figure 8.7: Precision of the nodes per hop on a grid network. Comparison
among several tests.

chromotherapy system is different. During these tests all the nodes (even
the motes closer to the master) have less precision in respect to the tests of
Table 8.10. We notice that the configuration 1,2,4 and 10 have one common
characteristic: the value of the initial delay (dTOT) parameter lower than
750 ms. For this reason we find a motivation to their poor accuracy (see
the experimental results in Table 8.11).

test 1 test 2 test 4 test 10
hop 1 42,50 40,21 38,81 42,77
hop 2 41,50 39,82 38,62 41,57
hop 3 43,22 40,15 39,23 43,70
hop 4 42,08 40,14 39,37 42,69
hop 5 42,13 40,32 39,15 48,33
hop 6 44,85 39,84 41,06 117,99
hop 7 50,34 91,27 44,99 254,28
hop 8 102,74 52,03 62,99 -
hop 9 228,34 118,48 160,71 -
hop 10 349,43 228,05 283,93 -

Table 8.11: Precision of the system in ticks. Comparison of test 1, 2, 4 and test
10.

117

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Because in our testbed the flooding process generally takes about 700
ms to cover all the grid network, every node is still busy from this activity
when it should start the displaying of the first color of the message. So the
less precision is due to the great number of messages that every node must
menage during the flooding of the sequence. We can conclude that if the
initial delay value is greater than the amount of time necessary to perform
the flooding, the precision of the system increases.
In addition is possible to understand that if a node receives a RtLightMsg

in the instant t very closer to the turnOnTime instant contained in the
packet, the precision degrades more rapidly.

8.4 Delays introduced in the flooding process

from each hop

This testing phase wants to observe which is the delay di introduced in the
flooding process from each hop, and what aspects of the network influence
these values.
In order to find out the delay introduced from the hop i, we calculate (using
the nomenclature of Section 8.1) the value di+1 − di and we subtract also
the random wait interval w in order to be more precise.
As we can see in Figure 8.8, the average of the delays introduced from each
hop is not constant, but it depends from the number of nodes belonging to
the hop (Table 8.2). So, if we have a small number of nodes at a certain hop,
the introduced delay is low. On the other hand, a greater delay is involved
from a hop which is populated with a lot of nodes.
In Figure 8.9 we present the trend of the introduced delay referred to the
number of hop nodes. So, accordingly to Table 8.2 we have that:

• a single node in present only in the 10-th hop;

• the first and 9-th hop have 2 nodes each one;

• 3 nodes populate the second and also the 8-th hop;

• 4 nodes are in the third and in the 7-th hop;

• 5 nodes are in each the 4-th, 5-th and 6-th hop.

118

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Figure 8.8: Global average delay introduced from each hop in a grid network.

Figure 8.9: Average introduced delay per number of hop nodes.

119

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Now we want to find out the relationship among the delay and the
number of nodes of the hop. For this reason we found the equation of the
regression line using the OLS method (Figure 8.10). The regression line of
the introduced delays is:

y = 7.4761x+ 30.2825

Figure 8.10: Regression line for the estimations of the di values.

Thanks to this equation we can estimate the delays di introduced from
each hop in order to figure out the total delay dTOT of Equation 6.11. Af-
terwards we can also calculate (accordingly with Subsection 6.4.3) the size
of the buffer needed for the motes to realize a specific chromotherapy se-
quence3.

Clearly, if we want to implement a chromotherapy system over a dy-
namic WSN in which the motes are not static, this process is not possible.
The di values are not constant and so the dTOT value changes every time a
topology change occurs.

We have deduced that hop delays are strictly dependent from the num-
ber of nodes per hop and hence the collisions occurred. In our tests all the

3In this case we can suppose the dOS value of Equation 6.4.3 negligible. It has sense
even because the computed dTOT is a worst case value.

120

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

nodes are into the radio range of each others, but we suppose that in a WSN
which has sparse nodes, the delay should remain constant.
To confirm our conclusion, we show in Figure 8.11 the delay introduced from
the nodes in a linear array. This network topology in fact has only one node
per hop. So each jump introduces in the flooding process the same delay of
about 47 milliseconds. Only the first hop is faster than the others, but it is
due to the master implementation.

Figure 8.11: Global average delay introduced from each hop in a linear array
network.

8.5 Variations of the responsiveness of the op-

erating system

To understand if TinyOS is influenced from the chromotherapy system im-
plementation we studied the variation of the amount of time that the OS
needs to complete a message sending process. So the data processed were
(using the nomenclature of Section 8.1) the values sd− s.
Our test has demonstrate that the operating system seems to be not affected
from our application. All the sending activities were completed in average in
25.56 ms from when the application requests the forwarding (Figure 8.12).

121

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

Figure 8.12: Global average sending delay per hop on a grid network.

In Table 8.12 are summarized the averages of the amounts of time em-
ployed in the sending processes and the standard deviation from the average.
We observe that there is never great deviation from the average.

122

CHAPTER 8. TESTING OF THE DEVELOPED SYSTEM

ho
p

1
ho

p
2

ho
p

3
ho

p
4

ho
p

5
ho

p
6

ho
p

7
ho

p
8

ho
p

9
ho

p
10

te
st

1
23

,0
8

26
,7

2
26

,2
7

27
,4

7
26

,9
8

26
,8

9
26

,7
6

25
,1

6
26

,7
0

25
,5

1
te

st
2

22
,4

2
26

,0
3

25
,9

0
27

,1
9

26
,9

1
25

,9
6

26
,2

6
24

,5
0

25
,4

4
25

,2
8

te
st

3
22

,7
8

27
,1

4
25

,9
3

28
,3

0
26

,6
4

26
,9

9
26

,8
7

25
,2

0
24

,1
7

22
,5

0
te

st
4

23
,4

8
26

,5
3

26
,6

5
28

,0
8

27
,4

2
27

,2
1

27
,0

4
25

,5
3

26
,2

3
26

,9
3

te
st

5
22

,1
9

26
,8

2
25

,6
7

27
,7

7
26

,7
8

26
,4

7
26

,6
0

25
,4

1
24

,6
4

22
,4

9
te

st
6

22
,0

1
25

,8
6

26
,7

3
27

,2
8

26
,8

2
26

,3
9

26
,1

9
25

,2
7

24
,3

2
22

,5
9

te
st

7
22

,6
1

26
,1

0
26

,6
2

27
,7

8
26

,9
6

26
,6

4
26

,5
7

25
,6

6
24

,6
6

23
,0

0
te

st
8

22
,8

9
25

,8
3

26
,4

6
27

,2
5

26
,7

9
26

,6
5

26
,3

8
25

,3
3

24
,1

9
22

,8
6

te
st

9
22

,8
3

25
,8

0
25

,4
0

27
,1

8
26

,4
5

26
,3

5
25

,8
6

25
,0

3
24

,0
2

22
,4

5
te

st
10

22
,9

3
25

,1
7

25
,9

1
26

,7
6

26
,1

8
27

,1
0

28
,4

2
-

-
-

te
st

11
22

,3
7

25
,8

6
26

,0
9

27
,0

7
26

,8
8

26
,5

7
26

,1
9

24
,9

3
23

,8
2

22
,0

4
te

st
12

22
,7

9
25

,4
3

26
,5

4
27

,8
8

26
,3

9
26

,8
3

26
,2

4
25

,3
1

23
,7

2
21

,6
5

te
st

13
22

,2
0

26
,2

8
26

,2
4

27
,2

2
26

,6
1

26
,4

8
26

,7
1

25
,1

9
24

,0
9

22
,1

7
AV

E
R

A
G

E
22

,6
6

26
,1

2
26

,1
8

27
,4

8
26

,7
5

26
,6

6
26

,6
2

25
,2

1
24

,6
7

23
,2

9
ST

D
D

E
V

0,
41

0,
56

0,
41

0,
45

0,
31

0,
35

0,
63

0,
30

0,
96

1,
66

T
ab

le
8.

12
:

A
ve

ra
ge

of
th

e
am

ou
nt

s
of

ti
m

e
in

vo
lv

ed
in

a
m

es
sa

ge
se

nd
in

g
(i

n
m

ill
is

ec
on

ds
).

C
om

pa
ri

so
n

of
al

lt
he

te
st

s.

123

Chapter 9
Conclusions

The objective of this thesis was to develop a chromotherapy system using
WSN as infrastructure. It must perform the visualization, via external RGB
devices, of a color sequence. An innovative aspect of the project is the pos-
sibility that our application inherits all the characteristics of a WSN as for
instance the flexibility, the mobility and the multi-hop communication. The
work also included the study of the architecture composed by Tmote Sky
motes and the TinyOS operating system. We also made a great effort in the
implementation of the entire project in Java and in the NesC programming
language.
A key aspect of a chromotherapy system is the coordination that must exist
among all the nodes. This specification can be satisfied on a synchronized
network. So all the nodes must agree to a common reference global clock.
Therefore in the first phase of this work we have developed the network syn-
chronization. After we studied all the algorithms in the literature for the
WSN synchronization, it was decided to adopt the ATS algorithm [4, 30].
It is a very precise synchronization method. It is also independent from the
network topology and fully distributed.
The characteristics of our application allow to relax the constraints of the
algorithm accuracy. So it was carried out a simplification of ATS remov-
ing the skew compensation in the global clock estimation of the nodes,
while maintaining the offset compensation. In this way, the lightness and
dynamism of the original algorithm were maintained. Furthermore it was

125

CHAPTER 9. CONCLUSIONS

possible to save computational resources which can be used in the manage-
ment of the chromotherapy sequence. However, if compared to an algorithm
that also compensates the drift of the clock, the only compensation of the
offset requires more frequent synchronization messages in order to be pre-
cise. In our case was experimentally verified that with a synchronization
message interval of 30 seconds we are able to obtain a millisecond accuracy.
The project requires that there must not be chromatic differences between
nodes while they are showing the color sequence through the RGB device.
The millisecond accuracy ensures that this situation does not occur. In fact
the human eyes are less precise than a system with a so great precision.
During the first testing phase of the algorithm, was verified that in some
cases the convergence to a common reference clock took too long. To resolve
this problem has been conceived and then implemented an overlay logical
network. This last one builds a hierarchical structure over the WSN. A
root node (chosen from the user) becomes the reference point for all the
other nodes. Now the temporal information received from a node can have
different importance. In fact each mote considers only information from
neighborhoods that are closer to the root than itself. The overlay structure
is also able to adapt itself if topology changes occur, or if the root falls.
Our implemented system is able to decide what is the weight of the overlay
structure in the synchronization algorithm. We have experimentally demon-
strated that a particular configuration of this hybrid algorithm maximizes
the performance.
The second testing phase of the Overlay-based synchronization algorithm
has demonstrates also the robustness, the adaptability and the high speed
of convergence. In addition a higher accuracy was noticed if compared to
the previous offset compensation algorithm without overlay structure.

The second part of the thesis concerns the design of the method to cre-
ate, manage and display the color therapy sequence. For this purpose, the
succession of colors was divided into sections in order to make the process
generation-reproduction of the sequence as real-time as possible. Each sec-
tion consists of a fixed number of colors. A master node communicates each

126

CHAPTER 9. CONCLUSIONS

portion to its neighborhood motes of the WSN. Afterwards the information
are sent to all the others nodes thanks to a multi-hop flooding process.
The sequence communication requires a certain amount of time to cover
the entire network. This time interval should be smaller than the delay
generation-reproduction of the sequence (called initial delay) which is fixed
from the user. If this constraint is not respected, the sequence is not able
to reach the nodes further from the master.
The display phase of the sequence is made through an RGB device that is
still under construction. The device must receive messages via the UART
interface. In the Tmote sky the USART of the MCU is shared from the
UART pins and the radio. Therefore it was necessary to implement the
arbitration of this resource permitting to work to both the interfaces.
Another specification of the project was the possibility that the nodes could
be grouped into independent systems. These systems must coexist in the
same environment without interfering with each other. This feature has
been realized thanks to a simple and effective idea. Every message contains
a field called groupMask which permit to each node to diversify the group
membership of the packet.
The final phase of the work tested the system when it is subjected to dif-
ferent workloads. We realize that any sequence portion message must be
forwarded twice by each node. This is necessary to grant that the system
reproduces the complete color sequence with high fidelity. Moreover, we
found that even if the workload changes, the fidelity of the system remains
satisfactory. We have also demonstrate that the more a node is far from the
master and the more its sequence reproduction fidelity degrades.
Finally, we have understood that the parameter that defines the initial delay
is very important. Obviously is better to have a short delay. But it is not
possible to reduce too much this delay for several reasons. First because it is
strongly dependent from the number of hops of the network (and hence its
extension) and from the number of nodes at each hop. The second because
if the delay is too short, the sequence is also not able to reach all the nodes
of the WSN and the precision and the fidelity of the system decrease.

Further developments of this work of thesis are possible. It is possible

127

CHAPTER 9. CONCLUSIONS

for example to implement a root election system for the overlay structure. A
mechanism that elects the node with the lowest ID (as presented in FTSP
[33]) makes the network more independent from the user. On the other
hand a greater computation and memory usage are required to the nodes.
It is also possible to design a cluster-based chromotherapy system for wide
networks in which the nodes are very concentrate. In this situation the
communication becomes difficult because of the collisions of the messages1.
For this reason with a cluster-based network approach, in which only some
nodes perform the flooding of the color sequence and all the others only
receive and display the sequence parts, we can reduce the collisions and re-
alize a high fidelity chromotherapy system in high density networks.
In addition, the actual developed system can be used for many others ac-
tivities which require remote coordination of light sources or in applications
which create colored sequences in relation to external events as for instance
movements or sounds.
Modifying the RtLightControlC component is also possible to create
light effects based on environmental changes, as for example the ambient
brightness.
One limit of our current project implementation is the energy consumption.
In fact this aspect is not handled in any way. It is mainly because for a
compute-intensive application the realization of this feature became impos-
sible.
Supposing that we are able to know some information of how the generator
creates the colors sequence. So for instance we are able to know that among
color cx and cy there are always the intermediate colors cx+1, cx+2, ..., cy−2,

cy−1. If this happens, we can implement a compression of the sequence. The
master could send only a packet containing the two colors cx and cy, then the
slaves-repeaters nodes that receive this couple of colors already know that
the sequence they must show is composed by all the colors cx, cx+1, cx+2, ...,

cy−2, cy−1, cy. Another possible improvement is to remove the constraint
that imposes the synchronization of the master node. In this case the ref-
erence time in the field turnOnTime of the RtLightMsg package could

1In our work we have also understood that collisions are the greatest weak point of
the project.

128

CHAPTER 9. CONCLUSIONS

be calculated and filled from one of the first nodes that receive the message
from the master. Because this last one can have more than one neighbor-
hood, some control mechanisms must be implemented to avoid the multiple
calculation of the turnOnTime value.
Finally some code changes can easily adapt our work to all the applications
that need to realize a coordinated succession of actions (through external
devices or not) at a specific frequency over the entire extension of a wireless
network.

129

Bibliography

[1] A.S.Tanenbaum, M.V.Steen. “Distributed Systems: Principles and
Paradigms”. PEARSON Prentice Hall, 2007. pages 1-30.

[2] U.Hansmann, L.Merk, M.S.Nicklous, T. Stober. “Pervasive Computing:
The Mobile World”. Springer, 2003. pages 15-21.

[3] R.N.Murty, G.Mainland, I.Rose, A.R.Chowdhury, A.Gosain, J.Bers,
M.Welsh. “CitySense: An UrbanScale Wireless Sensor Network and
Testbed”. 2008. School of Engineering and Applied Sciences, Harvard
University BBN Technologies, Inc. 2008 IEEE International Conference
on Technologies for Homeland Security.
Web site: http://www.citysense.net/

[4] L.Schenato, F.Fiorentin. “Average TimeSynch: a consensus-based pro-
tocol for time synchronization in wireless sensor networks”. 2009. Pro-
ceedings of 1st IFAC Workshop on Estimation and Control of Net-
worked Systems (NecSys’09).

[5] P.Casari, A.P.Castellani, A.Cenedese, C.Lora, M.Rossi, L.Schenato,
M.Zorzi. “The Wireless Sensor Networks for City-Wide Ambient Intel-
ligence (WISE-WAI) Project”. 2009. SENSORS volume 9-2009 pages
4056-4082.
Web site CaRiPaRo project: http://cariparo.dei.unipd.it/

[6] D.Gay, P.Levis. “TinyOS Programming”. 2009 Cambridge University
Press.

131

BIBLIOGRAPHY

[7] B.W.Kernighan, D.M.Ritchie. “The ANSI C Programming Language -
2nd edition”. 1988 Prentice Hall.

[8] F.Fiorentin. “Implementazione di sincronizzazione temporale distribuita
in reti di sensori wireless”. 2007-2008

[9] D.L.Mills. “Improved algorithms for synchronizing computer network
clocks”. 1994. Proceedings of ACM Conference on Communication Ar-
chitectures (ACM SIGCOMM 1994). London, UK.

[10] D.L.Mills. “Network Time Protocol Version 4 Reference and Implemen-
tation Guide”. 2006.
Web site: http://www.eecis.udel.edu/%7emills/database/
/reports/ntp4/ntp4.pdf

[11] M.Bertinato, G.Ortolan, F.Maran, R.Marcon, A.Marcassa, F.Zanella,
P.Zambotto, L.Schenato, A.Cenedese. “RF Localization and tracking of
mobile nodes in Wireless Sensors Networks: Architectures, Algorithms
and Experiments”. 2007. Proceedings of the 5th European Conference
on Wireless Sensor Networks (EWSN’08), 2008.

[12] J. Elson, L. Girod, D. Estrin. “Fine-grained network time synchroniza-
tion using reference broadcasts”. 2002. Proceedings of the 5th sym-
posium on Operating systems design and implementation (OSDI’02),
pages 147-163.

[13] S.Yoon, C.Veerarittiphan, M.L.Sichitiu. “Tiny-sync: Tight time syn-
chronization for wireless sensor networks”. 2007. ACM Journal of Sen-
sor Networks, 3(2), 2007.

[14] S.Ganeriwal, R.Kumar, M.B.Srivastava. “Timing-sync protocol for sen-
sor networks”. 2003. Proceedings of the first international conference
on Embedded networked sensor systems (SenSys’03), pages 138-149,
2003.

[15] J.v.Greunen, J.Rabaey. “Lightweight time synchronization for sensor
networks”. 2nd ACM International Workshop on Wireless Sensor Net-
works and Applications, pages 11-19, September 2003.

132

BIBLIOGRAPHY

[16] Q.Li, D.Rus 2006. “Global Clock Synchronization in Sensor Networks”.
IEEE Transactions on computer, vol. 55, no.2, February 2006.

[17] G.Werner-Allen, G.Tewari, A.Patel, M.Welsh, R.Nagpal. “Firefly-
inspired sensor network synchronicity with realistic radio effects”. ACM
Conference on Embedded Networked Sensor Systems (SenSys’05),
November 2005.

[18] O.Simeone, U.Spagnolini. “Distributed time synchronization in wire-
less sensor networks with coupled discrete-time oscillators”. EURASIP
Journal on Wireless Communications and Networking, 2007: Article
ID 57054, 13 pages, 2007. doi:10.1155/2007/57054.

[19] R.Solis, V.Borkar, P.R.Kumar. “A new distributed time synchroniza-
tion protocol for multihop wireless networks”. 45th IEEE Conference
on Decision and Control (CDC’06), December 2006.

[20] K.S.Low, W.N.N.Win, M.J.Er. “Wireless Sensor Networks for Indus-
trial Environments”. 2005. Proceedings of the 2005 International Con-
ference on Computational Intelligence for Modelling, Control and Au-
tomation, and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’05).

[21] Md.A.Hussain, P.khan, K.K.Sup. “Md.Asdaque Hussain, Pervez khan,
Kwak kyung Sup”. 2009. Proceedings of the 11th international confer-
ence on Advanced Communication Technology (ICACT’09). 2009.

[22] M.Rossi, G.Zanca, L.Stabellini, R.Crepaldi, A.F.Harris III, M.Zorzi.
“SYNAPSE: A Network Reprogramming Protocol for Wireless Sensor
Networks using Fountain Codes”. 2008. 5th Annual IEEE Communica-
tions Society Conference on Sensor, Mesh, and Ad Hoc Communica-
tions and Networks (SECON), 2008.

[23] H.Garcia-Molina. “Elections in a Distributed Computing System”. 1982.
IEEE Transactions on Computers, vol. 31, no. 1, pages 48-59, Jan. 1982,
doi:10.1109/TC.1982.1675885.

133

BIBLIOGRAPHY

[24] E.Chang, R.Roberts. “An improved algorithm for decentralized extrema-
finding in circular configurations of processes”. 1979. Communications
of the ACM (ACM) 22 (5): pages 281283, doi:10.1145/359104.359108.

[25] S.Vasudevan, J.Kurose, D.Towsley. “Design and Analysis of a Leader
Election Algorithm for Mobile Ad Hoc Networks”. 2004. Proceedings
of the 12th IEEE International Conference on Network Protocols
(ICNP’04), pages 350-360, doi:10.1109/ICNP.2004.1348124.

[26] From Moteiv Corporation: “Tmote Sky: Datasheet”. 2004-2006 Moteiv
Corporation.
Web site: http://sentilla.com/files/pdf/
/eol/tmote-sky-datasheet.pdf

[27] P. Levis. “TinyOS 2.0 Overview”.
Web site:http://www.tinyos.net/tinyos-2.x/doc/
/html/overview.html

[28] E.Brewer, D.Culler, D.Gay, P.Levis. “nesC 1.2 Language Reference
Manual”. 2005.
Web site: http://www.tinyos.net/dist-2.0.0/
/tinyos-2.0.0beta1/doc/nesc/ref.pdf

[29] D.L.Mills. “Internet time synchronization: the network time protocol”.
1991 IEEE Trans. Communications 39, 10 (Oct.), 1482-1493.
Web site: http://www.eecis.udel.edu/ mills/ntp.html

[30] L.Schenato, G.Gamba. “A distributed consensus protocol for clock syn-
chronization in wireless sensor network”. 2007. 46th IEEE Conference
on Decision and Control.

[31] K.Klues, P.Levis, D.Gay, D.Culler, V,Handziski. “TEP 108 (TinyOS
Enhancement Proposals) - Resource Arbitration”. 2009.
Web site: http://www.tinyos.net/tinyos-2.x/doc/
/html/tep108.html

[32] Texas Instruments Incorporated. “MSP430F15x, MSP430F16x,
MSP430F161x Mixed Signal Microcontroller manual (Rev. F)”. 2009.

134

BIBLIOGRAPHY

Web site: http://www.cs.jhu.edu/ cliang4/public/

/datasheets/msp430f1611.pdf

[33] M.Maroti, B.Kusy, G.Simon, A.Ledeczi. “The flooding time synchro-
nization protocol”. 2004. Proceedings of the 2nd international confer-
ence on Embedded networked sensor systems (SenSys 2004). 2004 -
ACM Press, pages 39-49.

[34] D.Culler, D.Gay, V.Handziski, J.H.Hauer, J.Polastre, C.Sharp,
A.Wolisz. “TEP 2: Hardware Abstraction Architecture”. 2007.
Web site: http://www.tinyos.net/dist-2.0.0/tinyos-2.x/doc/
/html/tep2.html

[35] Web site SIMEA: http://automatica.dei.unipd.it/people/
/cenedese/research/simea.html

[36] Web site OPTICONTROL: http://www.opticontrol.ethz.ch/in-

dex.html

[37] Web site Nelly Bay-Magnetic Island WSN:
http://www.science.org.au/nova/110/110key.htm

[38] Web site SENTILLA: http://www.sentilla.com/

[39] Web site CROSSBOW : http://www.xbow.com/

[40] Web site: National Institute of Standards and Technology, IEEE 1588:
http://ieee1588.nist.gov/

[41] Web site dedicated to various overlay technologies:
http://www.overlay-networks.info/

[42] Wikipedia definition:
http://en.wikipedia.org/wiki/Best_effort_delivery

[43] TinyOS tutorial web page:
http://docs.tinyos.net/index.php/

/Mote-mote_radio_communication

135

BIBLIOGRAPHY

[44] CodeBlue: Wireless Sensors for Medical Care web site:
http://fiji.eecs.harvard.edu/CodeBlue

[45] Wikipedia definition:
http://en.wikipedia.org/wiki/Consensus_%28computer_science%29

136

Appendix A
Tests on a 3x3 mesh

Figure A.1: O-b algorithm - Synchronization interval 7 sec.

Figure A.2: O-b algorithm - Synchronization interval 15 sec.

137

APPENDIX A. TESTS ON A 3X3 MESH

Figure A.3: O-b algorithm - Synchronization interval 30 sec.

Figure A.4: O-b algorithm - Synchronization interval 60 sec.

Figure A.5: O-b algorithm - Synchronization interval 1.5 min.

138

APPENDIX A. TESTS ON A 3X3 MESH

Figure A.6: O-b algorithm - Synchronization interval 2 min.

Figure A.7: O-b algorithm - Synchronization interval 4 min.

Figure A.8: O-b algorithm - Synchronization interval 6 min.

139

APPENDIX A. TESTS ON A 3X3 MESH

Figure A.9: O-b algorithm - Synchronization interval 8 min.

Figure A.10: O-b algorithm - Synchronization interval 12 min.

140

Appendix B
Architecture of the entire developed
chromotherapy system

The entire chromotherapy system can be split into two parts. One which
realizes the synchronization protocol is made up by three different actors:

The second part of the system realizes the chromotherapy effect and its
architecture is also made up by three different actors:

The entire chromotherapy system is the fusion of these two parts into a
unique block. The master node and all the slaves/repeaters nodes must also
implement the client actor functionalities of the synchronization protocol.
An example of the entire architecture is shown in Figure B.1.
In the topside there is the workstation which generates the sequence and
the client/master which injects the sequence into the WSN. In the middle

141

APPENDIX B. ARCHITECTURE OF THE ENTIRE DEVELOPED CHROMOTHERAPY SYSTEM

of the Figure there are all the clients/slaves-repeaters which perform the
synchronization and the sequence diffusion and displaying. Finally in the
downside there is the poller and the workstation which collect all the infor-
mation regarding the synchronization protocol.

Figure B.1: Architecture of the entire chromotherapy system.

142

Appendix C
Example of sequence diffusion

143

Appendix D
Behavior of the chromotherapy system

145

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

146

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

147

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

148

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

149

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

150

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

151

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

152

APPENDIX D. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

153

Acknowledgements

First of all I would like to express my sincere gratitude to my supervisor,
Prof. Luca Schenato. He provided me with many helpful suggestions and
constant encouragement during the course of this work.
My special appreciation goes to my parents, Danilo and Renata, for the sup-
port they provided me through my entire life. Particular thanks to my sister
Silvia, my brother Marco, Tania and my little nephews Matteo and Edoardo.
My family has always supported and encouraged me to do my best in all mat-
ters of life.
I want to express my gratitude to my uncle Daniele Burattin for his precious
help and sustain. A thanks also to those who have believed in me.
I would like to thank my fellow students and friends Vincenzo Maria Cap-
pelleri, Carlo Alberto Cazzuffi and Riccardo Levorato for putting up with me
all these years. Thanks also to my friend Francesco Roveron for all the days
spent together in navlab, his companionship revitalizes me.
I wish to thank even my friend for life Michele Costola. I hope that our
friendship will continue forever.
Lastly, and most importantly, I wish to thank my love Marta for the very
special person she is. Without her love, her help and her incredible amount
of patience, my studies would not have been completed. A special thanks also
to her lovely family.

	Abstract
	Sommario
	Table of contents
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Introduction
	Contents of the chapters

	Wireless Sensor Network
	Definition and characteristics of WSN
	Architecture of a node
	Challenges for the WSN
	Network topologies
	Application fields

	Tmote Sky, TinyOS and NesC language
	The Tmote Sky
	TinyOS-2.x operating system
	Versions
	Hardware abstraction
	Component-base architecture
	Traits of TinyOS

	Network Embedded Systems C
	Definition and principal characteristics
	Interfaces and components
	Modules and configurations
	Execution Model
	Split-phase operations

	The overlay-based synchronization algorithm
	Clocks and synchronization
	Average TimeSync description
	Relative skew estimation and compensation
	Relative offset estimation and compensation

	Offset Compensation Algorithm
	Convergence problems
	Solution: the overlay hierarchical structure
	Calculation of the node reconfiguring interval length
	Topology changes

	Performance of the overlay-based algorithm
	Performed tests
	Benchmark test description
	Comparison of the tests
	Overlay-based algorithm vs. ATS

	Color sequence dissemination
	Sequence generation
	The multi-hop sequence communication
	The timing of the color sequence portions
	Further aspects of a real implementation
	Multi-hop dissemination with random start but without retransmission
	Multi-hop dissemination with random start and with retransmission
	Size of the buffer containing the sequence portions

	Communication through the UART pins
	Description and configuration of the interface
	The arbitration of the USART of the MSP430

	The software description
	The synchronization software
	Packets format
	Poller node
	Client node
	Server station
	Code porting

	The color sequence control software
	Packets format
	Master node
	Slave-repeater node
	Workstation

	Testing of the developed system
	Performed tests
	Packet loss
	Linear Array
	Grid network
	Rising of the packet frequency

	Precision of the nodes
	Delays introduced in the flooding process from each hop
	Variations of the responsiveness of the operating system

	Conclusions
	Bibliography
	Tests on a 3x3 mesh
	Architecture of the entire developed chromotherapy system
	Example of sequence diffusion
	Behavior of the chromotherapy system

