

Multi-agent map-building: Kalman Filtering meets Machine Learning

Luca Schenato
University of Padova
Stuttgart, April 2017

Joint work with

Colleagues at Univ. of Padova

Ruggero Carli

Gianluigi Pillonetto

Current Ph.D/post-docs:

Marco Todescato

Nicoletta Bof

Former Ph.D/post-docs:

Damiano Varagnolo Lulea Univ., Sweden

Guido Cavraro Virginia Tech, USA

Andrea Carron ETH, Switzerland

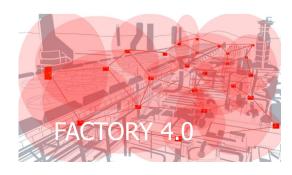
Outline

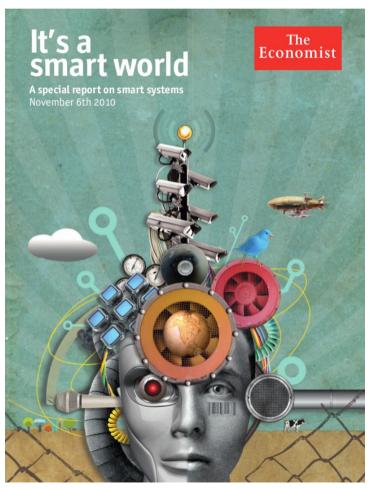
- Motivations, target applications & challenges
- Parametric regression
- Non-parametric regression
- Semi non-parametric regression
- Non-parametric regression for dynamical systems
- Conclusion and open problems

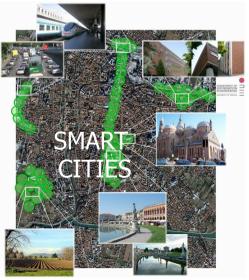
Outline

- Motivations, target applications & challenges
- Parametric regression
- Non-parametric regression
- Semi non-parametric regression
- Non-parametric regression for dynamical systems
- Conclusion and open problems

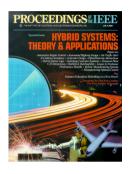
The XXI century: a Smart World

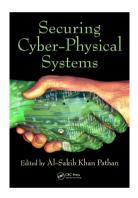






The ICT scientific army



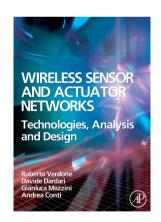


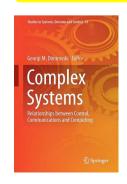
Introduction to

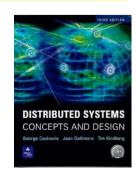
Second Edition

Saniit Arunkumar Seshia

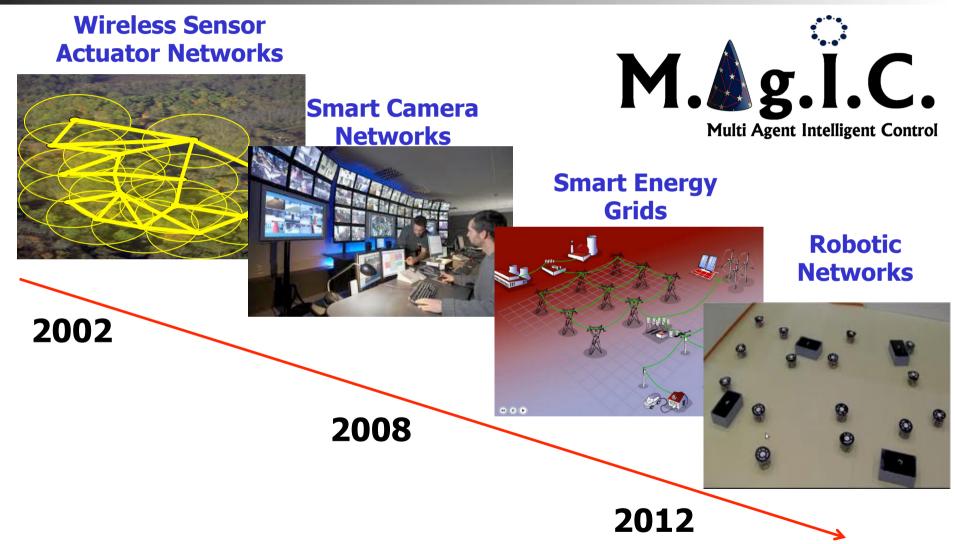
Embedded Systems A Cyber-Physical Systems Approach







Target applications: MAgIC Lab. at University of Padova



Challenges

- Unreliable (wireless) communication:
 - Random delay, packet loss, limited communication range
- Scalability:
 - Complexity (CPU, memory, communication) per agent must be constant
- Robustness/resilience and adaptiveness/learning:
 - Mild performance degradation when local failures
 - Continuous environmental learning
- Architecture:
 - Centralized vs hierarchical vs distributed vs decentralized
 - Cooperative vs competitive

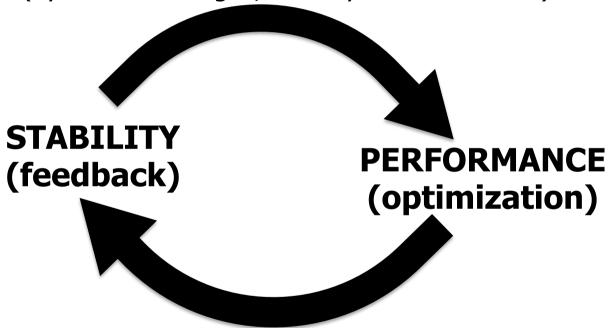
Challenges

- Unreliable (wireless) communication:
 - Random delay, packet loss, limited communication range
- Scalability:
 - Complexity (CPU, memory, communication) per agent must be constant
- Robustness/resilience and adaptiveness/learning:
 - Mild performance degradation when local failures
 - Continuous environmental learning
- Architecture:
 - Centralized vs hierarchical vs distributed vs decentralized
 - Cooperative vs competitive

Dynamic learning and optimization

Environment learning

(dynamical changes, "steady state" scenario)



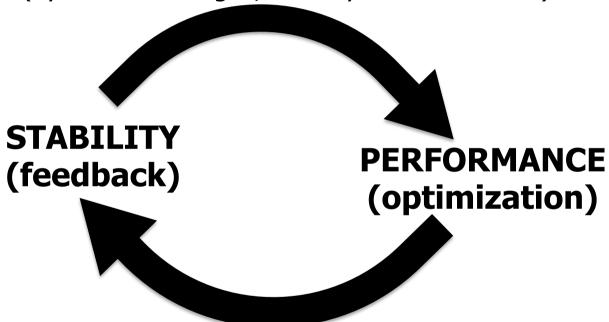
Disruptive events detection

(local failures, communication blackouts, new agents integration,)

Dynamic learning and optimization

Environment learning

(dynamical changes, "steady state" scenario)



Disruptive events detection

(local failures, communication blackouts, new agents integration,)

Learning problems:

Density estimation:

$$f(x): \mathbb{R}^n \to \mathbb{R}$$

 $f(x) \ge 0, \quad \int f(x) = 1$
 $\mathcal{D} = \{x_1, x_2, ...\}$: events

Regression:

$$f(x): \mathbb{R}^n \to \mathbb{R}$$

 $y_i = f(x_i) + v_i$
 v_i noise

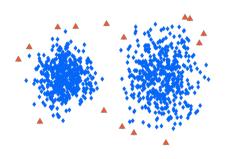
Classification

$$f(x): \mathbb{R}^n \to \{0, 1\}$$

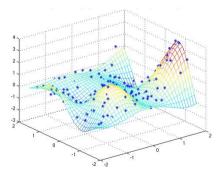
 $y_i = f(x_i) + v_i$
 v_i noise



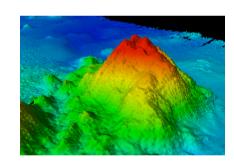
Taxi pick-up calls



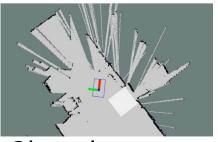
Anomaly detection



Pollution level profile



Seabed depth profile



Obstacles map

Oil-spill boundary

Multi-agent regression

Parametric

VS

$$f(x) = \sum_{i=1}^{m} \theta_i g_i(x)$$

 $\theta \in \mathbb{R}^m$, unknown
 $g_i(x)$ known

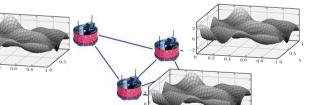
Cloud-based

VS

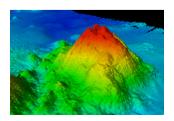
VS

VS

Global



Static



f(x)

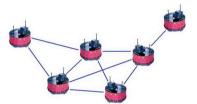
non-parametric

 $f(x) \in RKHS$, infinite dimensional

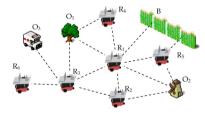
f(x) defined via Kernel k(x, x')

k(x, x') known

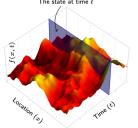
peer-to-peer



Local estimation



dynamic maps:



f(x,t)

Multi-agent regression

Parametric

VS

$$f(x) = \sum_{i=1}^{m} \theta_i g_i(x)$$

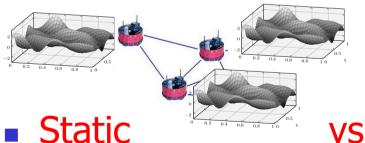
 $\theta \in \mathbb{R}^m$, unknown
 $g_i(x)$ known

Cloud-based

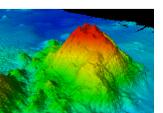
VS

Global

VS



Static



f(x)

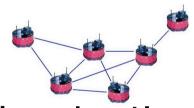
non-parametric

 $f(x) \in RKHS$, infinite dimensional

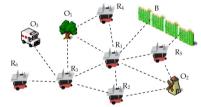
f(x) defined via Kernel k(x, x')

k(x, x') known

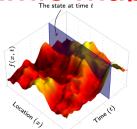
peer-to-peer



Local estimation



dynamic maps:

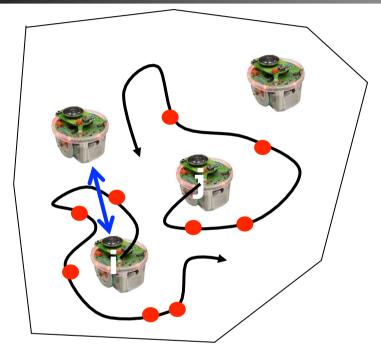


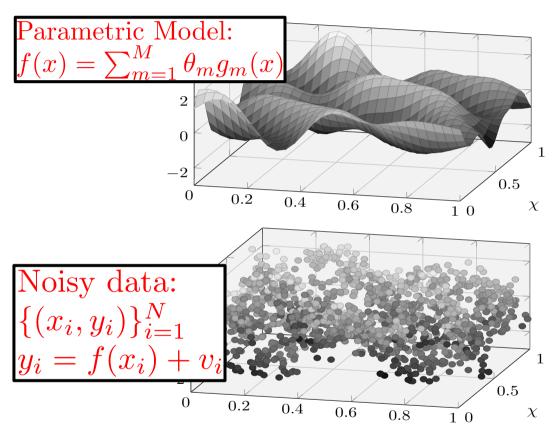
f(x,t)

Outline

- Motivations, target applications & challenges
- Parametric regression
- Non-parametric regression
- Semi non-parametric regression
- Non-parametric regression for dynamical systems
- Conclusion and open problems

Example: Map-building in robotic networks





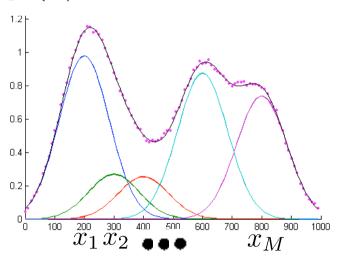
Goal: $\min_{\theta} \sum_{i} v_i^2$

Parametric model: linear vs non-linear

Linear combination of radial basis functions

$$f(x) = \sum_{i=1}^{M} \theta_i g_i(x)$$

$$g_i(x) = e^{\frac{|x-x_i|^2}{2\sigma^2}}$$

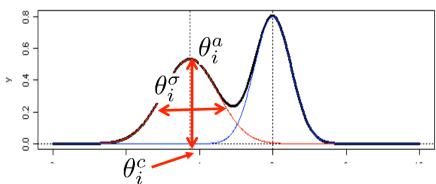


- Large number of basis
- Convex problem

Mixture of Gaussians

$$f(x) = \sum_{i=1}^{M} g_i(x, \theta_i)$$

$$g_i(x,\theta_i) = \theta_i^a e^{\frac{|x-\theta_i^c|^2}{2\theta_i^{\sigma^2}}}$$



- Needs fewer functions
- Non-linear problem

Map-building as least-squares regression

Model class:

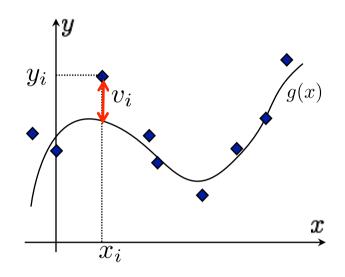
$$f(x) = \sum_{m=1}^{M} \theta_m g_m(x)$$

Noisy measurements:

$$y_{i} = \sum_{m=1}^{M} \theta_{m} g_{m}(x_{i}) + v_{i}, \quad i = 1, \dots, N$$

$$\begin{bmatrix} y(x_{1}) \\ y(x_{2}) \\ \vdots \end{bmatrix} = \begin{bmatrix} g_{1}(x_{1}) & \dots & g_{M}(x_{I}) \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \theta_{1} \\ \vdots \\ \theta_{M} \end{bmatrix} + \begin{bmatrix} v_{1} \\ \vdots \\ v_{N} \end{bmatrix}$$

$$y = G\theta + v$$



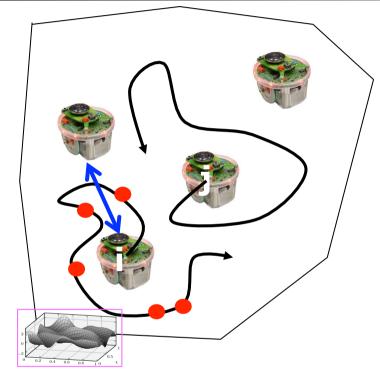
Goal: minimize sum of squares of residues

$$\widehat{\theta} = \operatorname{argmin}_{\theta} \sum_{i=1}^{N} v_i^2$$

$$\begin{vmatrix} \hat{\theta} = (\sum_{i=1}^{N} G_i G_i^T)^{-1} (\sum_{i=1}^{N} G_i y_i) \\ = (\frac{1}{N} \sum_{i=1}^{N} G_i G_i^T)^{-1} (\frac{1}{N} \sum_{i=1}^{N} G_i y_i) \end{vmatrix}$$

- Xiao-Boyd-Lall, 2005
- Bolognani-Del Favero-Schenato-Varagnolo, 2010

Consensus-based Map-building: gossip communication



ALGORITHM:

1) Initialize statistics:

$$Z_0^i = 0 \in R^{M \times M}$$
$$z_0^i = 0 \in R^M$$

2) Collect data and build local statistics:

$$Z_{t+1}^{i} = Z_{i}^{t} + G_{t}^{i} G_{t}^{i}^{T}$$
$$z_{t+1}^{i} = z_{i}^{t} + G_{t}^{i} y_{t}^{i}$$

3) Choose neighbor j and do gossip consensus:

$$Z_{t+1}^{j} = Z_{t+1}^{i} = \frac{1}{2}Z_{t}^{i} + \frac{1}{2}Z_{t}^{j}$$

$$z_{t+1}^{j} = z_{t+1}^{i} = \frac{1}{2}z_{i}^{t} + \frac{1}{2}z_{i}^{t}$$

4) Estimate map:

$$\hat{\theta}_t^i = (Z_t^i)^{-1} z_t^i$$

5) Repeat steps 2,3,4 (non necessarely in order)

PROS:

- Can be distributed
- Gradient-based implementation: ADMM, gradient-consensus,
- Extension to robust costs, e.g. || ||₁

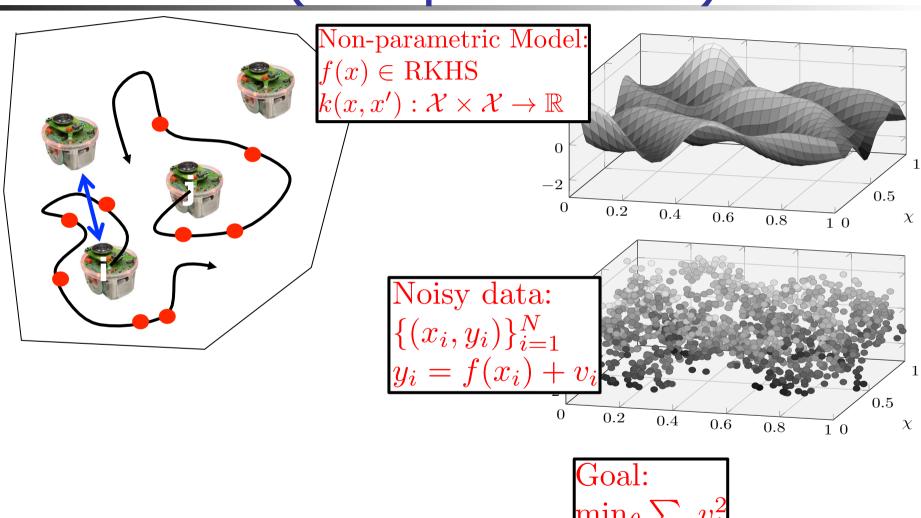
CONS:

- How to select basis functions
- No estimate unless at least M data
- Gradient-based implementations require step-size design

Outline

- Motivations, target applications & challenges
- Parametric regression
- Non-parametric regression
- Semi non-parametric regression
- Non-parametric regression for dynamical systems
- Conclusion and open problems

Gaussian regression (non parametric)



Reproducing Kernel Hilbert Spaces (RKHS) (con't)

```
k(x, x'): \mathcal{X} \times \mathcal{X} \to \mathbb{R}: Mercel Kernel
```

- 1) $k(\cdot, \cdot)$ continous, \mathcal{X} : compact
- 2) symmetric: k(x, x') = k(x', x)
- 3) positive semidefinite: $K \in \mathbb{R}^{N \times N} \ge 0$, $[K]_{i,j} = k(x_i, x_j), \forall x_i, \forall N$,

Bayesian Interpretation:

$$\mathbb{E}[f(x)] = 0, \quad \mathbb{E}[f(x)f(x')] = k(x, x'): \text{ zero-mean gaussian process}$$

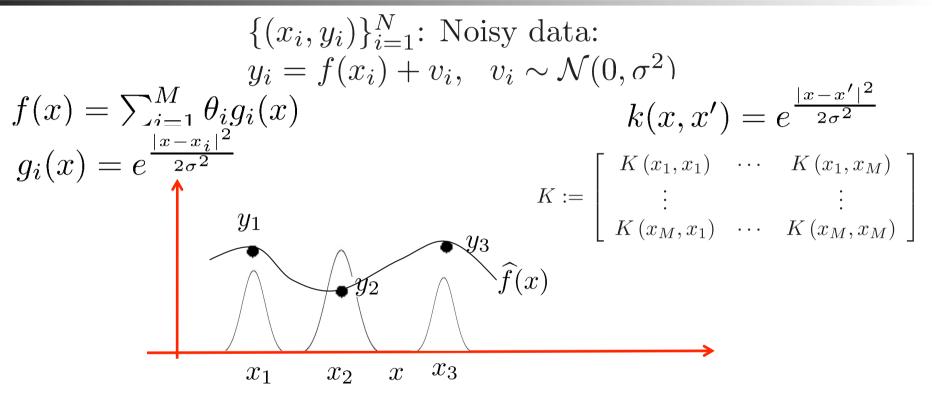
$$\{(x_i, y_i)\}_{i=1}^N: \text{ Noisy data:}$$

$$y_i = f(x_i) + v_i, \quad v_i \sim \mathcal{N}(0, \sigma^2)$$

$$\widehat{f}(x) = \mathbb{E}[f(x) \mid \{x_i, y_i\}_{i=1}^M] = \sum_{i=1}^N c_i k(x_i, x)$$

$$\begin{bmatrix} c_1 \\ \vdots \\ c_M \end{bmatrix} = (K + \sigma^2 I)^{-1} \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix}, \quad K := \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_M) \\ \vdots & \vdots \\ k(x_M, x_1) & \cdots & k(x_M, x_M) \end{bmatrix}$$

Parametric vs non-parametric



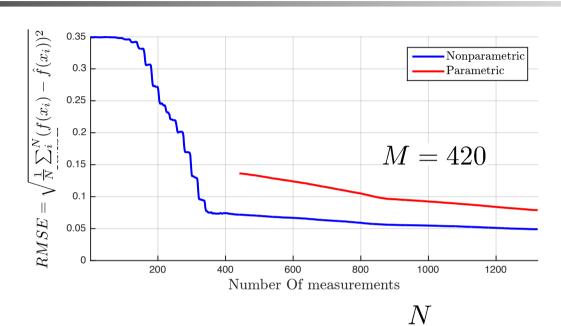
$$\widehat{f}(x) = \sum_{i=1}^{M} \widehat{\theta}_i g_i(x)$$

$$\widehat{f}(x) = \sum_{i=1}^{M} \widehat{\theta}_{i} g_{i}(x)$$
 $\widehat{f}(x) = \sum_{i=1}^{M} \widehat{c}_{i} k(x_{i}, x) = \sum_{i=1}^{M} \widehat{c}_{i} g_{i}(x)$

$$\widehat{\theta} = K^{-1}y$$

$$\widehat{c} = (K + \sigma^2 I)^{-1} y$$

Parametric vs non-parametric



	PARAMETRIC	NON-PARAMETRIC
PROS	 Distributed (consensus) Bounded complexity O(M³) 	Better performanceAdaptable resolution
CONS	 What g_i(x) ? Need N>M points Over-fitting & ill-conditioned 	 Regularization factor design Data-limited complexity O(N³)

Outline

- Motivations, target applications & challenges
- Parametric regression
- Non-parametric regression
- Semi non-parametric regression
- Non-parametric regression for dynamical systems
- Conclusion and open problems

Representer theorem

$$k(x, x'): \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$
: Mercel Kernel

- 1) $k(\cdot, \cdot)$ continous, \mathcal{X} : compact
- 2) symmetric: k(x, x') = k(x', x)
- 3) positive semidefinite: $K \in \mathbb{R}^{N \times N} \ge 0$, $[K]_{i,j} = k(x_i, x_j), \forall x_i, \forall N$,

 $\mu: \mathcal{X} \to \mathbb{R}^+$: measure function (sampling density)

$$h(x) := T_{k,\mu}[g](x) := \int_{\mathcal{X}} g(x')k(x,x')d\mu(x')$$
: Hilbert-Schmidt integral operator $h(x), g(x) \in \mathcal{L}^2(\mu)$

Since T is a linear operator → eigenvalues and eigenfunctions

$$T_{k,\mu}[\phi(x)] = \lambda \, \phi(x), \lambda \ge 0$$

Representer Theorem: Let $k(\cdot, \cdot)$ be a Mercer kernel on $\mathcal{X} \times \mathcal{X}$, $\lambda_{\ell} > 0 \quad \forall \ell$ and μ a non-degenerate measure. Then, $\{\phi_{\ell}\}_{\ell=1}^{+\infty}$ is an orthonormal basis in $\mathcal{L}^{2}(\mu)$ while the associated RKHS is

$$\mathcal{H}_K := \left\{ f(x) \in \mathcal{L}^2(\mu) \text{ s.t. } f(x) = \sum_{\ell=1}^{\infty} \alpha_{\ell} \phi_{\ell}(x) \text{ and } \sum_{e=1}^{\infty} \frac{\alpha_e^2}{\lambda_e} < +\infty \right\}$$

Map-building as least-squares regression

Model class:

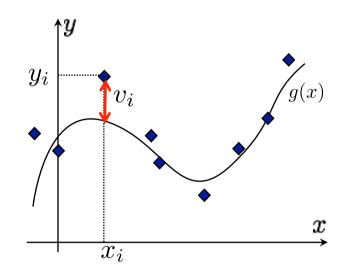
$$f(x) = \sum_{m=1}^{M} \theta_m g_m(x)$$

Noisy measurements:

$$y_{i} = \sum_{m=1}^{M} \theta_{m} g_{m}(x_{i}) + v_{i}, \quad i = 1, \dots, N$$

$$\begin{bmatrix} y(x_{1}) \\ y(x_{2}) \\ \vdots \end{bmatrix} = \begin{bmatrix} g_{1}(x_{1}) & \dots & g_{M}(x_{I}) \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \theta_{1} \\ \vdots \\ \theta_{M} \end{bmatrix} + \begin{bmatrix} v_{1} \\ \vdots \\ v_{N} \end{bmatrix}$$

$$y = G\theta + v$$



Goal: minimize sum of squares of residues

$$\hat{\theta} = \operatorname{argmin}_{\theta} \sum_{i=1}^{N} v_i^2$$

$$\begin{vmatrix} \hat{\theta} = (\sum_{i=1}^{N} G_i G_i^T)^{-1} (\sum_{i=1}^{N} G_i y_i) \\ = (\frac{1}{N} \sum_{i=1}^{N} G_i G_i^T)^{-1} (\frac{1}{N} \sum_{i=1}^{N} G_i y_i) \end{vmatrix}$$

- Xiao-Boyd-Lall, 2005
- Bolognani-Del Favero-Schenato-Varagnolo, 2010

Semi-parametric estimation

1st IDEA: Use first eigenfunctions as basis function for parametric estimation

$$f(x) = \sum_{\ell=1}^{+\infty} \alpha_{\ell} \phi_{\ell}(x)$$

$$y_{i} = \sum_{\ell=1}^{+\infty} \alpha_{\ell} \phi_{\ell}(x_{i}) = \underbrace{\left[\phi_{1}\left(x_{i}\right) \phi_{2}\left(x_{i}\right) \dots\right]}_{G_{i}^{T}} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \end{bmatrix} + v_{i}$$

$$\widehat{\alpha} = \left(\operatorname{diag}\left(\frac{\sigma^{2}}{\lambda_{\ell}}\right) + \sum_{i=1}^{N} G_{i} G_{i}^{T}\right)^{-1} \left(\sum_{i=1}^{N} G_{i} y_{i}\right)$$

$$\widehat{\alpha}^{E} = \left(\operatorname{diag}\left(\frac{\sigma^{2}}{\lambda_{\ell}}\right) + \sum_{i=1}^{N} G_{i}^{E} (G_{i}^{E})^{T}\right)^{-1} \left(\sum_{i=1}^{N} G_{i}^{E} y_{i}\right)$$

$$G_{i}^{E} = \left[\phi_{1}(x_{i}) \cdots \phi_{E}(x_{i})\right]$$
(intuition: $\alpha_{i} \approx 0$, for $i > E$, therefore $\widehat{f}(x) \approx \widehat{f}^{E}(x)$)

Semi-parametric estimation (cont'd)

 2^{st} IDEA: Use orthonormality of eigenfunctions ϕ_n and i.i.d. sampling of x_i

$$\widehat{\alpha}^{E} = \left(\operatorname{diag}\left(\frac{\sigma^{2}}{N\lambda_{\ell}}\right) + \frac{1}{N}\sum_{i=1}^{N}G_{i}^{E}(G_{i}^{E})^{T}\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}G_{i}^{E}y_{i}\right)$$

$$\left[\frac{1}{N}\sum_{i=1}^{N}G_{i}^{E}\left(G_{i}^{E}\right)^{T}\right]_{mn} = \frac{1}{N}\sum_{i=1}^{N}\phi_{m}\left(x_{i}\right)\phi_{n}\left(x_{i}\right)$$

$$\left[\frac{1}{N}\sum_{i=1}^{N}\phi_{m}(x_{i})\phi_{n}(x_{i})\right] \xrightarrow{N \to +\infty, x_{i} \sim \mu(x)} \int \phi_{m}(x)\phi_{n}(x)d\mu(x) = \delta_{mn}$$

$$\widehat{\alpha}^{I}(x) = \left(\operatorname{diag}\left(\frac{\sigma^{2}}{N\lambda_{\ell}}\right) + I\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}G_{i}^{E}y_{i}\right)$$

Complexity of semi-parametric approaches

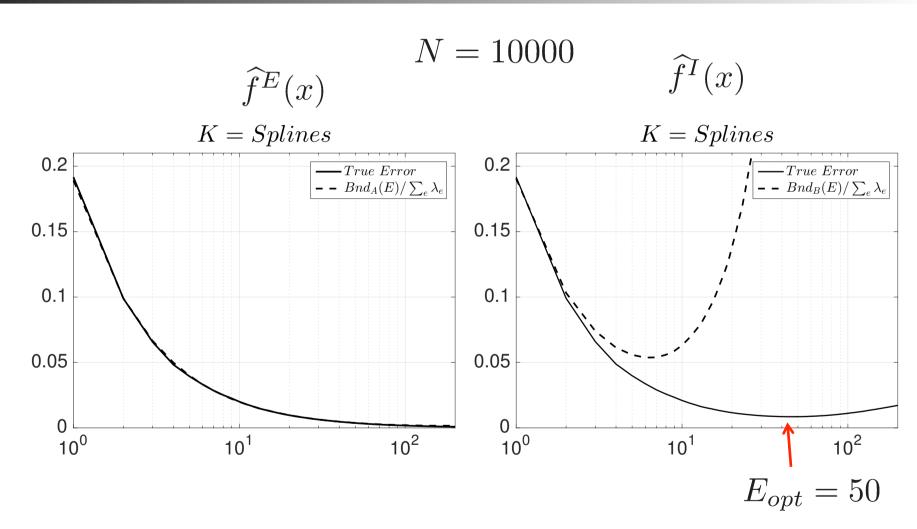
$$\widehat{f}(x) = \sum_{i=1}^{N} c_i k(x_i, x), \quad c = (K+I)^{-1} y, \quad [K]_{mn} = k(x_m, x_n)$$

$$\widehat{f}^E(x) = \sum_{i=1}^{E} \alpha_i^E \phi_i(x) \qquad \widehat{\alpha}^E = \left(\operatorname{diag}\left(\frac{\sigma^2}{N\lambda_\ell}\right) + \frac{1}{N} \sum_{i=1}^{N} G_i^E(G_i^E)^T\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} G_i^E y_i\right)$$

$$\widehat{f}^I(x) = \sum_{i=1}^{I} \alpha_i^E \phi_i(x) \qquad \widehat{\alpha}^I = \left(\operatorname{diag}\left(\frac{\sigma^2}{N\lambda_\ell}\right) + I\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} G_i^E y_i\right)$$

estimator	$comput. \\ cost$	$commun. \\ cost$	$memory \\ cost$
$\widehat{f}(x)$	$O\left(N^3\right)$	$O\left(N ight)$	$O\left(N ight)$
$\widehat{f}^{E}(x)$	$O\left(E^3\right)$	$O\left(E^2\right)$	$O\left(E^2\right)$
$\widehat{f}^{I}(x)$	$O\left(E\right)$	$O\left(E\right)$	$O\left(E\right)$

Performance of semi-parametric approaches



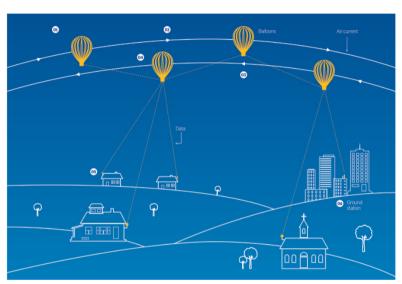
Outline

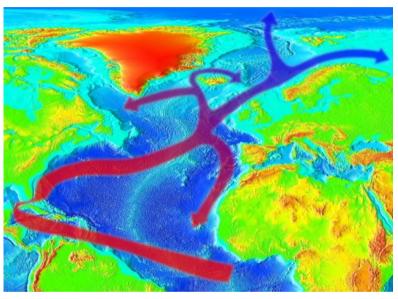
- Motivations, target applications & challenges
- Parametric regression
- Non-parametric regression
- Semi non-parametric regression
- Non-parametric regression for dynamical systems
- Conclusion and open problems

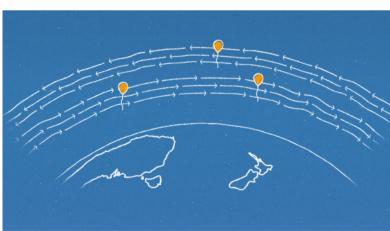
Non-parametric regression for dynamical systems

Project Loon¹

Wind/Ocean Current 4 Energy/Air Vehicles







Time-varying regression f(x,t): parametric vs non-parametric

Single location: $f(\bar{x},t): \mathbb{R} \to \mathbb{R}$

$$s_{k+1} = As_k + w_k, \quad w_k \sim \mathcal{N}(0, Q)$$

$$y_k = Cs_k + v_k, \quad v_k \sim \mathcal{N}(0, R)$$

$$f_k = Cs_k, \quad s_0 \sim \mathcal{N}(0, \Sigma_0)$$

Data:
$$\{(t_k, y_k)\}_{i=1}^N, t_k = kT$$

$$\widehat{s}_{k+1|k} = A\widehat{s}_{k|k}$$

$$\sum_{k+1|k} = A\sum_{k|k} A^T + Q$$

$$\widehat{s}_{k+1|k+1} = \widehat{s}_{k+1|k} + L_{k+1} \left(y_{k+1} - C_k \widehat{s}_{k+1|k} \right)$$

$$\Sigma_{k+1|k+1} = \Sigma_{k+1|k} - L_{k+1} C_k \Sigma_{k+1|k}$$

$$L_{k+1} = \sum_{k+1|k} C_k^T \left(C_k \sum_{k+1|k} C_k^T + R \right)^{-1}$$

$$\widehat{s}_{k|k} = \mathbb{E}[s_k \mid y_k, \dots, y_0] \Rightarrow \widehat{f}(\bar{x}, kT) = C\widehat{s}_{k|k}$$

$$\widehat{s}_{k|k} = \mathbb{E}[s_k \,|\, y_k, \dots, y_0] = \mathbb{E}[s_k \,|\, y_k, \widehat{s}_{k-1|k-1}]$$

Numerical efficient but requires to know the exact model (A,C,Q,R)

Single instant: $f(x, \bar{t}) : \mathbb{R}^p \to \mathbb{R}$

$$y_i = f(x_i) + v_i, \quad v_i \sim \mathcal{N}(0, \sigma^2)$$

 $f(x) \in \text{RKHS} \leftrightarrow k(x, x')$

Data:
$$\{(x_i, y_i)\}_{i=1}^N$$

$$\widehat{f}(x) = \sum_{i=1}^{N} c_i k(x_i, x)$$

$$c = (K+I)^{-1}y, [K]_{mn} = k(x_m, x_n)$$

Model-free and best performance but high computational complexity O(N³)

Time-varying regression f(x,t): parametric vs non-parametric

General case: $f(x,t): \mathbb{R}^p \times \mathbb{R} \to \mathbb{R}$

Stochastic PDEs:

space-time white Gaussian noise

$$\frac{\partial^2 f(x,t)}{\partial x^2} + \frac{\partial^2 f(x,t)}{\partial t^2} - \lambda^2 f(x,t) = w(x,t),$$

Data: $\{(t_i, x_i, y_i)\}_{i=1}^N$

Discretize in time and space and run finite-element methods

Approximated solutions and requires a good physical model

Define $\xi = (x, t)$ and kernel $k(\xi, \xi')$:

$$y_i = f(\xi_i) + v_i, \quad v_i \sim \mathcal{N}(0, \sigma^2)$$

 $f(\xi) \in \text{RKHS} \leftrightarrow k(\xi, \xi')$

Data:
$$\{(\xi_i, y_i)\}_{i=1}^N$$

$$\widehat{f}(\xi) = \sum_{i=1}^{N} c_i k(\xi_i, \xi)$$

$$c = (K+I)^{-1}y, [K]_{mn} = k(\xi_m, \xi_n)$$

Time space treated equally and unbounded complexity O(t³)

S. Sarkka, A. Solin, J Hartikainen, Spatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing: A look at Gaussian process regression through Kalman filtering. IEEE Sig. Proc. Mag., 30(4),2013

Combining parametric and non-parametric: **Ralman filtering meets Machine Learning (1)

General case: $f(x,t): \mathbb{R}^p \times \mathbb{R} \to \mathbb{R}$

Two fundamental assumptions:

- 1. finite number of measurement locations $\mathcal{X}_{meas} = \{x_1, \dots, x_M\}$
- 2. separable kernels: $k(x, t, x', t') = k_s(x, x')h(\tau), \ \tau = t t'$

$$\mathbf{f}_t = [f(x_1, t) \ f(x_2, t) \cdots f(x_M, t)]^T \qquad \mathbf{f}_t : \mathcal{X}_{meas} \times \mathbb{R} \to \mathbb{R}^M$$

Fourier Transform $S(\omega) = \mathcal{F}[h(\tau)]$

Spectral Factorization $S(\omega) = W(i\omega)W(-i\omega)$

$$W(i\omega) = \frac{b_{r-1}(i\omega)^{r-1} + b_{r-2}(i\omega)^{r-2} + \dots + b_0}{(i\omega)^r + a_{r-1}(i\omega)^{r-1} + \dots + a}$$
State Space representation:
$$F = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & & \ddots & & \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{r-1} \end{bmatrix}, G = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix},$$

$$z_t = Hs_t$$

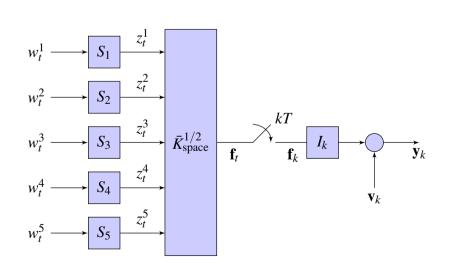
$$H = \begin{bmatrix} b_0 & b_1 & b_2 & \dots & b_{r-1} \end{bmatrix},$$

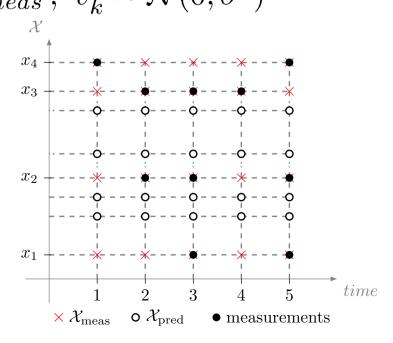
Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric: **EXALTIMENT OF LEARTH INC. | Combining parametric and non-parametric an

$$\mathbf{f}_t = [f(x_1, t) \ f(x_2, t) \cdots f(x_M, t)]^T$$

Dynamics of \mathbf{f}_t :

$$\dot{s}_{t}^{j} = F s_{t}^{j} + G w_{t}^{j}
z_{t}^{j} = H s_{t}^{j}, \quad j = 1, \dots, M
\mathbf{f}_{t} = K_{s}^{1/2} \mathbf{z}_{t}, \quad [K_{s}]_{mn} = k_{s}(x_{m}, x_{n})
y_{k}^{j} = f_{k}(x_{j}) + v_{k}^{j} \quad x_{j} \in M(k) \subset \mathcal{X}_{meas}, \quad v_{k}^{j} \sim \mathcal{N}(0, \sigma^{2})$$





Combining parametric and non-parametric: **Ralman filtering meets Machine Learning (3)

$$\widehat{\mathbf{f}}_k = \mathbb{E}[\mathbf{f}_{kT} \mid \{(y_i, x_i)\}, i \in M(k)]$$

$$\mathbf{y}_k \longrightarrow \overline{\mathbf{f}}_k$$
 Time Varying KF $\overline{\hat{\mathbf{s}}_k}$ $\overline{K}_s^{1/2}\mathbf{H}$

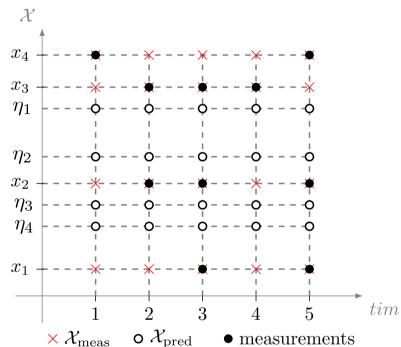
$$\begin{split} \widehat{s}_{k+1|k} &= A \widehat{s}_{k|k} \\ \Sigma_{k+1|k} &= A \Sigma_{k|k} A^T + Q \\ \widehat{s}_{k+1|k+1} &= \widehat{s}_{k+1|k} + L_{k+1} \left(y_{k+1} - C_k \widehat{s}_{k+1|k} \right) \\ \Sigma_{k+1|k+1} &= \Sigma_{k+1|k} - L_{k+1} C_k \Sigma_{k+1|k} \\ L_{k+1} &= \Sigma_{k+1|k} C_k^T \left(C_k \Sigma_{k+1|k} C_k^T + R \right)^{-1} \end{split}$$

$$A = \text{blkdiag}(\overline{F}, \dots, \overline{F}), \ Q = \text{blkdiag}(\overline{Q}, \dots, \overline{Q})$$

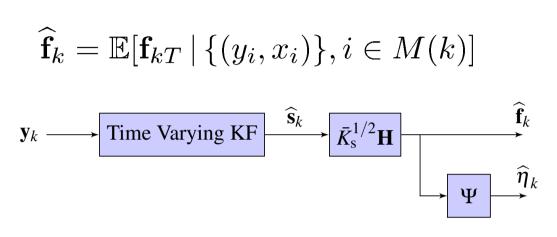
$$\overline{F} = e^{FT}, Q = \int_0^T e^{F\tau} GG^T(e^{F\tau})^T d\tau, R = \sigma^2 I$$

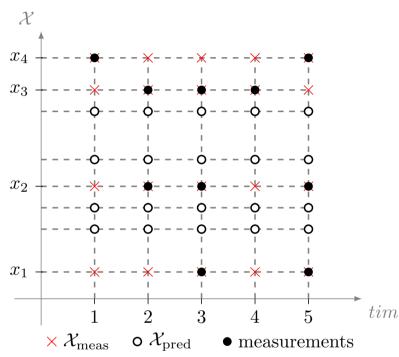
$$C_k := I_k K_s^{1/2} \mathbf{H}, \ \mathbf{H} = \text{blkdiag}(H, \dots, H), \ I_k \in \{0, 1\}^{M_k \times M}$$

$$\mathcal{X}_{pred} = \{x_{M+1}, \dots, x_{M+S}\}, \mathcal{X}_{pred} \cap \mathcal{X}_{meas} = \emptyset$$
$$\boldsymbol{\eta}_t = [f(x_{M+1}, t) \cdots f(x_{M+S}, t)]^T$$
$$\widehat{\boldsymbol{\eta}}_k = \Psi \widehat{\mathbf{f}}_k, \quad \Psi \in \mathbb{R}^{S \times M}, \Psi = \Psi(\mathcal{X}_{meas}, \mathcal{X}_{pred})$$



Combining parametric and non-parametric: EXALTMENT OF BARDON ENGINEERING TO BE ADD T





Truncated Gaussian regression vs Kalman-based Gaussian regression

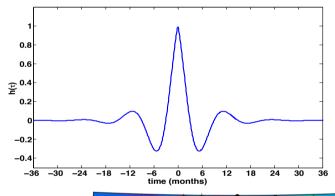
Colorado Weather Dataset: 365 stations, 100 years, monthly rain precipitation

$$K_{\rm s}(x, x') = e^{-\sigma_s ||x - x'||}, \qquad \sigma_s = 0.5,$$

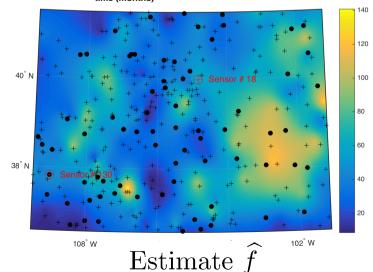
$$h(\tau) = \lambda \cos(2\pi |f|\tau|)e^{-\sigma_t|\tau|}, \quad \lambda = 2 \times 10^3, \ \sigma_t = 0.2,$$

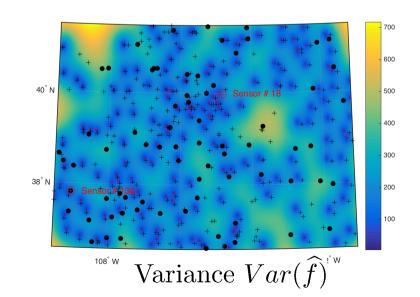
Space kernel

Time-Kernel



	Memory [MB]	CPU time [sec.]
Kalman-based Alg.1	4	0.02
Classical GP (all data)	1.5 10 ⁶	NA
Truncated GP (1 year data)	150	15
Truncated GP (2 years data)	600	120
Truncated GP (3 years data)	1300	410



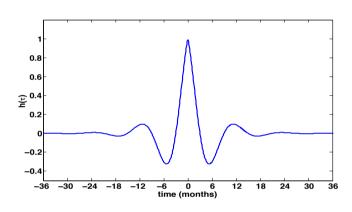


Truncated Gaussian regression vs Kalman-based Gaussian regression

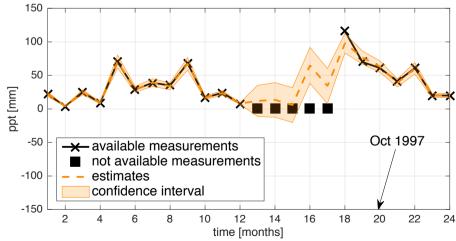
$$K_{\rm s}(x, x') = e^{-\sigma_s ||x - x'||}, \qquad \sigma_s = 0.5,$$

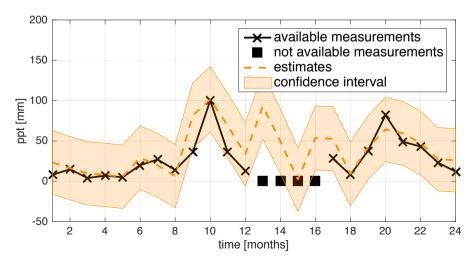
$$h(\tau) = \lambda \cos(2\pi |f|\tau|)e^{-\sigma_t|\tau|}, \quad \lambda = 2 \times 10^3, \ \sigma_t = 0.2,$$

Space kernel Time-Kernel



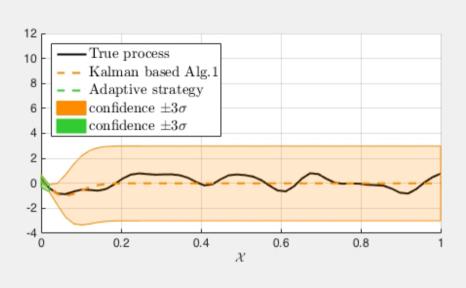
	Memory [MB]	CPU time [sec.]
Kalman-based Alg.1	4	0.02
Classical GP (all data)	1.5 10 ⁶	NA
Truncated GP (1 year data)	150	15
Truncated GP (2 years data)	600	120
Truncated GP (3 years data)	1300	410

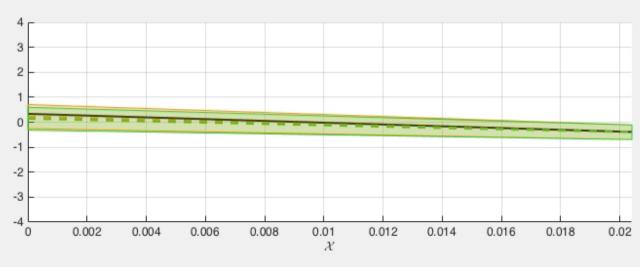




Estimate on non-measured location

Dynamic Grid (suboptimal solution)





Outline

- Motivations, target applications & challenges
- Parametric regression
- Non-parametric regression
- Semi non-parametric regression
- Non-parametric regression for dynamical systems
- Conclusion and open problems

Conclusions & open problems

- Non-parametric approach has great potential but it is unclear how to
 - make it distributed
 - incorporate time
 - adaptively design the sampling density, i.e. $\mu(x) \propto \hat{f}(x)$
- Many details swept under the carpet:
 - Real-time and distributed design of regularization parameter for non-parametric approaches
 - Packet loss & asynchronous computation
 - Computation of eigenfunctions
- Integration of learning with control & optimization

References

Parametric vs non-parametric

 D. Varagnolo, G. Pillonetto, L. Schenato. Distributed parametric and nonparametric regression with on-line performance bounds computation. Automatica, vol. 48(10), pp. 2468 -- 2481, 2012

Cloud-based vs peer-to-peer

 M. Todescato, A. Carron, R. Carli, G. Pillonetto, L. Schenato. Multi-Robots Gaussian Estimation and Coverage Control: from Server-based to Distributed Architecture. Automatica [to appear]

Global vs Local estimation

- D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato. Newton-Raphson Consensus for Distributed Convex Optimization. IEEE Transactions on Automatic Control, vol. 61(4), pp. 994--1009, 2016
- A. Carron, M. Todescato, R. Carli, L. Schenato. An asynchronous consensus-based algorithm for estimation from noisy relative measurements. *IEEE Transactions* on Control of Network Systems, vol. 1(3), pp. 283 - 295, 2014
- N. Bof, M. Todescato, R. Carli, L. Schenato. Robust Distributed Estimation for Localization in Lossy Sensor Networks. 6th IFAC Workshop on Distributed Estimation and control in Networked Systems (NecSys16), 2016

Static vs dynamic maps:

 M. Todescato, A. Carron, R. Carli, L. Schenato, G. Pillonetto. Machine Learning meets Kalman Filtering. 55th IEEE Conference on Decision and Control (CDC16)

Q&A

Thank you

WC IFAC '17 (Toulouse)
Open Invited Track

Multi-agent distributed learning and optimization of dynamical systems

Proponents: Ruggero Carli (Univ. Padova), Jongeun Choi (Yonsei University Seoul), Hideaki Ishii (Tokyo Institute of Technology), Jerome Le Ny (Polytechnique Montreal), Luca Schenato (Univ. Padova)