
Multi-agent map-building:
 Kalman Filtering meets Machine Learning

Luca Schenato
University of Padova
Stuttgart, April 2017

Joint work with
Colleagues at Univ. of Padova

Current Ph.D/post-docs:

Ruggero Carli Gianluigi Pillonetto

Andrea Carron
ETH, Switzerland

Marco Todescato Damiano Varagnolo
Lulea Univ., Sweden

Guido Cavraro
Virginia Tech, USA

Nicoletta Bof

Former Ph.D/post-docs:

Outline
!  Motivations, target applications & challenges

!  Parametric regression

!  Non-parametric regression

!  Semi non-parametric regression

!  Non-parametric regression for dynamical systems

!  Conclusion and open problems

Outline
!  Motivations, target applications & challenges

!  Parametric regression

!  Non-parametric regression

!  Semi non-parametric regression

!  Non-parametric regression for dynamical systems

!  Conclusion and open problems

The XXI century: a Smart World

INTELLIGENT
TRAFFIC
SYSTEMS

SWARM
ROBOTICS

WIRELESS
SENSOR

NETWORKS

SMART
 CITIES

SMART
 BUILDINGS

SMART GRIDS

FACTORY 4.0

The ICT scientific army

Before&2000’s& Today&

Centralized&
Reliable&comm.&

Mul<=agent&
Reliable&comm.&

Centralized&
Unrelia.&Comm.&

Mul<=agent&
Unrelia.&Comm.&

Tomorrow&

Smart Camera
Networks

Target applications:
MAgIC Lab. at University of Padova

Wireless Sensor
Actuator Networks

Smart Energy
Grids

Robotic
Networks

2002

2008

2012

Challenges

!  Unreliable (wireless) communication:
!  Random delay, packet loss, limited communication range

!  Scalability:
!  Complexity (CPU, memory, communication) per agent

must be constant

!  Robustness/resilience and adaptiveness/learning:
!  Mild performance degradation when local failures
!  Continuous environmental learning

!  Architecture:
!  Centralized vs hierarchical vs distributed vs decentralized
!  Cooperative vs competitive

Challenges

!  Unreliable (wireless) communication:
!  Random delay, packet loss, limited communication range

!  Scalability:
!  Complexity (CPU, memory, communication) per agent

must be constant

!  Robustness/resilience and adaptiveness/learning:
!  Mild performance degradation when local failures
!  Continuous environmental learning

!  Architecture:
!  Centralized vs hierarchical vs distributed vs decentralized
!  Cooperative vs competitive

Dynamic learning and optimization

STABILITY
(feedback) PERFORMANCE

(optimization)

Environment learning
(dynamical changes, “steady state” scenario)

Disruptive events detection
(local failures, communication blackouts, new agents integration, ….)

Dynamic learning and optimization

STABILITY
(feedback) PERFORMANCE

(optimization)

Environment learning
(dynamical changes, “steady state” scenario)

Disruptive events detection
(local failures, communication blackouts, new agents integration, ….)

Learning problems:

Density estimation:

Regression:

Classification

Taxi pick-up calls Anomaly detection

Pollution level profile Seabed depth profile

Obstacles map Oil-spill boundary

Multi-agent regression
!  Parametric vs non-parametric

!  Cloud-based vs peer-to-peer

!  Global vs Local estimation

!  Static vs dynamic maps:

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

Multi-agent regression
!  Parametric vs non-parametric

!  Cloud-based vs peer-to-peer

!  Global vs Local estimation

!  Static vs dynamic maps:

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

Outline
!  Motivations, target applications & challenges

!  Parametric regression

!  Non-parametric regression

!  Semi non-parametric regression

!  Non-parametric regression for dynamical systems

!  Conclusion and open problems

Example:
Map-building in robotic networks

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y
fµ fµ

fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

i

j

Parametric model:
linear vs non-linear

Linear combination of
radial basis functions

Mixture of Gaussians

•  Large number of basis
•  Convex problem

•  Needs fewer functions
•  Non-linear problem

Map-building
as least-squares regression

!  Model class:

!  Noisy measurements:

!  Goal: minimize sum of

squares of residues

•  Xiao-Boyd-Lall, 2005
•  Bolognani-Del Favero-Schenato-Varagnolo, 2010

Consensus-based Map-building:
gossip communication

i

j

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

!  PROS:
!  Can be distributed
!  Gradient-based implementation:

ADMM, gradient-consensus,
!  Extension to robust costs, e.g. || ||1

!  CONS:
!  How to select basis functions
!  No estimate unless at least M data
!  Gradient-based implementations

require step-size design

Simulations:
broadcast based map building

Outline
!  Motivations, target applications & challenges

!  Parametric regression

!  Non-parametric regression

!  Semi non-parametric regression

!  Non-parametric regression for dynamical systems

!  Conclusion and open problems

Gaussian regression
(non parametric)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y
fµ fµ

fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

f µ
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

c]
(x
,⇤

)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

T
�
1
[b

d
](
x,

⇤)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

�2

0

2

x

⇤

y

fµ fµ
fc fd {yi} Sg = 1575
S = 1500 E = 150

0.01

0.02

0.05

0.1

1 2 10 +⇥

0

0.2

0.4

0.6

0.8

1

Sg/S

bd

bc

⇧fµ�fc⇧µ

⇧fµ⇧µ

⇧fµ�fd⇧µ

⇧fµ⇧µ

Sg/S S = 1500 E = 150

E = 150
E

S = 1425
S = 1575

�

⇥e

E = 10�3 E = 150

25 50 75 100 125 150 175 200

1 · 10�4

1 · 10�3

1 · 10�2

0.1
1

10

E

E

E
E

S = 1575

i

j

Reproducing Kernel Hilbert Spaces
(RKHS) (con’t)

Bayesian Interpretation:

Parametric vs non-parametric

regularization term

Parametric vs non-parametric

������ �� ��	
�������

200 400 600 800 1000 1200

�

�
�

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

����	�	������
�	�	������

•  Distributed (consensus)
•  Bounded complexity O(M3)

•  Better performance
•  Adaptable resolution

•  What gi(x) ?
•  Need N>M points
•  Over-fitting & ill-conditioned

•  Regularization factor design
•  Data-limited complexity O(N3)

PARAMETRIC NON-PARAMETRIC

PROS

CONS

Outline
!  Motivations, target applications & challenges

!  Parametric regression

!  Non-parametric regression

!  Semi non-parametric regression

!  Non-parametric regression for dynamical systems

!  Conclusion and open problems

Representer theorem

Since T is a linear operator " eigenvalues and eigenfunctions

Map-building
as least-squares regression

!  Model class:

!  Noisy measurements:

!  Goal: minimize sum of

squares of residues

•  Xiao-Boyd-Lall, 2005
•  Bolognani-Del Favero-Schenato-Varagnolo, 2010

Semi-parametric estimation

 1st IDEA: Use first eigenfunctions as basis function for
parametric estimation

Semi-parametric estimation (cont’d)

 2st IDEA: Use orthonormality of eigenfunctions ϕn and i.i.d.
sampling of xi

Complexity
of semi-parametric approaches

has the size of the number of measurements, therefore
it is of order O(S3

). The estimator b
r

given in (37) re-
lies on average consensus algorithms to compute the
averages 1/S

P

S

i=1

�

CE

i

�

T

CE

i

and 1/S
P

S

i=1

�

CE

i

�

T

y
i

.
Since typical average consensus algorithms require the
storage and exchange of quantities with the same size
of the desired averages at each iteration [40], if they are
performed for a fixed number of iterations, then the com-
munication and memory complexity are given by O(S2

)

which is the size of 1/S
P

S

i=1

�

CE

i

�

T

CE

i

. The compu-
tational complexity is dominated by the inversion of a
matrix of size E, and it is therefore of order O(E2

). Fi-
nally, the estimator b

d

given in (38) requires only the
computation of the average 1/S

P

S

i=1

�

CE

i

�

T

y
i

and the
inversion and multiplication of a diagonal matrix with a
vector of size E, therefore its communication, memory
and computational complexity is of order O(E). These
considerations are summarized in Table 1.

estimator comput.
cost

commun.
cost

memory
cost

bf(x) O
�
N3

�
O (N) O (N)

bfE(x) O
�
E3

�
O
�
E2

�
O
�
E2

�

bf I(x) O (E) O (E) O (E)

Table 1
Computational, communication and memory costs associ-
ated to the introduced estimators.

5 Selection of the number of eigenfunctions E

Let E be the maximum admissible value for E, given by
computational complexity and transmission capability
constraints. Since setting E to E could lead to resource
wasting, in this section we derive some guidelines for
a possibly more parsimonious choice exploiting the a
priori information that can be available to the user. We
remark that the strategies reported below provide only
practical indications on the choice of E before seeing the
data. However, the choice of E can be validated using
Algorithm 3 developed in Section 6 after seeing the data.

There are mainly two ways for tuningE before seeing the
data. The first is based only on the kernel K and selects
E based on the cumulative energy of its eigenvalues, as
summarized in Algorithm 1.

Algorithm 1 Selection of E (First strategy)
1: Choose a threshold " 2 (0, 1), corresponding to se-

lect a pre-defined fraction of the approximation ca-
pabilities of the base {�

i

}1
i=1;

2: compute E = minE s.t.
E
X

e=1

�
e

� "
+1
X

e=1

�
e

.

Differently, the second strategy tries to include also the
prior information about the probability measure µ from

which the input locations are drawn. This strategy se-
lects E based on a approximate bound of relative dis-
tance between b

c

and b
r

. Exploiting inequality (A.34) in
the proof of Proposition 9 and the equivalence y

i

�C
i

b
r

=

(y
i

� C
i

b
µ

)+(C
i

b
µ

� C
i

b
r

), where b
µ

= T [f
µ

] is the true
signal defined in (15), we can write

kb
c

� b
r

k2
kb

r

k2

S

X

i=1

�

�

�

�

diag

✓

�
e

�

◆

⇣

C\E
i

⌘

T

�

�

�

�

2

⇠
i

(41)

where ⇠
i

:

=

k⌫
i

k2
kb

r

k2
+

kC
i

(b
µ

� b
r

)k2
kb

r

k2
.

We start assuming that the errors kC
i

b
µ

� C
i

b
r

k2 are
smaller than times the standard deviation of the mea-
surement noise. Therefore, regulates the degree of con-
servativeness of this assumption. A reasonable choice is
 = 3. We also use the inverse of the SNR as an approx-
imation of both k⌫ik2

kbrk2
and �

kbrk2
. Hence, ⇠

i

is replaced by
(+1)SNR�1. Finally, for S sufficiently large the quan-
tity

S
max

E

�

�

�

�

diag

✓

�
e

�

◆

⇣

C\E
i

⌘

T

�

�

�

�

2

�

overestimates
S

X

i=1

�

�

�

�

diag

✓

�
e

�

◆

⇣

C\E
i

⌘

T

�

�

�

�

2

. The expecta-

tion above can be computed using Monte Carlo tech-
niques up to a desired level of accuracy. All the argu-
ments above lead to the following Algorithm 2. Once
again it is important to remark that only a rough esti-
mate of E is necessary at this stage and that it can be
validated a-posteriori based on the performance analysis
provided in Section 6.

Algorithm 2 Selection of E (Second strategy)
1: Assume to have a bound on the SNR, choose a

threshold " for the maximal tolerable error kbc�brk2
kbµk2

and choose a degree of conservativeness ;
2: compute the minimal value of E s.t.

(+ 1)SNR�1S
max

E

�

�

�

�

diag

✓

�
e

�

◆

⇣

C\E
i

⌘

T

�

�

�

�

2

�

 "

(42)
where we remark the dependence of the expectation
on E.

6 Assessment of the quality of the estimates

Once the choice of E is set, then it is crucial to assess
the quality of b

d

in terms of its closeness to the opti-
mal centralized estimate b

c

. To this regard, the following
two results, namely Algorithm 3 and the related Propo-
sition 9, represent the main results of this section. They
provide a way to compute, in a distributed fashion, sta-

9

Performance
of semi-parametric approaches

5

10
0

10
1

10
2

E

0

0.05

0.1

0.15

0.2

K = Splines

True Error
BndA(E)/

∑
e λe

10
0

10
1

10
2

E

0

0.05

0.1

0.15

0.2

K = Splines

True Error
BndB(E)/

∑
e λe

10
0

10
1

10
2

E

0

0.2

0.4

0.6

0.8

1
K = exponential decay

True Error
BndA(E)/

∑
e λe

10
0

10
1

10
2

E

0

0.2

0.4

0.6

0.8

1
K = exponential decay

True Error
BndB(E)/

∑
e λe

Figure 1. BndA and BndB (normalized by the a priori function variance) as a function of E, with ↵ = 0.05, for different data set sizes M and eigenvalues
decay rates.

with the input locations probability measure µ in (2) set to be
the uniform distribution on [0, 1]. With these settings

�
e

(x) =
p
2 sin (x(e⇡ � ⇡/2)) , �

e

=

1

(e⇡ � ⇡/2)2

and k = 2. To make the bounds only depend on E we set
M = 10000, 1� ↵ = 0.95 and the noise variance �2

⌫

= 0.12,
choosing that " 2 (0, 1] that minimizes the bound and satisfies
(22) or (25) accordingly.
The dashed lines in the two top panels of Figure 1 show
how Bnd

A

(left) and Bnd

B

(right) vary with E (bounds are
normalized using the prior process variance). For the sake
of comparison we also display the true (normalized) MSE
(solid line) calculated via a Monte Carlo of 500 runs. As for
Bnd

A

, it is interesting to notice that just 20 eigenfunctions
are needed to obtain an high estimation accuracy in both the
cases. In addition, the curve is very close to the true error
profile and is monotonically decreasing. Indeed, as discussed
in the proof of Theorem 6 contained in the next subsection,
when bf

A

is adopted one should set E as large as possible
(compatibly with communication capabilities) since, at the
limit, convergence to the minimum variance estimator holds.
The profile of Bnd

B

is instead different and exhibit a clear
minimum at E = 7. The reason is that bf

B

requires only
an information exchange of order O(E) since it relies on
the asymptotic matrix approximation (18). The bound Bnd

B

then points out that, if E is too large, the quality of this
approximation can become too poor, hence leading to an
increment of the MSE of bf

B

. One can also see that the true

error profile is not monotonically increasing. Indeed, for M
fixed and E which goes to infinity, bf

B

does nto converge to
the minimum variance estimator. It is important also to note
that, in this case, Bnd

B

is close to truth only for low E values.
Indeed, from the Monte Carlo analysis one can infer that the
best E is around 50. Overall, this suggests that the number
of eigenfunctions has thus to be seen as an important design
parameter for bf

B

, that must be carefully selected to optimize
the performance. This point will be the focus of Section V.
Finally, the two bottom panels of Figure 1 display the same
bounds except that kernel eigenvalues now decay exponentially
to zero as �

e

= exp(�0.1e). Shapes of the curves change but
the same comments hold true.

D. Asymptotic behaviours of the estimators

First, we report an useful theorem that illustrates a lower
bound on the performance achievable by a generic estimator of
f and that derives directly from the KL expansion introduced
in Section III-A.

Theorem 4 Let bf
?

be any generic estimator of f that is func-
tion of y and that takes values in any generic E-dimensional
space fixed a priori. Then

argmin

b
f?

E
���f � bf

?

���
2

| x
�
�

+1X

e=E+1

�
e

. (29)

Now, we start investigating the asymptotic properties of our

Outline
!  Motivations, target applications & challenges

!  Parametric regression

!  Non-parametric regression

!  Semi non-parametric regression

!  Non-parametric regression for dynamical systems

!  Conclusion and open problems

Non-parametric regression
for dynamical systems
Project Loon1 Wind/Ocean Current 4 Energy/Air Vehicles

1
https://x.company/loon/

Time-varying regression f(x,t):
parametric vs non-parametric

Numerical efficient but requires to
know the exact model (A,C,Q,R)

Model-free and best performance but
high computational complexity O(N3)

Time-varying regression f(x,t):
parametric vs non-parametric

Approximated solutions and requires
a good physical model

Time space treated equally and
unbounded complexity O(t3)

 IEEE SIGNAL PROCESSING MAGAZINE [58] JULY 2013

FROM SPATIOTEMPORAL COVARIANCE
FUNCTIONS TO STATE-SPACE MODELS
The generalization of the conversion procedure presented in
the section “From Temporal Covariance Functions to State-
Space Models” is the following. A given stationary spa-
tiotemporal Gaussian process with covariance function

(; ,)x xk t t, l l such that (, ; ,) ()x x x xk t t C t t,= - -l l l l can be
converted into an infinite-dimensional state-space model repre-
sentation via the following steps:

1) Compute the corresponding spectral density (,)S x t~ ~
as the spatiotemporal Fourier transform of (,) .C tx
2) Approximate the function (,)St x t7 ~~ ~ with a rational
function in variable .t

2~

3) Find a stable t~ -rational transfer function (,)G i ix t~ ~
and function ()qc x~u such that

 (,) (,) () (,) .S G i i q G i ix t x t c x x t~ ~ ~ ~~ ~ ~= - -u (34)

The transfer function needs to have all its roots and zeros
with respect to the t~ variable in upper half plane, for all
values of .x~ This kind of representation can be found
using spectral factorization discussed in the section
“From Temporal Covariance Functions to State-Space
Models.”
4) Use the methods from control theory [21] to convert the
transfer function model into an equivalent spatial Fourier
domain state-space model.
5) Transform each of the coefficients ()a ij x~ and ()b ij x~ into
the corresponding pseudodifferential operators and set the
spatial stationary covariance function of the white noise pro-
cess to the inverse Fourier transform of () .qc x~u

The above procedure is demonstrated in “Example 3 (2-D Matérn
Covariance Function).”

Note that when the covariance function is separable, that
is, () () (),C t C C t,x xx t= it implies that the spectral density is
separable as well: (,) () () .S S Sx t x x t t~ ~~ ~= It now turns out
that we can do the factorization in (34) as follows:

 (,) () () () .S G i S G ix t t x x t~ ~~ ~ ~= - (35)

Because the transfer function ()G i t~ does not contain the
variable x~ at all, the operator matrix A will actually be
just an ordinary matrix and the space correlation gets
accounted by setting the spatial covariance of the white
noise process according to the spectral density () .Sx x~ The
resulting infinite-dimensional Kalman filter and smoother
can then be implemented without additional approxima-
tions provided that we include all the spatial measurement
and test points in the state vector [11]. See “Example 4 (2-D
Squared Exponential Covariance Function)” for a demon-
stration of this.

NONCAUSAL STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS
An important thing to realize is that even if the spatiotemporal
covariance function was originally constructed as a solution to
some kind of stochastic partial differential equation, we might
still need to do the above factorization. For example, consider
the following stochastic partial differential equation (SPDE)
due to Whittle [23]:

 (,) (,) (,) (,),
x

f x t
t

f x t f x t w x t2

2

2

2
2

2

2

2

2
m+ - = (36)

where (,)w x t is a space–time white Gaussian random field.
Fourier transforming the system and computing the spectral
density gives the stationary covariance function

EXAMPLE 3 (2-D MATÉRN COVARIANCE FUNCTION)
The multidimensional equivalent of the Matérn covariance func-
tion given in “Example 1 (1-D Matérn Covariance Function)” is
the following (,r < <p p= - l for (, , , ,)):x x x t Rd

d
1 2 1f !p = -

 ()
()

.C r
l
r K

l
r2 2 22

1
v

o
o o

C
=

o o
o

- ` `j j
The corresponding spectral density is of the form

 () (,) ,S S 1
/r x t

x t
d2 2 2 2?

< <
~ ~

~
~

m ~
=

+ +
o+^ h

where / .l2m o= To find the transfer function (,),G i ix t~ ~ we
find the roots of the expression in the denominator. They are
given by () ,i it x

2 2! ~~ m= - which means we can now
extract the transfer function of the stable Markov process

 (,) .G i i i i
(/)

x t t x
d2 2 2

< <~ ~~ ~ m= + -
o- +^ h

The expansion of the denominator depends on the value
of / .p d 2o= + If p is an integer, the expansion can be easily

done by the binomial theorem. For example, if 1o = and
,d 2= we get

 (,) (,) (,),f f
t
x t x t w x t

0 1
2

0
12 2 2 22

2
d dm m

=
- - -

+c cm m (S1)

where 2d is the (spatial) Laplace operator (here the second
partial derivative w.r.t. x). The one-dimensional example in
“Example 1 (1-D Matérn Covariance Function)” can be seen as a
special case of this. An example realization of the process is
shown in Figure S2.

[FIGS2] A random realization simulated by the state-space
model in (S1).

x

t

space-time white
Gaussian noise

S. Sarkka, A. Solin , J Hartikainen, Spatiotemporal learning via infinite-dimensional Bayesian filtering and
smoothing: A look at Gaussian process regression through Kalman filtering. IEEE Sig. Proc. Mag., 30(4),2013

Combining parametric and non-parametric:
Kalman filtering meets Machine Learning (1)

Combining parametric and non-parametric:
Kalman filtering meets Machine Learning (2)

w1
t S1

z1
t

w2
t S2

z2
t

w3
t S3

z3
t

w4
t S4

z4
t

w5
t S5

z5
t

K̄1/2
space ft

kT

fk
Ik

vk

yk

time

X

Xmeas Xpred measurements
1 2 3 4 5

x1

x2

x3

x4

Combining parametric and non-parametric:
Kalman filtering meets Machine Learning (3)

time

X

Xmeas Xpred measurements
1 2 3 4 5

x1

x2

x3

x4

yk Time Varying KF K̄1/2
s H

bsk bfk

Y
bhk

Combining parametric and non-parametric:
Kalman filtering meets Machine Learning (4)

time

X

Xmeas Xpred measurements
1 2 3 4 5

x1

x2

x3

x4

yk Time Varying KF K̄1/2
s H

bsk bfk

Y
bhk

Truncated Gaussian regression
vs Kalman-based Gaussian regression

TODESCATO et al.: MACHINE LEARNING AND KALMAN FILTERING 11

Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10

3 , �
t

= 0.2 ,

which is characterized by a rational PSD equal to

S
r

(!) = 2��
t

!2

+

�

�2

t

+ (2⇡f)2
�

!4

+ 2 (�2

t

� (2⇡f)2)!2

+ (�2

t

+ (2⇡f)2)
2

,

which leads to a factorization (6) with

W (i!) =
p

2��
t

i! +

p

�2

t

+ (2⇡f)2

(i!)2 + 2�
t

(i!) + (�2

t

+ (2⇡f)2)
.

The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.

TODESCATO et al.: MACHINE LEARNING AND KALMAN FILTERING 11

Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10

3 , �
t

= 0.2 ,

which is characterized by a rational PSD equal to

S
r

(!) = 2��
t

!2

+

�

�2

t

+ (2⇡f)2
�

!4

+ 2 (�2

t

� (2⇡f)2)!2

+ (�2

t

+ (2⇡f)2)
2

,

which leads to a factorization (6) with

W (i!) =
p

2��
t

i! +

p

�2

t

+ (2⇡f)2

(i!)2 + 2�
t

(i!) + (�2

t

+ (2⇡f)2)
.

The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.

Space kernel
Time-Kernel

−36 −30 −24 −18 −12 −6 0 6 12 18 24 30 36

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (months)

h(
τ)

TODESCATO et al.: MACHINE LEARNING AND KALMAN FILTERING 11

Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10

3 , �
t

= 0.2 ,

which is characterized by a rational PSD equal to

S
r

(!) = 2��
t

!2

+

�

�2

t

+ (2⇡f)2
�

!4

+ 2 (�2

t

� (2⇡f)2)!2

+ (�2

t

+ (2⇡f)2)
2

,

which leads to a factorization (6) with

W (i!) =
p

2��
t

i! +

p

�2

t

+ (2⇡f)2

(i!)2 + 2�
t

(i!) + (�2

t

+ (2⇡f)2)
.

The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.

Colorado Weather Dataset: 365 stations, 100 years, monthly rain precipitation

Truncated Gaussian regression
vs Kalman-based Gaussian regression

TODESCATO et al.: MACHINE LEARNING AND KALMAN FILTERING 11

Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10

3 , �
t

= 0.2 ,

which is characterized by a rational PSD equal to

S
r

(!) = 2��
t

!2

+

�

�2

t

+ (2⇡f)2
�

!4

+ 2 (�2

t

� (2⇡f)2)!2

+ (�2

t

+ (2⇡f)2)
2

,

which leads to a factorization (6) with

W (i!) =
p

2��
t

i! +

p

�2

t

+ (2⇡f)2

(i!)2 + 2�
t

(i!) + (�2

t

+ (2⇡f)2)
.

The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.

TODESCATO et al.: MACHINE LEARNING AND KALMAN FILTERING 11

Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10

3 , �
t

= 0.2 ,

which is characterized by a rational PSD equal to

S
r

(!) = 2��
t

!2

+

�

�2

t

+ (2⇡f)2
�

!4

+ 2 (�2

t

� (2⇡f)2)!2

+ (�2

t

+ (2⇡f)2)
2

,

which leads to a factorization (6) with

W (i!) =
p

2��
t

i! +

p

�2

t

+ (2⇡f)2

(i!)2 + 2�
t

(i!) + (�2

t

+ (2⇡f)2)
.

The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.

Space kernel
Time-Kernel

−36 −30 −24 −18 −12 −6 0 6 12 18 24 30 36

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (months)

h(
τ)

TODESCATO et al.: MACHINE LEARNING AND KALMAN FILTERING 11

Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10

3 , �
t

= 0.2 ,

which is characterized by a rational PSD equal to

S
r

(!) = 2��
t

!2

+

�

�2

t

+ (2⇡f)2
�

!4

+ 2 (�2

t

� (2⇡f)2)!2

+ (�2

t

+ (2⇡f)2)
2

,

which leads to a factorization (6) with

W (i!) =
p

2��
t

i! +

p

�2

t

+ (2⇡f)2

(i!)2 + 2�
t

(i!) + (�2

t

+ (2⇡f)2)
.

The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.

2 4 6 8 10 12 14 16 18 20 22 24
time [months]

-150

-100

-50

0

50

100

150

pp
t [

m
m

]

available measurements
not available measurements
estimates
confidence interval

Oct 1997

2 4 6 8 10 12 14 16 18 20 22 24
time [months]

-50

0

50

100

150

200

pp
t [

m
m

]

available measurements
not available measurements
estimates
confidence interval

Dynamic Grid (suboptimal solution)

Outline
!  Motivations, target applications & challenges

!  Parametric regression

!  Non-parametric regression

!  Semi non-parametric regression

!  Non-parametric regression for dynamical systems

!  Conclusion and open problems

Conclusions & open problems

!  Non-parametric approach has great potential but it is
unclear how to
!  make it distributed
!  incorporate time
!  adaptively design the sampling density, i.e.

!  Many details swept under the carpet:
!  Real-time and distributed design of regularization

parameter for non-parametric approaches
!  Packet loss & asynchronous computation
!  Computation of eigenfunctions

!  Integration of learning with control & optimization

References
!  Parametric vs non-parametric

!  D. Varagnolo, G. Pillonetto, L. Schenato. Distributed parametric and
nonparametric regression with on-line performance bounds computation.
Automatica, vol. 48(10), pp. 2468 -- 2481, 2012

!  Cloud-based vs peer-to-peer
!  M. Todescato, A. Carron, R. Carli, G. Pillonetto, L. Schenato. Multi-Robots Gaussian

Estimation and Coverage Control: from Server-based to Distributed
Architecture. Automatica [to appear]

!  Global vs Local estimation
!  D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato. Newton-Raphson

Consensus for Distributed Convex Optimization. IEEE Transactions on Automatic
Control, vol. 61(4), pp. 994--1009, 2016

!  A. Carron, M. Todescato, R. Carli, L. Schenato. An asynchronous consensus-based
algorithm for estimation from noisy relative measurements. IEEE Transactions
on Control of Network Systems, vol. 1(3), pp. 283 - 295, 2014

!  N. Bof, M. Todescato, R. Carli, L. Schenato. Robust Distributed Estimation for
Localization in Lossy Sensor Networks. 6th IFAC Workshop on Distributed
Estimation and control in Networked Systems (NecSys16), 2016

!  Static vs dynamic maps:
!  M. Todescato, A. Carron, R. Carli, L. Schenato, G. Pillonetto. Machine Learning

meets Kalman Filtering. 55th IEEE Conference on Decision and Control (CDC16)

Q&A

WC IFAC ’17 (Toulouse)
Open Invited Track

Multi-agent distributed learning and optimization of

dynamical systems
Proponents: Ruggero Carli (Univ. Padova), Jongeun Choi
(Yonsei University Seoul), Hideaki Ishii (Tokyo Institute of
Technology), Jerome Le Ny (Polytechnique Montreal), Luca
Schenato (Univ. Padova)

