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Challenges 

!  Unreliable (wireless) communication: 
!  Random delay, packet loss, limited communication range 

!  Scalability: 
!  Complexity (CPU, memory, communication) per agent 

must be constant 
 

!  Robustness/resilience and adaptiveness/learning: 
!  Mild performance degradation when local failures  
!  Continuous environmental learning 

!  Architecture: 
!  Centralized vs hierarchical vs distributed vs decentralized 
!  Cooperative vs competitive 
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Dynamic learning and optimization 

STABILITY 
(feedback) PERFORMANCE 

(optimization) 

Environment learning 
(dynamical changes, “steady state” scenario) 

Disruptive events detection 
(local failures, communication blackouts, new agents integration, ….)  
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Learning problems: 

Density estimation: 

Regression: 

Classification 

Taxi pick-up calls Anomaly detection 

Pollution level profile Seabed depth profile 

Obstacles map Oil-spill boundary 



Multi-agent regression 
!  Parametric           vs       non-parametric 

 
!  Cloud-based        vs        peer-to-peer 

!  Global                vs        Local estimation 

!  Static                 vs        dynamic maps: 
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Example:  
Map-building in robotic networks 
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Parametric model:  
linear vs non-linear 

Linear combination of  
radial basis functions 

Mixture of Gaussians 

•  Large number of basis 
•  Convex problem 

•  Needs fewer functions 
•  Non-linear problem 



Map-building  
as least-squares regression 

!  Model class: 

!  Noisy measurements: 

   
!  Goal: minimize sum of 

squares of residues 

•  Xiao-Boyd-Lall, 2005 
•  Bolognani-Del Favero-Schenato-Varagnolo, 2010 



Consensus-based Map-building: 
gossip communication  

i 
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!  PROS:  
!  Can be distributed 
!  Gradient-based implementation: 

ADMM, gradient-consensus, 
!  Extension to robust costs, e.g. || ||1  
 

!  CONS:  
!  How to select basis functions 
!  No estimate unless at least M data 
!  Gradient-based implementations 

require step-size design 
 



Simulations:  
broadcast based map building 
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Gaussian regression  
(non parametric) 
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Reproducing Kernel Hilbert Spaces 
(RKHS) (con’t) 

Bayesian Interpretation: 



Parametric vs non-parametric 

regularization term 



Parametric vs non-parametric 
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•  Distributed (consensus) 
•  Bounded complexity O(M3)   

•  Better performance 
•  Adaptable resolution 

•  What gi(x) ? 
•  Need N>M points 
•  Over-fitting & ill-conditioned  

•  Regularization factor design 
•  Data-limited complexity O(N3)   

PARAMETRIC NON-PARAMETRIC 

PROS 

CONS 
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Representer theorem 

Since T is a linear operator " eigenvalues and eigenfunctions 



Map-building  
as least-squares regression 

!  Model class: 

!  Noisy measurements: 

   
!  Goal: minimize sum of 

squares of residues 

•  Xiao-Boyd-Lall, 2005 
•  Bolognani-Del Favero-Schenato-Varagnolo, 2010 



Semi-parametric estimation 

 1st IDEA: Use first eigenfunctions as basis function for 
parametric estimation 



Semi-parametric estimation (cont’d) 

 2st IDEA: Use orthonormality of eigenfunctions ϕn and i.i.d. 
sampling of xi   



Complexity  
of semi-parametric approaches 

has the size of the number of measurements, therefore
it is of order O(S3

). The estimator b
r

given in (37) re-
lies on average consensus algorithms to compute the
averages 1/S

P

S

i=1

�

CE

i

�

T

CE

i

and 1/S
P

S

i=1

�

CE

i

�

T

y
i

.
Since typical average consensus algorithms require the
storage and exchange of quantities with the same size
of the desired averages at each iteration [40], if they are
performed for a fixed number of iterations, then the com-
munication and memory complexity are given by O(S2

)

which is the size of 1/S
P

S

i=1

�

CE

i

�

T

CE

i

. The compu-
tational complexity is dominated by the inversion of a
matrix of size E, and it is therefore of order O(E2

). Fi-
nally, the estimator b

d

given in (38) requires only the
computation of the average 1/S

P

S

i=1

�

CE

i

�

T

y
i

and the
inversion and multiplication of a diagonal matrix with a
vector of size E, therefore its communication, memory
and computational complexity is of order O(E). These
considerations are summarized in Table 1.

estimator comput.
cost

commun.
cost

memory
cost

bf(x) O
�
N3

�
O (N) O (N)

bfE(x) O
�
E3

�
O
�
E2

�
O
�
E2

�

bf I(x) O (E) O (E) O (E)

Table 1
Computational, communication and memory costs associ-
ated to the introduced estimators.

5 Selection of the number of eigenfunctions E

Let E be the maximum admissible value for E, given by
computational complexity and transmission capability
constraints. Since setting E to E could lead to resource
wasting, in this section we derive some guidelines for
a possibly more parsimonious choice exploiting the a
priori information that can be available to the user. We
remark that the strategies reported below provide only
practical indications on the choice of E before seeing the
data. However, the choice of E can be validated using
Algorithm 3 developed in Section 6 after seeing the data.

There are mainly two ways for tuningE before seeing the
data. The first is based only on the kernel K and selects
E based on the cumulative energy of its eigenvalues, as
summarized in Algorithm 1.

Algorithm 1 Selection of E (First strategy)
1: Choose a threshold " 2 (0, 1), corresponding to se-

lect a pre-defined fraction of the approximation ca-
pabilities of the base {�

i

}1
i=1;

2: compute E = minE s.t.
E
X

e=1

�
e

� "
+1
X

e=1

�
e

.

Differently, the second strategy tries to include also the
prior information about the probability measure µ from

which the input locations are drawn. This strategy se-
lects E based on a approximate bound of relative dis-
tance between b
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and b
r

. Exploiting inequality (A.34) in
the proof of Proposition 9 and the equivalence y
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We start assuming that the errors kC
i

b
µ
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i

b
r

k2 are
smaller than  times the standard deviation of the mea-
surement noise. Therefore,  regulates the degree of con-
servativeness of this assumption. A reasonable choice is
 = 3. We also use the inverse of the SNR as an approx-
imation of both k⌫ik2

kbrk2
and �

kbrk2
. Hence, ⇠
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is replaced by
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. The expecta-

tion above can be computed using Monte Carlo tech-
niques up to a desired level of accuracy. All the argu-
ments above lead to the following Algorithm 2. Once
again it is important to remark that only a rough esti-
mate of E is necessary at this stage and that it can be
validated a-posteriori based on the performance analysis
provided in Section 6.

Algorithm 2 Selection of E (Second strategy)
1: Assume to have a bound on the SNR, choose a

threshold " for the maximal tolerable error kbc�brk2
kbµk2

and choose a degree of conservativeness ;
2: compute the minimal value of E s.t.
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(42)
where we remark the dependence of the expectation
on E.

6 Assessment of the quality of the estimates

Once the choice of E is set, then it is crucial to assess
the quality of b

d

in terms of its closeness to the opti-
mal centralized estimate b

c

. To this regard, the following
two results, namely Algorithm 3 and the related Propo-
sition 9, represent the main results of this section. They
provide a way to compute, in a distributed fashion, sta-

9
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Figure 1. BndA and BndB (normalized by the a priori function variance) as a function of E, with ↵ = 0.05, for different data set sizes M and eigenvalues
decay rates.

with the input locations probability measure µ in (2) set to be
the uniform distribution on [0, 1]. With these settings

�
e

(x) =
p
2 sin (x(e⇡ � ⇡/2)) , �

e

=

1

(e⇡ � ⇡/2)2

and k = 2. To make the bounds only depend on E we set
M = 10000, 1� ↵ = 0.95 and the noise variance �2

⌫

= 0.12,
choosing that " 2 (0, 1] that minimizes the bound and satisfies
(22) or (25) accordingly.
The dashed lines in the two top panels of Figure 1 show
how Bnd

A

(left) and Bnd

B

(right) vary with E (bounds are
normalized using the prior process variance). For the sake
of comparison we also display the true (normalized) MSE
(solid line) calculated via a Monte Carlo of 500 runs. As for
Bnd

A

, it is interesting to notice that just 20 eigenfunctions
are needed to obtain an high estimation accuracy in both the
cases. In addition, the curve is very close to the true error
profile and is monotonically decreasing. Indeed, as discussed
in the proof of Theorem 6 contained in the next subsection,
when bf

A

is adopted one should set E as large as possible
(compatibly with communication capabilities) since, at the
limit, convergence to the minimum variance estimator holds.
The profile of Bnd

B

is instead different and exhibit a clear
minimum at E = 7. The reason is that bf

B

requires only
an information exchange of order O(E) since it relies on
the asymptotic matrix approximation (18). The bound Bnd

B

then points out that, if E is too large, the quality of this
approximation can become too poor, hence leading to an
increment of the MSE of bf

B

. One can also see that the true

error profile is not monotonically increasing. Indeed, for M
fixed and E which goes to infinity, bf

B

does nto converge to
the minimum variance estimator. It is important also to note
that, in this case, Bnd

B

is close to truth only for low E values.
Indeed, from the Monte Carlo analysis one can infer that the
best E is around 50. Overall, this suggests that the number
of eigenfunctions has thus to be seen as an important design
parameter for bf

B

, that must be carefully selected to optimize
the performance. This point will be the focus of Section V.
Finally, the two bottom panels of Figure 1 display the same
bounds except that kernel eigenvalues now decay exponentially
to zero as �

e

= exp(�0.1e). Shapes of the curves change but
the same comments hold true.

D. Asymptotic behaviours of the estimators

First, we report an useful theorem that illustrates a lower
bound on the performance achievable by a generic estimator of
f and that derives directly from the KL expansion introduced
in Section III-A.

Theorem 4 Let bf
?

be any generic estimator of f that is func-
tion of y and that takes values in any generic E-dimensional
space fixed a priori. Then

argmin

b
f?

E
���f � bf

?

���
2

| x
�
�

+1X

e=E+1

�
e

. (29)

Now, we start investigating the asymptotic properties of our
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Time-varying regression f(x,t): 
parametric vs non-parametric 

Numerical efficient but requires to 
know the exact model (A,C,Q,R) 

Model-free and best performance but 
high computational complexity O(N3) 



Time-varying regression f(x,t): 
parametric vs non-parametric 

Approximated solutions and requires 
a good physical model 

Time space treated equally and 
unbounded complexity O(t3) 

 IEEE SIGNAL PROCESSING MAGAZINE [58] JULY 2013

FROM SPATIOTEMPORAL COVARIANCE 
FUNCTIONS TO STATE-SPACE MODELS
The generalization of the conversion procedure presented in 
the section “From Temporal Covariance Functions to State-
Space Models” is the following. A given stationary spa-
tiotemporal Gaussian process with covariance function 

( ; , )x xk t t, l l  such that ( , ; , ) ( )x x x xk t t C t t,= - -l l l l  can be 
converted into an infinite-dimensional state-space model repre-
sentation via the following steps:

1) Compute the corresponding spectral density ( , )S x t~ ~  
as the spatiotemporal Fourier transform of ( , ) .C tx
2) Approximate the function ( , )St x t7 ~~ ~  with a rational 
function in variable .t

2~

3) Find a stable t~ -rational transfer function ( , )G i ix t~ ~  
and function ( )qc x~u  such that

 ( , ) ( , ) ( ) ( , ) .S G i i q G i ix t x t c x x t~ ~ ~ ~~ ~ ~= - -u  (34)

The transfer function needs to have all its roots and zeros 
with respect to the t~  variable in upper half plane, for all 
values of .x~  This kind of representation can be found 
using spectral factorization discussed in the section 
“From Temporal Covariance Functions to State-Space 
Models.”
4) Use the methods from control theory [21] to convert the 
transfer function model into an equivalent spatial Fourier 
domain state-space model.
5) Transform each of the coefficients ( )a ij x~  and ( )b ij x~  into 
the corresponding pseudodifferential operators and set the 
spatial stationary covariance function of the white noise pro-
cess to the inverse Fourier transform of ( ) .qc x~u

The above procedure is demonstrated in “Example 3 (2-D Matérn 
Covariance Function).” 

Note that when the covariance function is separable, that 
is, ( ) ( ) ( ),C t C C t,x xx t=  it implies that the spectral density is 
separable as well: ( , ) ( ) ( ) .S S Sx t x x t t~ ~~ ~=  It now turns out 
that we can do the factorization in (34) as follows:

 ( , ) ( ) ( ) ( ) .S G i S G ix t t x x t~ ~~ ~ ~= -  (35)

Because the transfer function ( )G i t~  does not contain the 
variable x~  at all, the operator matrix A will actually be 
just an ordinary matrix and the space correlation gets 
accounted by setting the spatial covariance of the white 
noise process according to the spectral density ( ) .Sx x~  The 
resulting infinite-dimensional Kalman filter and smoother 
can then be implemented without additional approxima-
tions provided that we include all the spatial measurement 
and test points in the state vector [11]. See “Example 4 (2-D 
Squared Exponential Covariance Function)” for a demon-
stration of this.

NONCAUSAL STOCHASTIC 
PARTIAL DIFFERENTIAL EQUATIONS
An important thing to realize is that even if the spatiotemporal 
covariance function was originally constructed as a solution to 
some kind of stochastic partial differential equation, we might 
still need to do the above factorization. For example, consider 
the following stochastic partial differential equation (SPDE) 
due to Whittle [23]:

 ( , ) ( , ) ( , ) ( , ),
x

f x t
t

f x t f x t w x t2

2

2

2
2

2

2

2

2
m+ - =  (36)

where ( , )w x t  is a space–time white Gaussian random field. 
Fourier transforming the system and computing the spectral 
density gives the stationary covariance function

EXAMPLE 3 (2-D MATÉRN COVARIANCE FUNCTION) 
The multidimensional equivalent of the Matérn covariance func-
tion given in “Example 1 (1-D Matérn Covariance Function)” is 
the following ( ,r < <p p= - l  for ( , , , , ) ):x x x t Rd

d
1 2 1f !p = -

 ( )
( )

.C r
l
r K

l
r2 2 22

1
v

o
o o

C
=

o o
o

- ` `j j
The corresponding spectral density is of the form

 ( ) ( , ) ,S S 1
/r x t

x t
d2 2 2 2?

< <
~ ~

~
~

m ~
=

+ +
o+^ h

where / .l2m o=  To find the transfer function ( , ),G i ix t~ ~  we 
find the roots of the expression in the denominator. They are 
given by ( ) ,i it x

2 2! ~~ m= -  which means we can now 
extract the transfer function of the stable Markov process

 ( , ) .G i i i i
( / )

x t t x
d2 2 2

< <~ ~~ ~ m= + -
o- +^ h

The expansion of the denominator depends on the value 
of / .p d 2o= +  If p is an integer, the expansion can be easily 

done by the binomial theorem. For example, if 1o =  and 
,d 2=  we get 

 ( , ) ( , ) ( , ),f f
t
x t x t w x t

0 1
2

0
12 2 2 22

2
d dm m

=
- - -

+c cm m  (S1)

where 2d  is the (spatial) Laplace operator (here the second 
partial derivative w.r.t. x). The one-dimensional example in 
“Example 1 (1-D Matérn Covariance Function)” can be seen as a 
special case of this. An example realization of the process is 
shown in Figure S2.

[FIGS2] A random realization simulated by the state-space 
model in (S1).

x

t

space-time white 
Gaussian noise 

S. Sarkka, A. Solin , J Hartikainen, Spatiotemporal learning via infinite-dimensional Bayesian filtering and 
smoothing: A look at Gaussian process regression through Kalman filtering. IEEE Sig. Proc. Mag., 30(4),2013 



Combining parametric and non-parametric: 
Kalman filtering meets Machine Learning (1) 



Combining parametric and non-parametric: 
Kalman filtering meets Machine Learning (2) 
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Combining parametric and non-parametric: 
Kalman filtering meets Machine Learning (3) 
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Combining parametric and non-parametric: 
Kalman filtering meets Machine Learning (4) 
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Truncated Gaussian regression  
vs Kalman-based Gaussian regression 
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Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10
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= 0.2 ,

which is characterized by a rational PSD equal to
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which leads to a factorization (6) with
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The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.
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Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of
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Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel
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The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.
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Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel

K
s

(x, x0
) = e��

s

kx�x

0k , �
s

= 0.5 ,

while, in order to exploit the seasonal periodicity of the precipita-
tions (f = 1/12), for the time covariance we resort to a stationary,
periodically decaying kernel equal to

h(⌧) = � cos(2⇡ f |⌧ |)e��

t

|⌧ | , � = 2⇥ 10

3 , �
t

= 0.2 ,

which is characterized by a rational PSD equal to

S
r

(!) = 2��
t

!2

+

�

�2

t

+ (2⇡f)2
�

!4

+ 2 (�2

t

� (2⇡f)2)!2

+ (�2

t

+ (2⇡f)2)
2

,

which leads to a factorization (6) with

W (i!) =
p

2��
t

i! +

p

�2

t

+ (2⇡f)2

(i!)2 + 2�
t

(i!) + (�2

t

+ (2⇡f)2)
.

The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.

Colorado Weather Dataset: 365 stations, 100 years, monthly rain precipitation  
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Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml
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Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel
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The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.
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Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel
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The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.
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Fit [%] CPU time [sec.]

Kalman-based Alg.1 r = 1 100 0.002

Truncated GP q = 15 95.4 0.663

Truncated GP q = 30 97.9 4.807

Truncated GP q = 40 98.9 10.74

Classical GP q = 1 100 ⇡19

Tab. 2: Comparison of the estimation Fit defined in (24) and the CPU times
for the Laplace time kernel (25).

can be seen that, for the same level of complexity, i.e., q vs. r,
Algorithm 1 achieves a better fit. We stress the fact that the per-
formance in terms of fit for the truncated GP highly depends on the
ratio between the process and the measurements noise. Indeed, for
high process noise, the information contained in the measurements
collected during the last few iterations already contains all the nec-
essary information to reconstruct the process. Thus, the fit curve
would increase more rapidly. Conversely, Kalman is optimal hence
it does not depend on the ratio. Table 1 reports the value of the
Fit defined in(24) and of the CPU execution time for the proposed
Kalman-based approach with r = 6 against the truncated GP for
three different values of buffer length q corresponding to �, 2�
and 3� of the time kernel, respectively. Note that the proposed
Kalman-based approach behaves almost perfectly as the classical
GP approach using all the available measurements (reported in the
table last row as q = 1, which needs almost 20[s] to run). The
only discrepancy is due to the rational approximation of the kernel
needed to implement Algorithm 1. Conversely, the truncated GP
needs a computational time of at least one order of magnitude
higher to achieve the same level of estimation accuracy in terms
of Fit. It is worth stressing that this depends on the time kernel
used for estimation. Indeed, in the example above, since we used
a Gaussian time kernel we needed a rational approximation cS

r

of
at least r = 6 to achieve 99.4% performance with Algorithm 1.
Conversely, Table 2 reports the values obtained using the Laplace
time kernel equal to

h(⌧) = e�0.01|⌧ | (25)

which is characterized by a rational PSD, see Example 7. In
this case, since the time kernel has a rational PSD, Algorithm 1
achieves 100% of accuracy. Moreover, it requires less CPU time
than before since the state-space model corresponding to the
Laplace kernel PSD is of order r = 1. Conversely, to achieve
a level of accuracy similar to one of Table 1, the truncated GP
needs more memory steps and thus its CPU time keeps increasing.

8.2 Colorado Weather Data
As second application, we consider weather forecasting on real
field collected data. We exploit the same data-set used in [?], [?],
[?]. This consists of spatio-temporal weather data, i.e., precipita-
tions and maximum and minimum temperature, collected every
month during the years 1895-1997 from 367 different weather
stations around Colorado, USA4. The data-set is actually a subset
of a larger data-set including 11918 weather stations. In particular,
the considered subset has been extracted from the larger one
considering only stations laying in the rectangular lon/lat region
[�109.5,�101]⇥ [36.5, 41.5] and deleting those collecting only
one type of measurement. This leads to a data-set consisting of

4. https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml

Memory [MB] CPU time [sec.]

Kalman-based Alg.1 4 0.02

Classical GP (all data) 1.5 106 NA

Truncated GP (1 year data) 150 15

Truncated GP (2 years data) 600 120

Truncated GP (3 years data) 1300 410

Tab. 3: Memory and computational requirements per iteration for Algorithm 1
and both the classical and truncated GP methods applied to the Colorado
Weather data-set.

453612 measurements. A great amount of data are Not Avail-
able (NA). This makes it suitable for prediction and forecasting.
Before presenting our simulations in details, a first comparison
between the proposed Kalman-based approach and the truncated
GP method is offered in Table 3. This reports the memory and the
computational requirements (per iteration) for Algorithm 1 and for
both the classical and the truncated GP methods. For the latter, the
table shows the requirements assuming to use the data from three
time windows of different length. First of all it is worth noticing
how the classical approach is not feasible. Conversely, even if the
truncated approach leads to more reasonable implementations, it
is still not comparable to the Kalman-based approach. Observe
that the time window length (and thus memory and computational
requirements) for the truncated GP method largely depends on the
process and, in particular, on its temporal correlation. A common
choice is to consider data within the 3� confidence interval5 only.
In our specific case, given the estimated values for the kernel
hyper-parameters (see below), this translates in using data from
the last ⇡ 2 years.
In the following we focus on precipitations measurements only,

assuming a noise standard deviation equal to 5% of the corre-
sponding absolute measured value. To model the spatial covari-
ance we use an exponential kernel
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The kernel hyper-parameters are estimated by minimization of the
-log-marginal likelihood (see Appendix B) over all available data
in the period 1895÷ 1995. For inference, from the remaining two
years data, i.e., 1996÷1997, we extract a subset corresponding to
80% of randomly picked weather stations. For test we use the data
collected from the remaining 20% of the stations. Figure 7 shows
the contour of the estimates (Figure 7a) and of the corresponding

5. With 3� confidence interval we mean a time window T such thatR
T

0 h(⌧)d⌧ = 0.99h(0). Since for the Normal distribution this translates
to consider 3 deviations from the mean we use the same nomenclature.
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Conclusions & open problems 

!  Non-parametric approach has great potential but it is 
unclear how to 
!  make it distributed 
!  incorporate time 
!  adaptively design the sampling density, i.e.   

!  Many details swept under the carpet: 
!  Real-time and distributed design of regularization 

parameter for non-parametric approaches 
!  Packet loss & asynchronous computation  
!  Computation of eigenfunctions  

!  Integration of learning with control & optimization 
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