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Abstract—In this paper we study the effect of communication
nonidealities on the control of unstable stochastic linear systems.
The communication protocol links the sensors to the actuators
and should be studied by taking into account several limitations
such as quantization errors, limited channel capacity, decoding
delay and packet loss which, to the best of our knowledge,
have not been considered jointly in the control theory literature.
We restrict our study to a special class of linear plants and
controllers and to a transmission with signal-to-quantization
noise ratio limitations and packet loss, and derive their impact
on the stability conditions and optimal design parameters for
the controller. In particular, we characterize a tradeoff among
quantization and packet loss depending on the state coefficient
of the system to be controlled. Through this analysis we are also
able to recover several results already available in the literature
that have treated packet loss and quantization error separately.

I. INTRODUCTION

Traditionally, control theory and communication theory
have been developed independently and have reached consid-
erable success in developing fundamental tools for designing
information technology systems. The major objective of con-
trol theory was to develop tools to stabilize unstable plants and
to optimize some performance metrics in closed loop under the
assumption that the communication channel between sensors
and controller and between the controller and the plant were
ideal, i.e. without distortion, packet loss or delay. This assump-
tion actually holds in many control applications where the non
idealities of the communication channel have negligible impact
compared to the effects of noise and uncertainty in the plants.
With the advent of wireless communication, the Internet and
the need for high performance control systems, however, the
sharp separation between control and communication has been
questioned and a growing body of literature has appeared from
both the communication and the control communities trying
to analyze the interaction between control and communication.
This recent branch of research is known as Networked Control
System (NCS) and considers control systems wherein the
control loops are closed through a real-time network, and
feedback signals are exchanged in the form of data packets.

Recent results in this area have revealed the existence of a
strict connection between the performance of the controlled
plant and the Shannon capacity of the feedback channel.
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However, this is not sufficient to completely characterize the
communication channel from a control perspective [1], [2].
For instance, it has been proved that in order to stabilize
an unstable plant through a control loop, the signal-to-noise
ratio (SNR) of the feedback channel must be larger than
some threshold depending on the unstable eigenvalues of the
plant [3], [4], [5]. Another line of research has addressed the
problem of stabilizing an unstable plant in the presence of a
feedback channel that is prone to random packet losses [6], [7],
[8], [9], or that is rate-limited [10], [11], [12]. A subsequent
step has been made to include multiple channel limitations
into the model, such as packet loss and quantization [13], [14],
which however results in complex optimization problems.

In this work, we address the problem of performance
optimization in a NCS with a realistic feedback channel.
More specifically, we consider the Linear-Quadratic-Gaussian
(LQG) control problem, which consists in finding the control
signal of a linear time-invariant (LTI) plant that minimizes
a quadratic cost function of the system state, when both the
system state and the output signal are affected by Gaussian
noise. While the optimal solution to the LQG problem in
LTI systems with ideal feedback channel is known to be
achieved by a controller formed by a Kalman filter and
a linear-quadratic regulator, the solution to the problem in
NCS systems with realistic feedback channels has only been
investigated for specific feedback channel models, while the
general solution still remains unknown.

Our feedback channel model takes into account packet loss,
code rate limitations, signal quantization and delay, while
still being mathematically amenable to analysis. By using
this model, we find a stability condition that depends on
both the packet loss probability and the signal to quantization
noise ratio (SQNR). The LQG architecture proposed in this
paper actually generalizes those considered in the previous
literature; in fact we recapture several conditions available in
the literature for more specific channel models as special cases
of our model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first cast the LQG problem into the NCS
framework. Then, we introduce the model of the feedback
transmission channel that completes the structure of the NCS
considered in this work. Finally, we formally define the LQG
problem in the considered NCS architecture.

A. LQG problem definition

We consider a plant, modeled as a discrete-time, scalar, LTI
system, subject to additive white Gaussian measurement and



process noise. More specifically, the state of the system at
step t, denoted as xt, evolves according to the following linear
model:

xt+1 = axt + but + wt (1)
yt = cxt + vt (2)

where ut and yt represent the input and output signals of the
plant, respectively, whereas wt and vt are two independent
discrete-time Gaussian white noise processes with variance σ2

w

and σ2
v , respectively. Finally, a, b and c are the state, input and

output coefficients, respectively.
We consider the steady state variance as performance index1

J = lim supt→+∞E[y2
t ] . (3)

The objective of the LQG problem is then to minimize J by
means of a suitable control signal ut, which only depends
causally on the output signal {ym, m ≤ t}, and possibly on
its previous values {um, m ≤ t− 1}.

B. Feedback channel modeling

In the NCS framework, the plant output yt is not directly
accessible to the controller, but must be delivered by means of
a suitable transmission scheme. The feedback channel will thus
comprise analog to digital conversion of yt and source coding
of the corresponding bitstream into packets, channel coding
and transmission over the physical channel. At the receiver,
after forward error correction, typically a further frame check
is performed to drop packets that have not been successfully
corrected (packet erasures). Accepted packets are then decoded
to yield the correct digital values.

We model the feedback channel as represented in Fig. 1,
where nt represents the quantization noise. Assuming that a
packet is sent at each t = 0, 1, . . ., γt ∈ {0, 1} is a Bernoulli
process that models the erasure events (γt = 0), occurring with
probability ε at each packet transmission, independently of
previous events. Finally, the delay block z−τ which accounts
for the encoding/decoding delay.

The quantization noise nt accounts for the distortion due
to the quantization of the real-valued signal yt before trans-
mission. If quantization is fine enough, nt can be effectively
modeled as a zero-mean additive random process, with identi-
cally distributed uncorrelated samples of power σ2

n = E
[
n2
t

]
.

The SQNR, Λ = E
[
y2
t

]
/σ2

n, is related to the information rate
Rq of the quantized signal, and increases with it. Since the
maximum information rate Rq is upper limited by the channel
code rate Rc, then the SQNR cannot be increased above a
certain threshold Λ∗, which depends on Rc.

The channel model considered in this paper is, hence,
completely characterized by three parameters, namely ε, τ ,
and Λ∗. These parameters are clearly related, as, for instance,
reducing the erasure probability ε may require increasing the
delay τ or reducing the code rate Rc, i.e., decreasing the
maximum achievable SQNR Λ∗. Therefore some trade-offs are
expected in the context of feedback control , since all three

1Strictly speaking the terminology “steady state” should be used only
when the limit is finite; this will actually hold under suitable conditions, see
Theorem 1.

terms negatively impact the performance of the closed loop
system. Unfortunately, the exact form of the relation among
these parameters is not available, though some tight bounds
have recently been derived in [15].

For the ease of mathematical treatment, in our analysis we
will assume that these parameters can be set independently.
We can thus sort out the impact of each single parameter
on the system performance. Note that, the interdependencies
among the channel model parameters will only shrink the
design parameter space, without affecting the validity of our
analysis. An extension of our approach that keeps into account
this aspect is left for future work.
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Fig. 1. Equivalent model of the feedback channel, accounting for the presence
of quantization noise, packet loss and decoding delays.

C. Problem statement

In this work, we address a special case of the general LQG
optimization problem by considering a channel model that
includes packet loss, quantization noise and limited SQNR,
but assumes no decoding delay, i.e.,

τ = 0, P[γt = 0] = ε, σ2
n = E

[
y2
t

]
/Λ ≥ E

[
y2
t

]
/Λ∗ (4)

While delays do not influence the possibility to stabilize a
system, they do play a major role when performance (e.g.
measured by the variance of certain error signals) is of interest.
However, transmitting close to channel capacity with small
delays, will make packet drops non-negligible. The erasure
channel is modeled by setting

ht = (yt + nt)γt , (5)

according to which, in case of erasure, no signal is received.
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Fig. 2. NCS scheme for scalar output plants, where the plant decoder is
given by the cascade of a linear state estimator and a state feedback

We restrict our attention to the classical LQG structure for
the plant decoder, which is given by the cascade of a linear



state estimator and a state feedback, as represented in Fig. 2.
The state estimator is governed by the following law

ξt = aξt−1+but−1+γtk
(
ht−c(aξt−1+but−1)

)
(6)

where k is the predictor gain and the estimator (6) is
time-varying since it depends on the sequence γt. In fact,
if a packet is not received correctly, i.e. γt = 0, then the
estimator updates its state using the model only, while when
γt = 1 the estimate is adjusted by a correction term, based on
the output innovation, similarly to a Kalman filter. The state
feedback module, in turn, will simply return a control signal
proportional to the predicted state through a gain `, i.e.,

ut = `ξt (7)

This scheme is the same as was proposed in [16] and, although
it does not yield the optimal Kalman filter [6], it has the
advantage of being computationally simpler and allowing for
the explicit computation of the performance J , as will be
shown in the next section.

In this framework, the objective is to solve the following
optimization problem:

min
k,`

J (8)

s.t. lim
T→+∞

∑T
t=0 E[||yt||2]∑T
t=0 E[||nt||2]

≤ Λ∗ (9)

Constraint (9) sets an upper bound on the SQNR, which cannot
exceed the maximum value Λ∗ allowed by the channel code
rate.

Although in this study we limit our attention to the case of
scalar systems, the approach we proposed is amenable to be
extended to the multidimensional case, though we leave the
investigation of the more general case to future work.

III. ANALYSIS OF THE SCALAR CASE

As a first step, we derive the dynamical equations that
govern the state as well as the error evolution for the estimator
in equation (6). If we let

x̂t = aξt−1+but−1 (10)

be the optimal (constant gain) one-step-ahead predictor of the
state xt, we can rewrite (6) and (7) as

x̂t+1 = ax̂t + but + aγtk (ht − c x̂t) (11)
ut = ` (1− γtkc) x̂t + γt`kht (12)

Substituting the input given by the controller, (12), into the
predictor equation (11) we get:

x̂t+1 = ax̂t + b` (1− γtkc) x̂t + γtb`kht + γtak (ht − cx̂t)
= (a+ b`) x̂t + γt (b`k + ak) (ht − cx̂t)
= (a+ b`) x̂t + γt (b`+ a) k (cx̃t + wt + nt) (13)

where, in the last row, we introduced the error term x̃t =
xt − x̂t. In turn, x̃t evolves as follows

x̃t+1 = axt + but + wt − ax̂t − but − γtak (ht − cx̂t)
= ax̃t + wt − γtak (cx̃t + wt + nt)

= a(1− γtkc)x̃t + wt − γtak(wt + nt) (14)

For the sake of a more compact notation, and without loss
of generality, we let b = c = 1 in the following2, so that (13)
and (14) can be combined in matrix form together with (2)[

x̂t+1

x̃t+1

]
=Aγt

[
x̂t
x̃t

]
+

[
0
1

]
wt+

[
γt(a+ `)k
−γtak

]
(wt + nt)

yt =
[

1 1
] [ x̂t

x̃t

]
+ vt (15)

where we set

Aγt =

[
(a+ `) γt(a+ `)k

0 a(1− γtk)

]
.

We observe that the cost function (3) is equal to the steady
state power of the system output yt that can be expressed as

J(k, `) =
[

1 1
]
P

[
1
1

]
+ σ2

v

= p11 + 2p12 + p22 + σ2
v (16)

where the matrix P is defined as

P = E
[[

x̂
x̃

]
[x̂ x̃]

]
=

[
p11 p12

p21 p22

]
. (17)

Using the fact that the [x̂t x̃t], vt, (wt + nt) are uncorrelated,
it follows that

P = (1− ε)A1PA
>
1 + εA0PA

>
0 +

[
0 0
0 σ2

w

]
+ (18)

+ (1− ε)
[

(a+ `)k
−ak

]
(σ2
v + σ2

n)
[

(a+ `)k −ak
]

We are now in the position to compute the optimal ` and k
that minimizes the cost J .

Theorem 1: The minimum of the cost function J as given
in Eqn. (16) under constraint (9) is

J∗ = min
k,`

J(k, `) = J(k∗, `∗) = p22 + σ2
v

where p22 is the unique positive solution of

p22 = a2p22 + σ2
w −

1− ε
1 + 1/Λ∗

a2p2
22

p22 + σ2
v

(19)

and is achieved with the following gains:

`∗ = −a, k∗ =
1

1 + 1/Λ∗
p22

p22 + σ2
v

(20)

The positive solution p22 exists finite if and only if

1− ε
1 + 1/Λ∗

> 1− 1

a2
(21)

Proof: See Appendix.

Theorem 1 provides some interesting results: first, it gives
the minimum cost function J∗ that can be reached with the
control system depicted in Fig. 2; second, it defines the values
of the gains ` and k that achieve such a minimum; third, and
most importantly, it sets a necessary and sufficient condition
on the packet loss rate ε and the SQNR Λ∗ of the feedback

2Note that c can always be set equal to 1 via a suitable change of basis
in the state space. In addition b can be fixed equal to one via a rescaling of
the control input u, which in our setup does not influence the performance
criteria.



channel for the system to be controllable and the cost function
J to be reduced to J∗.

This last result is a generalization of similar results available
in the literature. In fact, by letting Λ∗ → +∞, which is
equivalent to consider a channel with infinite code rate, (21)
returns ε < 1/a2 that is the same stability condition found
in the lossy network literature [6], [9]. Alternatively, if we
assume no packet loss in the channel, i.e. ε = 0, the stability
condition can be rewritten as

1− 1

a2
<

1

1 + 1/Λ∗
= 1− 1

1 + Λ∗

that leads to
Λ∗ > a2 − 1,

which is the same stability condition presented in the context
of SNR-limited control system in [3].

Therefore, the bound provided by (21) will be useful to
compare different communication protocols. In fact, by using
a corse quantizer it is possible to reduce the transmission rate
Rq , thus allowing more redundant channel coding schemes and
consequently a smaller packet loss probability ε. On the other
hand a coarser quantizer gives a smaller Λ. In conclusion, Λ
and ε are coupled and cannot be designed separately.

IV. CONCLUSIONS AND FUTURE WORK

We have considered an LQG control problem; the model
we have proposed accounts for code rate limitations, as well
as for packet drops and delays. We have argued in fact that
there is a tight connection between the actual rate at which
one can transmit information, the decoding delay (due to long
block coding) and the packet-drop probability.

We have restricted our attention to a specific control ar-
chitecture in which the plant outputs are transmitted via a
rate limited channel and then processed through the cascade
of a state estimator followed by a linear (state) feedback
controller; for ease of exposition we did not consider delays,
while both limited rate and packet drops have been included
in our analysis. We have considered a scalar model and found
that the optimal controller has a dead-beat structure and the
optimal estimator is a Kalman-like constant gain estimator
(which accounts for the packet drop probability). Conditions
for stability are derived in terms a modified algebraic Riccati
equation and recapture results from the literature as special
cases.

Future work will include a detailed analysis of the multi-
variable case as well as the inclusion of delays in our model.

APPENDIX

A. Proof of Theorem 1

As the quantization noise variance is related to the signal
power by σ2

n = J/Λ, by using (16), we can express (18) in
terms of the entries in the matrix P as

p11=(a+`)2[(1−ε)(p11+2kp12+k
2p22+k

2(σ2
v+ J/Λ))+εp11]

p12=(a+`)[(1−ε)a((1−k)(p12+kp22)−k2(J/Λ+σ2
v))+εp12]

p22=(1−ε)(a2(1−k)2p22+a2k2(σ2
v+J/Λ))+εa2p22+σ2

w

which provide implicit expressions for the steady state solu-
tion. We then have to show that the necessary conditions for
optimality

∂J

∂k
= 0

∂J

∂`
= 0 (22)

hold for ` = −a, and k = k∗ that satisfies (20).
Using the implicit expressions for p11, p12 and p22 above

it is easy to check that, setting ` = −a, we have

∂p11

∂`
=
∂p11

∂k
=
∂p12

∂k
= 0 ∀k. (23)

Note also that for ` = −a, k = k∗ is obtained by solving:

k∗ = arg min
k
p22 =

p22

(1 + 1/Λ)(p22 + σ2
v)

(24)

Therefore also ∂p22
∂k = 0 must hold for ` = −a and k = k∗;

now, using (23) also ∂J
∂k = 0 for k = k∗, ` = −a which proves

the first of (22).
From the implicit expression for p12 above, we obtain (recall

that p12 = p11 = 0 for a = −`)
∂p12

∂`
= (1− ε)ak∗[(1− k∗)p22 − k∗(J/Λ + σ2

v)] (25)

and, using the explicit value of k∗ in (20), it is easy to see
that ∂p12

∂` = 0 for a = −` and k = k∗.
Using the fact that p12 = p11 = 0 for a = −`, we have

that J = p22 + σ2
v and, therefore, the Riccati equation for p22

takes the form p22 = β2p22 +δ where the specific expressions
for β and δ are immaterial; we just need to recall that, since
k∗ is a stabilizing gain, β2 < 1. Therefore

∂p22

∂`
= β2 ∂p22

∂`

which, using β2 < 1, admits the unique solution ∂p22
∂` = 0. We

have now proved that ∂p11∂` = ∂p12
∂` = ∂p22

∂` = 0 and, therefore,
∂J
∂` = 0; this proves the second condition in (22).

Let us now observe that substituting the optimal value k∗

in p22 we get:

p22 = a2p22 + q − 1− ε
1 + 1/Λ

a2p2
22

p22 + r
(26)

which is the same modified algebraic Riccati equation
(MARE) that appears in [6] with η̄ = 1−ε

1+1/Λ .
Notice also that, since the system is scalar, the critical proba-
bility for the solvability of the MARE is known:

ηc = 1− 1

a2

Given that the problem has solution, i.e. p22 converges, iff:

η̄ =
1− ε

1 + 1/Λ
> ηc = 1− 1

a2
(27)

which is equivalent to

Λ >
a2 − 1

1− εa2
(28)

It is now self evident that the problem has a solution for some
SQNR Λ ≤ Λ∗ iff (28) holds with Λ∗ replacing Λ, that is iff
(21) holds. Moreover, since p̄22 is a non increasing function
of Λ, the optimal solution is obtained with Λ = Λ∗ in (24)
and (26), thus yielding (19) and (20).
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