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Abstract

This paper describes recent results on the design and sim-
ulation of a flight control strategy for the Micromechanical
Flying Insect (MFI), a 10-25mm (wingtip-to-wingtip) de-
vice capable of sustained autonomous flight. Biologically
inspired by the real insect flight maneuver, the wing kine-
matics are paremetrized by a small set of parameters which
are sufficient to generate desired average torques to regu-
late its attitude. Position control was achieved through its
attitude control based on the approximate dynamics under
small angle assumption. During its continuous flight, the
controller schedules the desired wing kinematic parameters
according to the inverse map based on the feedback error
at the end of each wingbeat. The proposed controller is
simulated with the Virtual Insect Flight Simulator, and the
results show both convergence of position and orientation.

1 Introduction

Unmanned air vehicles, (UAV), have been a very
active area of research. Despite recent remarkable
achievements obtained with fixed and rotary aircrafts
[9] [3], their use in many tasks is still limited by their
maneuverability and size. However, the extraordinary
flight capabilities of insects have inspired the design of
small UAVs with flapping wings mimicking real flying
insects. Their unmatched maneuverability, low fabri-
cation cost and small size make them very attractive
for cost-critical missions in environments which are
unpenetrable for larger size UAVs. Moreover, the latest
advances in insect flight aerodynamics and microtech-
nology seem to provide sufficient tools to fabricate
flying insect micro-robots. This is the challenge that
the Micromechanical Flying Insect project (MFI) being
currently developed at UC Berkeley, has taken [2], [10].
Figure 1 shows a conceptual view of the target robot fly.

Similar to aerial vehicles based on rotary wings,
such as helicopter, flying insects control their flight by
controlling their attitude and the magnitude of the
vertical thrust [7]. This is accomplished by the aero-
dynamic forces and torques generated from the wing
flapping motion. However, different from aerodynamic
forces exerted on helicopter blades, aerodynamic forces
on insect wings are highly nonlinear and time-varying
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along a wingbeat, and the periodic motion of the wings
cannot be ignored. As a result, the system dynamics
cannot be approximated by a linear time-invariant
model, as is widely adopted by rotorcrafts based on
quasi-static assumption on the rotary blades. The
motion of the insect is a complex nonlinear oscillation
with forced periodic inputs under non-holonomic
constraints. Moreover, the total force and torques on
the MFI body are the result of those generated by
the two wings. Therefore, techniques like feedback
linearization [6] and robust linear control [5] are likely
to fail, unless a better understanding of insect flight
dynamics is available.

Figure 1: MFI model based on a blow fly calliphora,
with a mass of 100mg, wing length of 11mm, wing beat
frequency of 150Hz, and actuator power of 10mW .
Each of the wing has two degree of freedom: flapping
and rotation.

Although very little is known about how real insects
accomplish in controlling their flight and maneuver, re-
cent work has found that by modulating a few kine-
matic parameters on each wing, such as wing rotation
timing at the stroke reversals and the wing blade angle
of attack, the insect can readily apply torques on the
body and therefore control its attitude and position [1].
Based on this observation, it was suggested that a small
set of wing kinematics might be sufficient to generate
all possible flight modes, and the key point for design-
ing any of these modes is the capability to control the
MFI’s attitude [7].

This paper describes the design and the implementa-
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tion of a flight control strategy for the MFI. The chal-
lenging task of the control of MFI have forced the de-
velopment of novel approaches and biologically inspired
techniques. As a first step, we parameterize the wing
kinematics by three parameters which are related to
wing flip timing and mean angle of attack during one
wingbeat. Then, the map between these parameters
and mean torques generated during the wingbeat are
found and tested. Based on the weighed position and
attitude feedback error, we propose a switching con-
troller which schedules the next wingbeat parameters
according to the inverse map. Since position control
is obtained under the assumption of small angular dis-
placement, we put more weights on the angular error in
order to stabilize the flight.

2 Insect Aerodynamics
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Figure 2: The model for the insect dynamics.

A complete model of an insect can be divided into
three different subsystems, which are the aerodynamics,
force and torque generation process, and body dynamics
as shown in Figure 2. Stroke angles and rotation an-
gles are defined in Figure 3, together with lift and drag
aerodynamic forces generated from the flapping of the
wings.

As seen from Figure 2, the actuator dynamics is ig-
nored, which will be designed as a PWM to drive the
stroke and rotation angles into periodic motion. In this
paper, it is assumed that the input angles take form of
trigonometric functions and their amplitude and phase
can be modulated directly.
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Figure 3: Aerodynamic forces decomposed into lift(L)
and drag(D) forces in stroke plane; (a) lateral view; (b)
top view; φ: stroke angle, ϕ: rotation angle, α: angle
of attack, u: wing velocity.

Although at present no numerical simulation of un-

steady insect flight aerodynamics gives exact results
for aerodynamic forces, several advances have been
achieved in comprehending qualitatively and quanti-
tatively unsteady state aerodynamic mechanism [1].
From our previous work, the aerodynamic module is
a combination of an analytical model, based on quasi-
steady state equations for the delayed stall and rota-
tional circulation, and an empirically matched model
based on Robofly data [8]. It is a highly nonlinear
model involving discontinuous functions, time-varying
parameters (lift and drag coefficients, CD, and CL) and
model uncertainties (due to neglect of wake capture).

Given lift, drag forces and stoke angle, the total
wrench (forces and torques) in the stroke plane can be
obtained, proceeded by a coordinate transformation, the
total wrench in the body frame can be derived. As shown
in [4], the equations of motion for a rigid body subject
to an external wrench F b = [f b, τb]T applied at the
center of mass and specified with respect to the body
coordinate frame is given by Newton-Euler equations,
which can be written as

[

mI 0
0 I

] [

v̇b

ω̇b

]

+

[

ωb ×mvb

ωb × Iωb

]

=

[

f b

τb

]

(1)

where I is the inertia matrix. vb is the velocity vector of
the center of mass in spatial coordinates, and ωb is the
angular velocity vector in body frame. Let R represents
the rotation matrix of the body axes relative the the
spatial axes, we have Ṗ = vp = Rvb and ω̂b = RT Ṙ.

For R ∈ SO(3), we parameterize R by ZYX Eu-
ler angles with φ, θ, and ψ about x,y,z axes respec-
tively, and hence R = eẑψeŷθex̂φ with x = [1 0 0]T ,
y = [1 0 0]T ,z = [0 0 1]T and x̂, ŷ, ẑ ∈ SO(3). By dif-
ferentiating R with respect to time, we have the state
equations of the Euler angles, Θ = [φ θ ψ]T , which can

be defined as Θ̇ = Wωb. By defining the state vector
[P,Θ] ∈ R3 × R3 where P is the position of the center
of mass with respect to the inertia frame, and Θ are
the Euler angles which we use to parameterize the ro-
tation matrix R, the equations of motion of the insect
is written as

P̈ =
1

m
Rf b

Θ̈ = (IW )−1[τb −W Θ̇ × IW Θ̇ − IẆ Θ̇] (2)

where the body forces and torques are periodic, nonlin-
ear functions of the wing kinematics. i.e.

f b = f b(φi(t), φ̇i(t), ϕi(t), ϕ̇i(t))

τb = τb(φi(t), φ̇i(t), ϕi(t), ϕ̇i(t)) (3)

where i ∈ {l, r} represents the left and right wing, re-
spectively.

3 Linearized Insect Dynamics

The dynamics of the insect can be expressed as a nonlin-
ear time-varying MIMO system as in Equations 2 and
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Equation 3, whose analytical solution is beyond scope
of currently existing techniques. As it is pointed out be-
fore, the motion of the insect is a complicated nonlinear
oscillation with forced periodic inputs under nonholo-
nomic constraints (stroke angle amplitude), therefore
current control techniques such as feedback lineariza-
tion and robust linear control are likely to fail. Another
important difficulty for the design of a flight controller
arising in practice is the high uncertainty of the aero-
dynamic model for insect flight. Though the qualita-
tive aspects of the aerodynamics involved are becoming
clear and it is possible to safely estimate the mean forces
averaged over a whole flapping cycle, no exact quanti-
tative model is available for the instantaneous forces at
present. The challenging task of the control of MFI has
forced the development of novel approaches and biolog-
ically inspired techniques.

As a first approximation, in near hovering condition,
where the angles are small, neglecting nonlinearity and
coupling among variables, the dynamics of the MFI is
given by:

η̈ = I−1
η τη(t)

θ̈ = I−1
θ τθ(t)

ψ̈ = I−1
ψ τψ(t)

ẍ = m−1Fv(t) sin(θ)

ÿ = −m−1Fv(t) sin(η)

z̈ = m−1Fv(t) − g (4)

where [Iη, Iθ, Iψ] are the moment of inertia of the roll,
pitch and yaw axes respectively, [τη, τθ, τpsi] are the cor-
responding torques generated by the wings, m is the
total mass of the insect, Fv is the mean aerodynamic
vertical thrust, and g is the gravitational acceleration.

If the orientation angles of MFI are small, the posi-
tion dynamics can be simplified as follows:

x(4) = m−1I−1
θ Fv(t)τθ(t)

y(4) = −m−1I−1
η Fv(t)τη(t)

z(2) = m−1Fv(t) − g (5)

where the index in the parenthesis stands for the order
of the derivative. Though this is a very crude approxi-
mation, it clearly evidences how position control can be
achieved by controlling only three parameters, the roll
torque,τη, the pitch torque, τθ, and the vertical thrust,
Fv.

4 Wing Kinematics Parameteri-
zation

Inspired by biological observations, we need to param-
eterize the wing kinematics to generate desired control
torques about the roll, pitch, and yaw axis. Recent
work [1] have envidenced two main control mechanism

adopted by insects for torque control: phase of rotation
and mean angle of attack. The key idea in this sec-
tion is to parameterize the wing kinematics such that
we can decouple the control of the three torques, thus
simplify the design of the hovering controller. A dif-
ferent mean angle of attack and the phase of rotation
between the two wings can generate asymmetrical in-
stantaneous forces along a wingbeat, thus giving rise to
positive or negative mean torque and forces. Intuitively,
the mean angle of attack can modulate the magnitude
of the aerodynamic forces on the wing: lift is maximal
at an angle of attack of 45o and decreases for different
angles. The advanced or delayed phase of rotation re-
spectively increases or decreases both lift and drag at
the stroke reversals.

These findings suggest how to select wing kinematics
that generate desired torques. Figure 4 shows only some
of such kinematics. In the scenario (A) the wings have
the same motion stroke angle motion and the phase of
wings rotation, ϕ(t), is advanced on the back of the
insect body and delayed on the front, giving rise to a
net pitch down torque. In the scenario (B) the wings
have the same stroke angle motion, φ(t), but the phase
of rotation for the left wing is advanced on the back
of the insect body and delayed on the front, and it is
opposite on the right wing, giving rise to a net clockwise
yaw torque. In the scenario (C) the wings have the same
stroke angle motion, φ(t), and phase of rotation, but the
right wing has a smaller mean angle of attack, giving
rise to a net right roll torque.

Furthermore, experiments with Robofly [1] showed
that the two most important parameters for torque gen-
eration are the mean angle of attack and the timing of
rotation at the end of each half-stroke. Following these
observations, we parameterize the motion of the wings
with only three parameters as follows:

φr(t) = φl(t) = Φ sin(2πf t)

ϕr(t) = Υr [sin(2πf t) + αr sin(4πf t)]

ϕl(t) = Υl [sin(2πf t) + αl sin(4πf t)]

Υl =
π

4
+
π

8
ramp(γ)

Υr =
π

4
+
π

8
ramp(−γ) (6)

where φ is the stroke angle, f is the wingbeat frequency,
Φ is the maximal stroke amplitude, ϕ is the rotation
angle, Υ is the maximal rotation angle and the subscript
r and l stand for right and left wing, respectively. The
function ramp() is defined as follows:

ramp(γ) =

{

0 : γ < 0
γ : γ ≥ 0 (7)

The parameters αl and αl are strongly related to wing
flip timing: a positive value corresponds to advanc-
ing the wing rotation on the downstroke and delaying
on the upstroke, a negative value does the opposite, a
null value results in a symmetric wing rotation at both
the half-strokes. The parameter γ modifies the mean
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Figure 5: Average roll torque, τη, map (left) as a func-
tion of the parameter γ and different values for the other
two parameters (dotted lines). The solid line corre-
sponds to the approximate function τη = c−1γ3. Mean
lift, fz, calculated at different frequencies (right).

angle of attack of the wings: a negative value corre-
sponds to a smaller mean angle of attack on the right
wing, a positive value to the opposite, and a zero value
to equal mean angle of attack. According to this pa-
rameterization, scenario (A) is given by, γ = 0, and
αr = αl = 0.4; scenario (B) is given by,γ = 0, αr = 0.4
and αl = −0.4;scenario (C) is given by, γ = 2/3, and
αr = αl = 0.

By varying these three parameters, it is possible to
generate sufficient torque to steer the MFI body about
the roll, pitch, and yaw axes. In particular, the map
from wing kinematics to the average torque over one
wingbeat f() : R3

u → R3
τ can be written as follows:

τ̄η = f1(αr, αl, γ)

τ̄θ = f2(αr, αl, γ)

τ̄ψ = f3(αr, αl, γ) (8)
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Figure 6: Average pitch and yaw torque maps.

In order to change the average vertical thrust to
balance the insect’s weight, it is sufficient to change
the wing flapping frequency. Indeed, simulation re-
sults show that by switching between two frequencies
(150 ± 10 Hz), it is sufficient to generate average pos-
itive or negative vertical forces. Furthermore, torque
changes resulting from this frequency change can be
neglected.

Figure 5 and Figure 6 show the simulation results
obtained from Virtual Insect Flight Simulator (VIFS)
with the morphology of a honey bee. Consequently,
given the values for the mean torques we want to gen-
erate in a wingbeat, the values for the wing parameters
αl, αr and γ can be obtained from the inverse map,
g() = f−1() : R3

τ → R3
u. The function g() does not

necessarily exist. It depends on the chosen parameter-
ization of the wings motion and on the velocity of the
insect body. However, Figure 5 and 6 show that f2 and
f3 are approximate linear functions of αl and αr only,
while f1 is an approximated function of γ only. There-
fore, the inverse map ĝ() is approximated as follows:

γ̂ = ĝ1(τ̄η) = c τ̄
1

3

η
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from approximate functions and those from the simu-
lation, over a consequetive 40 wingbeats; γ, αl, and αr
are chosen randomly.

α̂l = ĝ2(τ̄θ, τ̄ψ) = a11 τ̄θ + a12 τ̄ψ
α̂r = ĝ3(τ̄θ, τ̄ψ) = a21 τ̄θ + a22 τ̄ψ (9)

where the parameters, c, a11, a12, a21, a22 are constant.
The function ĝ() is a simple function of the mean
torques and can be readily inverted. Moreover, the pa-
rameter γ is almost decoupled from the yaw and pitch
torques.

In order to evaluate the approximation map in a
more realistic setting, we simulate the MFI motion in
VIFS by randomly choosing the value of the parame-
ters γ, αl, αr for a consequetively 40 wingbeats. In this
setting, coupling factors among the parameters and in-
sect body velocities are taken into account. Figure 7
shows the mean torque predicted by the approximate
map ĝ−1() and the mean torque per wingbeat actu-
ally calculated from the simulation, corresponding to
the real map f(). It shows that the approximate map
matches the real value very well and is very promising
in the prospective of designing feedback control.

5 Switching Control Approach

To simplify the analysis we assume perfect state infor-
mation, i.e. position, attitude and velocity of the MFI
are accessible. Based on the crude dynamic model de-
rived in Section 3, a switching controller is designed.
It functions as a scheduler which selects the next wing-
beat kinematic parameters, based on the feedback error
at the end of current wingbeat.

It should be noted that this is an average controller
in the sense that it only changes the inputs at the end
of every wingbeats, while the insect is in continuous
motion. However, in the case of high frequency when
the chattering of the motion is small, the response of
the real model can be approximated by an average one.
The feedback law is based on average errors calculated
at the end of every wingbeat

ēη = −kη1¯̇η − kη0η̄

ēθ = −kθ1
¯̇θ − kθ0θ̄

ēψ = −kψ1
¯̇
ψ − kψ0ψ̄

ēx = −kx3x̄
(3) − kx2 ¯̈x− kx1 ¯̇x− kx0x̄

ēy = −ky3ȳ
(3) − ky2¯̈y − ky1¯̇y − ky0ȳ

ēz = −kz1¯̇z − kz0z̄ (10)

where the parameters kij ’s are chosen such that the
equations s2 + ki1s + ki0 = 0, (i ∈ {η, θ, ψ, z}) and
s4 + ki3s

3 + ki2s
2 + ki1s + ki0s = 0, (i ∈ {x, y}) are

Hurwitz.
To stabilize the hovering flight mode, at the end

of each wingbeat, neglecting the coupling between the
torques and the mean vertical thrust F̄v by approxi-
mating it by its average value at 150Hz, the desired
wing kinematic parameters for the next wingbeat are
calculated as:

γ = ĝ1(k1ēη + k2êy)

αl = ĝ2(k3ēθ + k4ēx, ēψ)

αr = ĝ3(k3ēθ + k4ēx, ēψ) (11)

where ki’s indicate the weights on the angular and po-
sition errors. Since the approximated linear dynamics
assumes small orientation angles, more weight is put
on the angular errors in order to stabilize the attitude
around the equilibrium point, and at the same time reg-
ulate the position. The wing flapping frequency is cho-
sen according to 150+10×sign(ēz), where the function
sign(s) returns 1 if s is positive and -1 otherwise.

6 Simulation Results

The proposed control method is simulated with VIFS
[8] for a continuous 200 wingbeats and Figure 8,9, and
10 show the resulting position and velocity trajecto-
ries, together with the corresponding parameters cho-
sen at each wingbeat. The linear and angular displace-
ments are recovered from [15 40 − 20] millimeters and
[30o − 45o 60o] to its equilibrium point within 600 mil-
liseconds in less than 90 wingbeats. It shows that the
controller succeeds in stabilizing hovering and control
both position and attitude. Moreover, the MFI shows a
chattering motion about the equilibrium position. This
phenomenon is mainly due to the periodic motion of
the flapping wing, and also due to the fact that nonlin-
earity and coupling among dynamic variables have been
neglected.

7 Conclusion

In this work, we have parameterized the wing kinemat-
ics by a small set of parameters to decouple the control
of the average torques generated by the wings. Based
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Figure 8: MFI position and orientation trajectories.
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on the inverse map of the parameter and mean torques,
a controller was designed which schedules the desired
wing kinematic parameters based on the feedback error
at the end of each wingbeat. Based on the linearized
dynamics under the small angle assumption, the con-
troller succeeds in regulating MFI’s attitude and there-
fore control its position.

In order to simplify the model, we do not take into
account external disturbances such as wind gust and
rain. However, our goal is to design a controller with
a large basin of stability, such that the MFI is able to
recover the hovering flight mode even from an upside-
down position. As a consequence, albeit wind gust and
rain may degrade flight performance, they should not
compromise the overall behavior of the MFI. We will ad-
dress this issue in future work. Another major assump-
tion was the full access to the insect states. In practice,
perfect state information is not available. However, the
MFI will be equipped with various sensors such as gy-
roscopes, flow sensors and light detectors. Therefore
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Figure 10: Parameters chosen at each wingbeat.

future work will also address sensor modeling and out-
put feedback.
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