
university of padua
Faculty of Engineering

Finished on the day March 25, 2011 using LATEX2ε

UNIVERSITY COLLEGE CORK

—

Department of Electrical and Electronic Engineering

—

MASTER THESIS IN AUTOMATION ENGINEERING

VELOCITY ESTIMATION AND
MOTION CONTROL USING MEMS

ACCELEROMETER

Advisor: Dr. Luca Schenato

Co-advisor: Dr. Richard Kavanagh

Author: LUCA FARDIN

ACADEMIC YEAR 2010-2011

to my family...

“ Everybody knows that something is impossible, until it reaches a fool who does

not know and invents. ”

Albert Einstein, 1879-1955

Contents

Declaration XI

Acknowledgements XIII

Sommario XV

1 Introduction 1

1.1 Purpose . 1

1.2 Micro Electro-Mechanical System Devices 2

1.3 Estimation velocity . 4

2 Relevant theory 9

2.1 MEMS Accelerometer . 9

2.2 Signal transmission: Slip Rings . 11

3 Experimental apparatus 13

3.1 Brushless servomotor Moog G400 Series 14

3.2 Moog DS2100CAN Digital Controller Driver 15

3.3 MEMS Accelerometers characterization 19

3.3.1 MEMS Devices Error . 22

3.4 Analogue Signal Processing . 26

3.5 Digital Signal Processing: dSPACE DS1102 29

3.6 Incremental encoder . 33

4 Velocity estimation methods 37

4.1 Model-based velocity estimation 37

4.2 Kinematic Kalman filter (KKF) 40

5 Design and Simulation 43

5.1 Estimated Friction and Viscosity Damping 44

5.2 Designing a PI speed controller 48

5.2.1 Design of current control 51

5.2.2 Design of speed control . 53

5.3 Design Model-Based Estimator and Kalman Filter 58

5.4 Design of DSP-Based Controller Language 68

6 Results and Analysis 71

6.1 PI controller response . 71

6.2 Results for KKF and Model-based schemes 74

Conclusion 89

LogBook 91

6.3 Week 1 . 91

6.4 Week 2 . 93

6.5 Week 3 . 95

6.6 Week 4 . 97

6.7 Week 5 . 98

6.8 Week 6 . 100

6.9 Week 7 . 102

6.10 Week 8 . 105

6.11 Week 9 . 107

6.12 Week 10 . 109

6.13 Week 11 . 112

6.14 Week 12 . 115

A Code C 117

Bibliography 141

X

Declaration

This report was written entirely by the author, except where stated otherwise.

The source of any material not created by the author has been clearly referenced.

The work described in this report was conducted by the author except where

stated otherwise.

Luca Fardin, 20 of January 2011

Acknowledgements

I feel that thanks are due, especially to Dr. Richard Kavanagh for his suggestions

and assistance in developing this project. I also wish to thank Dr. Luca Schenato,

who dealt with the operation from our Italian headquarters.

Sincere thanks to Dr. Gerard O’Donovan of Moog Ltd. for his assistance in

adapting the Moog drive, and for his help throughout. We are also grateful to

Mr. Maurice O’Connor for his help with hardware adjustment and sensor set-up,

and to Mr. Michael O’Shea for modifying the mechanical rig.

Last but not least, heartfelt thanks to my parents, who are my point of ref-

erence, my sister Monica, and Arianna, who has patiently stayed by my side and

supported my efforts over the years.

My gratitude to everyone who has offered me friendship and solidarity.

Sommario

Lo scopo di questo progetto è di studiare le prestazioni del kinematic Kalman

filter (KKF) utilizzando un accelerometro al fine di stimare la velocità. Il pro-

getto si è basato su quello coniato da Jeon Soo e Masayoshi Tomizuka [1], che

mira ad analizzare i tradizionali metodi di stima della velocità e confrontarli con

il KKF. Al fine di misurare l’accelerazione angolare con un metodo affidabile e

conveniente, è stato utilizzato un Micro-Electro-Mechanical System MEMS ac-

celerometro. Questo progetto dimostra che il kinematic Kalman filter presenta

prestazioni elevate anche con l’utilizzo di un encoder a bassa risoluzione, in quanto

è insensibile alla modellizzazione dell’incertezze e dalle variazioni dei parametri.

The purpose of this project is to investigate the performance of the kine-

matic Kalman filter (KKF) by using an accelerometer in order to estimate the

velocity. The project was based upon the one coined by Soo Jeon and Masayoshi

Tomizuka [1], which aims to analyze conventional velocity estimation methods

and compare them to the KKF. In order to measure angular acceleration with

a reliable and cost-effective method a Micro-Electro-Mechanical System MEMS

accelerometers was used. This project shows that the kinematic Kalman filter

can perform very well even with a low-resolution encoder, as it is insensitive to

modeling uncertainties and parameter variations.

Chapter 1

Introduction

1.1 Purpose

The purpose of this work is to investigate the performance of the kinematic

Kalman filter (KKF). The project is based upon the one coined by Soo Jeon

and Masayoshi Tomizuka [1], which aims to analyze conventional velocity esti-

mation methods and compare them with the KKF. In order to measure angular

acceleration with a reliable and cost-effective method, Micro-Electro-Mechanical

System MEMS accelerometers have been used.

This research was conducted to obtain very accurate velocity information, as

it often required in control laws for mechanical systems. Usually the velocity is

estimated from the encoder position because a pulse encoder is the most typ-

ical sensor in motion control. The simplest method is based on the difference

of successive encoder counts, or a better approach is to time the interval be-

tween two consecutive encoder pulses at the expense of a large phase lag. At high

speeds, these methods may provide a relatively accurate estimate of velocity, but

at low speeds the estimate becomes highly unreliable. Another method is to use

a high-resolution encoder, which can provide an accurate velocity estimate at the

expense of higher implementation costs.

In the project, the estimated velocity has been implemented based on the

2 1. INTRODUCTION

model-based state estimation theory in order to compare the results with the

KKF. In the model-based approaches, model parameters and external disturbance

must be accurately known for the estimate of velocity to be accurate, which is

very difficult in reality. Using accelerometers for velocity estimation, no model

parameter is needed if we use a kinematic model relating to the position and

use the acceleration measurement as input to set up a kinematic Kalman filter

(KKF). For this reason, the most attractive feature of KKF is that it is insensitive

to modeling uncertainties and parameter variations.

1.2 Micro Electro-Mechanical System Devices

MEMS Micro Electro-Mechanical Systems is the technology of very small me-

chanical devices driven by electricity.

MEMS are made up of components between 1 to 100 micrometers in size and

MEMS devices generally range in size from 20 micrometers to a millimeter.

Figure 1.1: Example MEMS nanopump.

They usually consist of a central unit that processes data, the microprocessor

and several components that interact with the outside such as microsensors. At

these size scales, the standard constructs of classical physics are not always use-

ful. Because of the large surface area to volume ratio of MEMS, surface effects

1.2. MICRO ELECTRO-MECHANICAL SYSTEM DEVICES 3

such as electrostatics and wetting dominate volume effects such as inertia or ther-

mal mass. MEMS became practical once they could be fabricated using modified

semiconductor device fabrication technologies, normally used to make electron-

ics. These include moulding and plating, wet etching and dry etching, electro dis-

charge machining, and other technologies capable of manufacturing small devices.

The types of MEMS devices can vary from relatively simple structures having

no moving elements, to extremely complex electromechanical systems with mul-

tiple moving elements under the control of integrated microelectronics. The one

main criterion of MEMS is that there are at least some elements having some

sort of mechanical functionality whether or not these elements can move.

Figure 1.2: Detail view of MEMS electrostatic actuator.

Commercial applications with MEMS devices may be utilized, for example:

• Inkjet printers, which use piezoelectrics or thermal bubble ejection to de-

posit ink on paper;

• Accelerometers in modern cars for a large number of purposes including

airbag deployment in collisions;

• Accelerometers in consumer electronics devices such as game controllers

(Nintendo Wii), personal media players / cell phones (Apple iPhone, various

4 1. INTRODUCTION

Nokia mobile phone models, various HTC PDA models) and a number of

Digital Cameras (various Canon Digital IXUS models). Also used in PCs

to park the hard disk head when free-fall is detected, to prevent damage

and data loss;

• MEMS gyroscopes used in modern cars and other applications to detect

yaw; e.g., to deploy a roll over bar or trigger dynamic stability control;

• Silicon pressure sensors e.g., car tire pressure sensors, and disposable blood

pressure sensors;

• Bio-MEMS applications in medical and health related technologies from

Lab-On-Chip to MicroTotalAnalysis (biosensor, chemosensor).

In other words, the development of linear and rotational MEMS accelerometers

has been heavily promoted by the automotive manufacturing and computer hard-

ware industries. Recently, MEMS devices have had quite an impact on the medical

industry, using procedures related to the measuring of blood pressure and other

procedures for biomedical applications.

1.3 Estimation velocity

Due to the increasing use of mechanical and automated systems for many in-

dustrial applications, the demand of performance for such mechanical systems

has increased. In many cases, the high performance of accurate positioning and

tracking of trajectories in mechanical systems are required.

Therefore, control laws for these systems often require very accurate velocity

information. Usually, the velocity is estimated from the encoder position only

because a pulse encoder is the most typical sensor in motion control. In this

case, the simplest method to estimate the velocity is based on the difference of

successive encoder counts.

On the market there are many types of encoders, for example the incremental

encoders provide a specific number of equally spaced pulses per revolution (PPR)

1.3. ESTIMATION VELOCITY 5

of linear motion. A single channel output is used for applications where sensing

the direction of movement is not important. Where direction sensing is required,

quadrature output is used, with two channels 90 electrical degrees out of phase.

Circuitry determines direction of movement based on the phase relationship be-

tween them.

Figure 1.3: Incremental encoder counts.

When more resolution is needed, it’s possible for the counter to count the leading

and trailing edges of the pulse train from one channel, which doubles (x2) the

number of pulses counted for one rotation of motion. Counting both leading and

trailing edges of both channels will give (x4) resolution. To determine position,

its pulses must be accumulated by a counter. The count is subject to loss dur-

ing a power interruption or corruption by electrical transients. Some incremental

encoders also produce another signal known as the "index" or "Z channel". This

signal, produced once per revolution of a shaft encoder or at precisely-known

points on a linear scale, is often used to locate a specific position.

The measurement resolution of the velocity is given by δω = δϑ/Ts, where δϑ

is the resolution of the encoder and Ts is usually the sampling time. δω is called

the velocity resolution and Ts the measurement delay in this case. If higher ve-

locity resolution is required using the same encoder, the measurement time delay

increases because the product of the two quantities is fixed by the resolution of

the encoder δϑ. Therefore, the resolution of the velocity estimation becomes di-

rectly proportional to the resolution of the encoder in this method. This method

may provide a relatively accurate estimate of the velocity at high speeds, but at

6 1. INTRODUCTION

low speeds the estimate becomes highly unreliable. At extremely low speeds, a

better approach is to time the interval between two consecutive encoder pulses

at the expense of a large phase lag.

High-resolution encoder can provide a more accurate velocity estimate, but it

greatly increases the implementation cost if we want very high accuracy at low

speeds. This is the reason why some of high-precision motion control systems use

encoders with a resolution much higher than necessary to satisfy the accuracy

requirement for positioning.

The velocity can be estimated using model-based state estimation theory.

These approaches, the model parameters and external disturbances must be ac-

curately known for the estimate of velocity to be accurate, which is very difficult

to have in reality.

The model-based speed observers [2], [3] make the velocity estimate robust

using disturbance observers. In this way, a machine drive technique using novel

estimation strategy for the very low-speed operation to estimate both the in-

stantaneous speed and disturbance load torque was proposed. In the proposed

algorithm, Kalman filter was incorporated to estimate both the motor speed and

the disturbance torque. The effects of parameter variations were discussed.

Figure 1.4: The block diagiram of speed controller including speed and distur-

bance observer using Kalman filter. Figure found in [3].

1.3. ESTIMATION VELOCITY 7

Another way, the speed averaging was used to improve the performance at very

low speeds [4]. However, these methods require accurate system parameters such

as inertia and friction. Furthermore, the disturbance observer cannot success-

fully track fast changing or discontinuous disturbances such as cogging force and

stiction.

Therefore, these methods are not so robust in applications such as robot ma-

nipulators and time varying loads. So it is not possible to use these methods to

wide range of working conditions while maintaining robustness and accuracy.

The use of accelerometers in motion control has been suggested for some time.

Some results have been reported for linear motors [5] and hard disk drive systems

[6].

Figure 1.5: Disk drive components and effect of disturbance on track misregis-

tration. Figure found in [6].

For example, in this application the accelerometers were used to measure the mo-

tion of the drive, and then feed this information forward to the actuator controller

to coordinate the read/write head position with the desired track position.

The significant benefits using this additional sensor is that the robustness

to model parameters in estimating state variables increases. In fact, for velocity

estimation, no model parameter is needed if we use a kinematic model relating

the position to the acceleration and use the acceleration measurement as an input

to set up a kinematic Kalman filter (KKF).

Chapter 2

Relevant theory

2.1 MEMS Accelerometer

The information provided in this section can be found in [7] and [8].

The MEMS device chosen for this project is the ADXL210E Analog De-

vice™unit. The ADXL210E is a low-cost, low-power, complete 2-axis accelerom-

eter with a digital output, all on a single monolithic IC. The ADXL210E will

measure accelerations with a full-scale range of ±10 g. The ADXL210E can mea-

sure both dynamic acceleration and static acceleration (e.g. gravity).The outputs

are analog voltage or digital signals whose duty cycles are proportional to accel-

eration. The duty cycle outputs can be directly measured by a microprocessor

counter without an A/D converter. For these reasons and for its ultra-small size

this type of device has been chosen. Another reason is that the same device had

been employed by Jeon and Tomizuka in their experiment [1].

Figure 2.1: MEMS accelerometer ADXL210. Figures found in [8] and [9].

10 2. RELEVANT THEORY

The MEMS acceleration sensor is based upon a change in an electrical charac-

teristic such as capacitance. There is a fixed anchored section and a moveable

mass held by Polysilicon springs. These springs suspend the sensor structure over

the substrate and also provide resistance against linear acceleration forces. The

structure of the sensor is called Proof Mass.

Figure 2.2: Left: Section of MEMS accelerometer sensor. Right: Simplified view

of the MEMS accelerometer under acceleration.

When the device is accelerated the moveable section is shifted in relation to the

fixed section in the same way that a passenger is thrown forward when a car

brakes suddenly. Consequently, the fingers which are fixed to the Proof Mass will

move relative to the plats and the finger will create a differential capacitor, whose

capacitance alters proportionally to the motion of the Proof Mass. The size of

the movement depends not only on how large the force is but also on the mass of

the moveable section and the strength of the springs. These are selected to make

the accelerometer sensitive to a particular size of acceleration. This difference of

capacitance is detected and amplified to produce a voltage proportional to the

linear acceleration. Figure 2.2 shows the micro structure sensor and the princi-

ple of operation. This structure is repeated numerously on all four sides of the

Proof Mass in order to measure the linear acceleration in perpendicular X and Y

directions. The dimensions of the structure are of the order of microns.

2.2. SIGNAL TRANSMISSION: SLIP RINGS 11

2.2 Signal transmission: Slip Rings

A multi-element Mercury Slip-Ring was used in this project to transfer a signal

between a rotating mass and a fixed body. Using this method, the Slip Ring can

also supply constant DC voltage to the MEMS.

A Slip Ring is a method for making an electrical connection through a rotating

assembly. Slip rings are commonly found in electric motors, electrical generators

for AC systems and alternators and in the packaging machinery, cable reels, and

wind turbines.

One of the two rings is connected to one end of the field winding and other one

to the other end of the field winding. A common brass Slip Ring consists of a

conductive circle or band mounted on a shaft and insulated from it. Electrical

connections are made to the ring from the rotating part of the system, such as

the rotor of a generator. Fixed contacts or brushes run in contact with the ring,

transferring electrical power or signals to the exterior static part of the system.

Mercury-wetted Slip Rings are noted for their low resistance and stable con-

nection and use a different principle which replaces the sliding brush contact with

a pool of liquid metal molecularly bonded to the contacts. During rotation the

liquid metal maintains the electrical connection between the stationary and ro-

tating contacts.

Figure 2.3: Mercotac Mercury Slip Rings.

12 2. RELEVANT THEORY

As described in [7], Mercury Slip Ring was chosen for the project as common

brass Slip Rings create considerable noise and also have very high wear. More-

over, brass Slip Rings have a much shorter life span than Mercury Slip Rings.

In fact, the lifetime of a brass Slip Ring is merely into the millions of revolution

and that of a mercury Slip Rings is more than a billion revolutions. Another

advantage of Mercury Slip Rings is that they have almost zero impedance on the

dynamics of the system, and therefore will not introduce any noise.

Chapter 3

Experimental apparatus

The experimental apparatus consists of the following main parts:

• Brushless servomotor Moog G400 Series with resolver;

• Moog DS2100CAN Digital Controller Driver;

• MEMS ADXL210JE Accelerometers Devices attached on the outside of the

disk;

• Digital Signal Processing (DSP): dSPACE DS1102 Floating-Point Con-

troller Board;

• PC Pentium 1, 32MB of RAM, 1GB of ROM with Windows 98 and DSP

processor;

• PC Pentium 4, CPU 3 GHz, 1GB of RAM with Windows XP and MOOG

Motor GUI software;

• Incremental encoder from Leine & Linde with 4096 PPR;

• Anologue Signal Processing: Vero-Board Circuit and RC Lowpass Filter and

Decoupling Capacitors;

• Tektronix TDS 2014 Four channel Digital Storage Oscilloscope 100MHz

1GS/s;

• 4 Conductor Mercury Slip-Ring Mercotac Model 430 ;

14 3. EXPERIMENTAL APPARATUS

• 24V Controller supply and 5V MEMS accelerometer supply;

• Hoodwin Acceleration Sensor, not required in the project.

Figure 3.20 shows an overview of the system with all its components.

The main parts of the apparatus and their characteristics are analysed in

subsequent sections.

3.1 Brushless servomotor Moog G400 Series

The characteristics and values in this section can be found in the datasheet [10].

Moog’s G400 Series motors are electronically commutated synchronous AC

motors with permanent magnet field excitation. The motor model used in the

project is G424_414A. Figure 3.1 shows a diagram of the motor with resolver.

Figure 3.1: Motor with Resolver diagram. Figure found in [10].

One benefit of using this motor is that it can be controlled by DS2100 controller

and interfaced with a personal computer. In fact, this type of device uses a graph-

ical user interface (GUI), called Win Drive, as described in the next section.

Its main characteristics and nominal values with sinusoidal drive are:

3.2. MOOG DS2100CAN DIGITAL CONTROLLER DRIVER 15

Type Symbol Value Units

Nominal Torque Mo 2.6 Nm

Nominal speed nN 5500 rpm

Maximum speed nmax 8000 rpm

Nominal current Io 4.8 Arms

Peak current Ip 15 Arms

Output power PN 0.95 kW

Torque constant kt 0.56 Nm/Arms

Voltage constant ke 34.2 Vrms/krpm

Rotor inertia with resolver J 2.09 kg cm2

Winding resistance at 25◦C R 2.6 Ohm

Winding inductance (phase to phase) L 5.8 mH

Motor pole count np 12

Table 3.1: Performance specification for motor model G424_414A. Data at 25◦C.

3.2 Moog DS2100CAN Digital Controller Driver

This section contains information found in [11].

The DS2100 provides full digital control of brushless servomotors and utilizes

a microprocessor to deliver significantly increased current, velocity and position

performance. It also provides a full range of interfaces to motor, feedback devices

and higher-level controllers. The DS2100 provides high performance loop closure

via full digital control. It has torque, velocity and position control capability

according to the following main features (100 µsec sampling time):

• torque loop based on Space Vector Modulation, observers and PI control;

• velocity loop based on a classical PI configuration with programmable dig-

ital filters (Low-pass,High-pass,Band-pass, Band-stop);

• position loop based on classical PI or time optimal control.

Figure 3.2 shows the DS2100 digital controller and its interface.

16 3. EXPERIMENTAL APPARATUS

Figure 3.2: DS2100 Digital Controller. Interfaces:1)RS232 connector; 2) digital

inputs; 3) digital outputs; 4) drive ready; 5) motor brake control; 6) CAN input;

7) CAN output; 8) encoder input; 9) resolver input.

The drive programming was performed by use of a management software program

called Win Drive, Graphical User Interface (GUI), based on Java. The version

of the software used in the project was 2.0 provided by Moog engineers. This

software requires the use of the Windows XP platform. The specifications of the

computer used for motor GUI are: PC Pentium 4, CPU 3 GHz, 1GB of RAM.

Figure 3.3 shows an illustration of the Graphical User Interface.

Access to the following functions will be available:

• Continuous Serial Communications status monitoring;

• Downloading and uploading files related to drive parameters;

• Real time DS2100 virtual front panel;

• Downloading of firmware;

• Modification and adjustment of drive parameters;

• Real time oscilloscope function.

3.2. MOOG DS2100CAN DIGITAL CONTROLLER DRIVER 17

Figure 3.3: Screenshot of Motor GUI. Figure found in [11].

Moreover the GUI allows direct data acquisition for position velocity and other

signals, but this data is accessible only by digital means and is consequently lim-

ited to three data bits per byte of information.

Using information provided by a Moog engineer it has been possible to access

a current loop with the driver. The engineer showed how to bypass the standard

digital input to the drive and apply an analog required torque voltage. In this

way, an analog output from the dSPACE system can be connected to the DS2100

and provide an analogue torque input to the driver.

Figure 6.25 shows the schematic of the DS2100 driver and the two points

where input voltage is installed. Information was provided by Moog.

To use the current-loop, the GUI must be set in a command reference and analog

torque mode. To do this, the parameter "modreq" must be set to 8209, which

means torque mode and use of the ADC command.

Particular attention is paid to the fact that the values of input voltage vary over

a range of 0-4.85V and notes the calculations in the software assumes that the

signal is biased at 2.44V.

18 3. EXPERIMENTAL APPARATUS

Figure 3.4: DS2100, digital card layout.

The A/D input value can be viewed on adccmd_g parameter in the database tab

of the GUI.

After some tests on the system, it was found that the voltage input into the driver

and the current supplied to the motor have the following relationship:

• 0 V = -32704 adccmd_g increments (maps to +imax amps command to

the current loop);

• 2.425 V = 0 adccmd_g increments (maps to 0 amps command to the current

loop);

• 4.85 V = +32767 adccmd_g increments (maps to -imax amps command to

the current loop).

Therefore, it needs to supply a 2.425V bias on the input to achieve the command

0 A current condition in the loop.

3.3. MEMS ACCELEROMETERS CHARACTERIZATION 19

3.3 MEMS Accelerometers characterization

This section presents in detail the characteristics of the MEMS device used in the

project. Some informations were found in [7], [8] and [12].

The MEMS ADXL210E device used in the project is an 8-pin device. The

configuration of the pins in the device is shown in Figure 3.5. Pin 1 (ST) is a

Self Test Pin and would only be useful if needed to decipher whether the device

is functioning correctly. Pin 2 (T2) is used to set the period of the Duty Cycle.

The power to the device is supplied through Pin 8 (VDD) and Pin 3 (COM),

5 V. Pin 4 (YOUT) and Pin 5 (XOUT) provide a digital output signal and Pin 6

(YFILT) and Pin 7 (XFILT) give an analog output signal. As written in [8] it is

Figure 3.5: Pin Configuration. Figure found in [8].

recommended that a 0.1µF capacitor should be attached across VDD and COM

so as to avoid power supply coupling. A surface mount resistor was soldered be-

tween two of the MEMS pins, connecting a single resistor between Pin 2 and

ground, in order to set the Duty Cycle Measurement (DCM) on a period equal

to 1 ms using a resistor of 125 kΩ. The Table in Figure 3.6 shows the relationship

between the values of this resistor RSET and the time T2, as well as Counts per g.

Using these devices with dual-axis allows simultaneous measurement in two

perpendicular directions, thus allowing acceleration to be sensed on a multi direc-

tional rotating sphere. However, in this project only one signal was detected, the

axis tangential to the disk. In fact, the axis of rotation of the system was perpen-

20 3. EXPERIMENTAL APPARATUS

Figure 3.6: Trade-Offs Between Microcontroller Counter Rate, T2 Period; and

Resolution of Duty Cycle Modulatior. The Table can be found in [8].

dicular to gravity,i.e. the MEMS devices were orientated in order to experience

the only tangential acceleration and therefore they would ignore centripetal/cen-

trifugal force. Figure 3.7 shows the arrangement of the MEMS accelerometers.

Figure 3.8 Left shows the gravitational effect on the MEMS device.

MEMS

Devise

a
T

θ

R

Axis of

 rotation

Figure 3.7: MEMS Accelerometers attachment.

The radius of the disk to which the devices are attached is equal to R = 5.5

cm. At a constant speed, the output signal of the accelerometer is a sinusoidal

wave that oscillates around 0 g Offset. In fact, MEMS accelerometers have a

fundamental DC Offset for voltage output defined in the datasheet and shown in

3.3. MEMS ACCELEROMETERS CHARACTERIZATION 21

the following equation:

0g Offset =
Vdd
2

(3.1)

Another specification is the sensitivity of MEMS, which is calculated using the

following equation:

Sensitivity = 20mV × Vdd per g (3.2)

Therefore, using the voltage supply set to a DC value of 5V, the ideal Zero Offset

is 2.5V and the sensitivity is 100mV/g. Then, at a constant speed, the period T of

oscillation corresponds to one revolution of the disk. Over this period, the sensor

has experienced the full range of gravity.On theory, the output of the sensor then

varies between 2.6V and 2.4V. The output signal from a single accelerometer is

shown in Figure 3.8 Right.

a = -1g

2.4 V

T

2.5 V a = 0 g
T

2.6 V

a = +1 g
T

a = 0 g
T

2.5 V

Acceleration

due to gravity

Figure 3.8: Left: Gravitational Effects on the MEMS Device. Right: Ideal MEMS

Output Signal.

To avoid this gravitational influence, a second MEMS device is attached 180

degrees out of phase to the first,which can be combined and averaged. With

their average the result is a "DC" output signal, approximately equal to zero

offset voltage for constant speeds. Therefore, the change of the "DC" signal is

correlated with the change of the actual linear acceleration and so the MEMS

devices ignore the gravitational effects.

With these ideal assumptions, a relationship can be seen between linear ac-

celeration and the output voltage of the devices. In fact, a variation of 1 mV of

22 3. EXPERIMENTAL APPARATUS

the output signal corresponds to a linear acceleration equal to 0.098 m/s2. Then

the angular acceleration can be calculated by the following relationship:

α =
aT
R

=
0.098

0.055
= 1.7818

[
rad

sec2

]
(3.3)

Therefore, with these ideal assumptions, the sensitivity of the angular acceleration

is 178.18
[
rad
sec2

]
for a change in voltage of 100 mV .

Figure 3.9 represents the manufacturer’s yield performance for the ADXL210E,

regarding axis X used in the project.

Figure 3.9: VDD = 5 V. Left: X-Axis Zero-g Bias Distribution at XFILT . Right:

X-Axis Sensitivity Distribution of XFILT . Figure found in [8].

The real sensitivity of MEMS sensors was calculated in Chapter 9.2 in [7]. These

were slightly different from the ideal signals: in fact the averaged signal of the two

devices has a sensitivity of 97.5 mV/g and 97.65mV/g in the respective X and Y

axes. Using these values shows that a variation of 1 mV corresponds to a linear

acceleration of 0.1005 m/s2, giving an angular acceleration α = 1.8275 rad/s2.

3.3.1 MEMS Devices Error

As was noted in [7], incorrect placement of MEMS devices on the outer surface of

the disk can cause errors in the output signal. Therefore, there may be an error

in the measured acceleration signal.

3.3. MEMS ACCELEROMETERS CHARACTERIZATION 23

As will be noticed in the following sections, the Zero Offset of the output

signal of the accelerometers was not constant, but rather changed as a function

of velocity. This change is due to an error in placement of the devices, because the

axis of the sensor may not be perpendicular to the radius of the disc and therefore

is not just measuring tangential linear acceleration. In fact, the measured signal

is also influenced by the centripetal force.

The relationship between centripetal force and centripetal acceleration is given

by the equations in 3.4.

Fc = −mac

ac = ω × (ω × r) = −ω2rer

(3.4)

The centripetal force Fc is always directed toward the centre of the circle, in the

direction of the axis of rotation, er, and is equal to the mass of the object, m,

times the centripetal acceleration, ac. The effect of a slight misalignment of the

devices attached to the disk is shown in Figure 3.10.

θ

r

F
MEMS

FMEMS

Fg

Fg

Fc

Fc

Z

α

α

β

Misaligned

MEMS

Aligned

MEMS

Figure 3.10: Misalignment of the MEMS device.

If the sensors are perfectly placed on the disk surface, the sensor axis Z is parallel

to the direction of the centripetal force. In this way, the sensor measures only

the force of gravity at some point in a revolution when the disk is rotating at

a constant velocity ω. Figure 3.10 shows a misalignment of angle α between the

Z-axis sensor and the centripetal force Fc, which also corresponds a misalignment

24 3. EXPERIMENTAL APPARATUS

between the X-axis sensor, FMEMS, and the plane of gravitational force, Fg. This

is shown when the sensor is in the +1g position, i.e. when the angular position

θ is 90 degrees. The angle between the X-axis sensor and the plane of gravity is

called β and varies with respect to θ. Therefore, at the +1g position, α and β are

equal. The following equation

FMEMS = Fg cos(α)± Fc sin(α) (3.5)

describes the force experienced by device, FMEMS, in relation to the gravitational

force, Fg, and the centripetal force, Fc. The following equation describes the force

experienced by the device FMEMS in relation to the gravitational force Fg and the

centripetal force Fc. The sign of the centripetal force depending on whether the

axis of the sensor is orientated towards or away from the centre of the disk. In the

case of Figure 3.10, this force is positive relative to the sensor. The acceleration

experienced by the sensor is:

aMEMS = aT cos(α)± ac sin(α) (3.6)

The Fg is based on the tangential acceleration aT , which depends on the compo-

nent of the gravity parallel to the tangent, gCos(β). Therefore, using the rela-

tionships in 3.4, with constant mass, the equation 3.6 can be simplified with the

following equation:

aMEMS = g cos(β) cos(α)± ω2r sin(α) (3.7)

Therefore, if the device is perfectly aligned, then α = 0 degrees, the component

of centripetal force is cancelled and aMEMS = g cos(β).

For example, if the sensor has a misalignment angle of 1 degrees towards

the centre, and the motor is moving at a constant speed of 10 [rad/sec]. The

acceleration measured is:

aMEMS = 9.8 cos2(1) + (10)2(0.055) sin(1) = 9.8930 [m/s2] (3.8)

when the angle θ is equal to 90 degrees. Therefore, the acceleration measured has

an error equal to 0.0930 [m/s2] from the real value of acceleration. If the motor

3.3. MEMS ACCELEROMETERS CHARACTERIZATION 25

is moving at a constant speed of 100 [rad/sec] the acceleration measured is:

aMEMS = 9.8 cos2(1) + (100)2(0.055) sin(1) = 19.3958 [m/s2] (3.9)

accordingly giving an error of 9.5958 [m/s2] from the real value of acceleration.

This example is described in order to understand the importance of having

devices perfectly aligned. In fact, the error that is caused by misalignment grows

linearly with increasing speed, making the sensor worthless.

26 3. EXPERIMENTAL APPARATUS

3.4 Analogue Signal Processing

This section contains information found in [7].

The project implemented in [7] used the analogue signal output from the ac-

celeration sensors. Although ADXL210E accelerometers are specifically designed

to be digital sensors, the advantage of using the analogue signal is its capacity for

bandwidth. In fact, the Duty Cycle Modulation (DCM) for the digital signal has

a maximum bandwidth of 500Hz, whereas the analogue signal has a bandwidth

of up to 6 KHz.

Figure 3.11 shows the analog circuit built in the project [7] on Vero-Board.

Figure 3.11: Analogue Signal Processing: Vero-Board Circuit.

The coaxial cable connections are labelled 1-4 and these were used to transfer the

signals to the dSPACE interface board. Connections 1 and 2 are the individual

MEMS buffered signals and by the employment of switches, either the filtered

3.4. ANALOGUE SIGNAL PROCESSING 27

or unfiltered signal can be connected to the dSPACE board. Connection 3 is the

averaged linear acceleration signal and Connection 4 is the differential integrator

output. More information on the building of the Vero-Board circuit can be found

in [7].

The analogue Vero-Board circuit is shown in Figure 3.12.

Figure 3.12: Analogue Circuit Diagram. Figure found in [7].

The circuit was implemented to buffer the output signals from the MEMS devices.

Decoupling capacitors were integrated into the circuit because this was recom-

mended by the MEMS designers in order to prevent transients from the power

supply, as this might disrupt the output of the accelerometers. A second-order

low-pass filter Sallen-Key Filter was implemented to remove noise introduced

from the environment and vibrations, using a cutoff frequency dependent on the

resistors. The signals were buffered and filtered individually, and summed. The

sum of the signals is used in the averaging circuit, which comprised of an inverting

amplifier with a gain of minus one half. In this way, Connection output 3 was an

average linear acceleration DC signal with an offset of about 2.5V.

As reported in [7], a basic Resistor-Capacitor (RC) circuit was soldered onto

a small piece of Vero-Board and attached to the face of the disk. This circuit

28 3. EXPERIMENTAL APPARATUS

was a basic Low-Pass Filter, setting the bandwidth of the MEMS accelerometers,

with the additional decoupling capacitors for the supply. Figure 3.13 shows the

Low-Pass Filter and Decoupling Capacitors attached on the disk and the position

of RSET on the MEMS device. The RSET= 125 kΩ as described in the section

3.3.

Figure 3.13: Low-Pass Filter and Decoupling Capacitors attached on the disk.

Position of RSET on the MEMS device.

3.5. DIGITAL SIGNAL PROCESSING: DSPACE DS1102 29

3.5 Digital Signal Processing: dSPACE DS1102

This section contains information found in [13].

In the project it was necessary to acquire data from the accelerometers and

use them in a digital way, in order to process and store the data acquired. This

was possible with the use of Digital Signal Processing (DSP) produced by the

dSPACE company. The model of DSP used in the project is DS1102.

The DS1102 is specifically designed for the development of high-speed multivari-

able digital controllers and real-time simulation. The DS1102 is based on the

Texas Instruments TMS320C31 floating-point Digital Signal Processor (DSP) as

the main processing unit, providing fast instruction cycle time for numeric inten-

sive algorithms. The DSP has been supplemented by a set of on-board peripherals

frequently used in digital control systems. Analog to digital and digital to analog

converters, a DSP-microcontroller-based digital-I/O subsystem and incremental

sensor interface make the DS1102 an ideal board solution for this project. It con-

tains 128K Words memory, fast enough to allow zero-wait-state operation. Figure

3.14 presents a block diagram of the DS1102.

Figure 3.14: Block Diagram of the DS1102. Figure found in [13]

30 3. EXPERIMENTAL APPARATUS

The TMS320C31 supports a total memory space of 16 M 32-bit words including

program, data and I/O space. All off-chip memory and I/O can be accessed by the

host even while the DSP is running, thus allowing easy system setup and monitor-

ing. The host interface contains a bus-width converter mapping two 16-bit host

accesses into a single 32-bit transfer on the DSP-bus to avoid data transfer in-

consistencies. The two main parts of the dSPACE system are the interface board

and the digital processor, which is directly connected to the computer. Figure

3.15 shows these two main parts. On the board there are two 16-bit Analogue-

Figure 3.15: DSP dSpace Processor & DSP dSPACE Interface Board.

to-Digital Converters, Vin1 and Vin2, and two other inputs, Vin3 and Vin4, both

12-bit ADC’s. There are 4 Digital to Analogue Converters, connectors Vout1− 4.

The DS1102 dSPACE system requires the use of a computer with a Windows

98 operating system. For this reason the project needs to use two computers, one

for the dSPACE system with a Windows 98, GUI, and one for the motor GUI

using the Windows XP operating system. The GUI software for dSPACE was

included in the project, so that data could be recorded and analysed. Unfortu-

nately there are some restrictions when using this type of computer, as it allows

you to store a limited amount of data due to its lack of memory storage. For

example, it can register a maximum of 10 seconds data when two signals are read

simultaneously. The control program was written in the programming language

C and was compiled using a C compiler for the TMS320C31 DSP. The program

3.5. DIGITAL SIGNAL PROCESSING: DSPACE DS1102 31

was subsequently downloaded by DOS to the DSP processor.

The main instructions used in the programs written are:

• void ds1102_ad_start(): this function starts all four ADCs contained on

the DS1102 and is used in conjunction with the function ds1102_ad();

• float ds1102_ad(long channel): this function returns the ADC input value

from the ADC specified by the parameter channel which must be within

the range 1-4. The ADC data is read subsequently and scaled to a floating-

point value in the range -1.0..+1.0. Since the ADC input value is a 16 or

12-bit signed integer, left aligned within a 32-bit data word, the factor 2−31

is used for scaling;

• void ds1102_ad(long channel, float value): the contents of value is written

to the DAC output specified by the parameter channel. Valid channel num-

bers range from 1-4. The output value, which must be within the range

-1.0..+1.0, is scaled to a 32-bit integer value by the factor 231 and is written

to the respective DAC data register;

• float ds1102_inc(long channel): this function updates the incremental en-

coder counter output register and returns the position counter value. The

parameter channel specifies the channel number which must be 1 or 2. The

24-bit position counter value is scaled to a floating point value in the range

-1.0..+1.0 by the factor 2−31 because the data word is a 24-bit signed integer

left aligned within the 32-bit data word;

• void ds1102_inc_clear_counter(long channel): this function resets the se-

lected incremental encoder interface counter specified by the parameter

channel.

The DS1102 can be interfaced directly by an incremental encoder. Figure 3.16

shows a block diagram of an incremental sensor interface.

The interface contains the lines received for the input signals, a digital noise

pulse filter eliminating spikes on the phase lines, a quadrature decoder which

32 3. EXPERIMENTAL APPARATUS

Line-

Receiver
Noise-

Filter
Quadrature

Decoder

24-bit

Position

Counter

24-bit

Output

Latch

DS-031

DSPINT
Line-

Receiver

Phi 0

Phi 90

Index

25MHz RESET STROBE

Multifuse

V Supply VCC

Figure 3.16: Block diagram of an incremental encoder interface.

converts the sensor’s phase information to count-up and count-down pulses, a

24-bit counter which holds the current position of the sensor and a 24-bit output

latch. Noise pulses shorter than 80ns are eliminated by the digital noise pulse

filter. Therefore, it was possible to connect the incremental encoder directly to

the DS1102 without the use of any other additional circuitry.

3.6. INCREMENTAL ENCODER 33

3.6 Incremental encoder

An incremental encoder produced by the Leine & Linde company has been added

to the mechanical system implemented in [7]. Incremental encoders provide a

specific number of equally spaced pulses per revolution (PPR) of linear motion.

The encoder used in the project provide 4096 PPR and therefore has the following

resolution:

Resolution δϑ =
2π

4096
= 1.534× 10−3 [rad] (3.10)

The encoder is mounted to the motor shaft using an appropriate support attached

to the end of the motor’s body. Figure 3.17 shows the motor without the encoder

and the motor with the encoder mounted.

Figure 3.17: Left: Motor without encoder. Right: Motor with encoder and shaft

coupling.

It can be seen that the support is needed to fix the encoder to the end of the

motor body and a flexible shaft coupling is used to connect the encoder to the

motor shaft. The output signals of the encoder are shown in Figure 3.18, and

consist of bidirectional signals with the use of a differential line driver.

Unfortunately, one of these signals was not present at the encoder output due

to a malfunction, so it was decided to use an inverter chip to obtain the missing

signal. The inverter chip used is model MM74HC04N.

34 3. EXPERIMENTAL APPARATUS

Figure 3.18: Encoder output signal.

As described in the previous section, the encoder is connected directly to the

DS1102 board, which also provides the required 5V power to the encoder. To

connect the encoder to the interface it was necessary to refer to the manual [13]

in order to connect the correct signals to the dSPACE board.

Figure 3.19 shows the mechanical structure of the system. Note the motor

where the disc is attached to the MEMS sensor, the encoder with its support, the

mercury slip ring and bearing supports to sustain the shaft without friction.

Hoodwin Sensor

Motor Power

Supply Resolver

Feedback

Encoder

Mercury

Slip-Ring
Flexible Shaft

Coupling

Flexible Shaft

Coupling

MEMS Device

Support

encoder

Support

Bearings

Moog Servo Motor

Figure 3.19: Mechanical system features.

Figure 3.20 shows an overview of the system with all its components.

3.6. INCREMENTAL ENCODER 35

System Overview

3-Phase Supply

Step Down

Trasformer

400V to 220V

Moog Motor Control

GUI

dSpace Data Acquisition

24V Logic Supply,

Hardware Enable,

Brake Control

Flexible Shaft

Coupling

Hoodwin Sensor

Mercury

Slip-RingMEMS Device

Encoder

dSpace Interface

Motor Power

Supply

Resolver

Feedback

RS-232

Cable

Low-pass Filtering

Bu!ering

Averaging

Current-loop

Figure 3.20: Complete system overview.

Chapter 4

Velocity estimation methods

The models in this section are cited in [1].

4.1 Model-based velocity estimation

In most cases, model-based state estimator designs start from the following dif-

ferential equation:

Jθ̈ (t) + bθ̇ (t) = u (t) + d (t) (4.1)

where:

• J: nominal value of the inertia;

• b: nominal value of the viscous friction;

• θ: angular position;

• u: input torque;

• d: external disturbance torque.

As suggested in [2], using the estimation of state vector x = [θ ω]T , and combining

a general disturbance observer [14] with a conventional state observer, makes the

estimation more robust than the model used in [3] of Kim and Sul.

38 4. VELOCITY ESTIMATION METHODS

The system equation is given by ẋ(t) = Ax(t) +B(u(t) + d(t))

y(t) = Cx(t) + qθ(t)

A =

 0 1

0 − b
J

 , B =

 0

1
J

 , C =
[

1 0
]
,

(4.2)

where qθ(t) is due to the quantization error of an encoder.

The quantization error qθ(t) is not Gaussian; it is shown to behave as an un-

correlated uniform distribution if the signal is sufficiently complicated and the

quantization level is sufficiently small [15].

The states are estimated by the following combined observer:

˙̂x(t) = Ax̂(t) +B(u(t) + d̂(t)) + F (y(t)− Cx̂(t)),

d̂(s) = Q(s)(P−1n (s)y(s)− u(s)),
(4.3)

where P−1n (s) is the inverse of the nominal transfer function from u to y and Q(s)

is a low pass filter with unity gain in order to attenuate the high frequency noise

and make Q(s)P−1n (s) realizable. The state observer gain matrix F ∈ R2×1 can

be calculated with Kalman filter equations.

The estimation of the disturbance d̂(s) can be rewritten

d̂(s) =
Cψ(s)B

s+ Cψ(s)B

(
1− Cψ(s)F

Cψ(s)B
y(s)− u(s)

)
, (4.4)

where ψ(s) = (sI − A + FC)−1 and Q(s) and P−1n (s) in terms of the related

parameters in a typical disturbance observer as follows:

Q(s) =
Cψ(s)B

s+ Cψ(s)B
=

1

1 +
∑3

j=1 kjs
j
,

P−1n (s) =
1− Cψ(s)F

Cψ(s)B
= Js2 + bs,

(4.5)

where kj depend on J , b and F . The order of the low-pass filter Q(s) is three

and it depends on F , which means that the design of the disturbance observer is

coupled with the design of the state estimator. For discrete-time implementation,

4.1. MODEL-BASED VELOCITY ESTIMATION 39

the system equation 4.2 can be rewritten asx(k + 1) = Amx(k) +Bm(u(k) + w(k))

y(k) = Cx(k) + qθ(k)
(4.6)

where the subscript m stands for the model-based scheme, w is a perturbation

term and Am and Bm are zero-order-hold discrete time equivalents of A and B,

i.e.

Am =

 1 J
b

(
1− e− b

J
Ts
)

0 e−
b
J
Ts

 , Bm =
1

b

 Ts − J
b

(
1− e− b

J
Ts
)

1− e− b
J
Ts

 (4.7)

For model (4.6), the state observer for model-based velocity estimation is given

by

x̂m(k + 1) = Amcx̂m(k) +Bmc(u(k) + ŵ(k)) + Fmy(k + 1), (4.8)

where
Amc = (I − FmC)Am,

Bmc = (I − FmC)Bm,
(4.9)

and Fm is obtained by the Kalman filter equation. In fact, it is calculated by a

discrete time algebraic Riccati equation as follows:

Fm = MCT
[
CMCT + V

]−1
, (4.10)

M = AmMATm +BmWBT
m − AmMCT

[
CMCT + V

]−1
CMATm, (4.11)

where W and V are the variances of w̃(k) = w(k)− ŵ(k) and qθ(k), respectively,

and M is the one-step-ahead prediction error covariance matrix.

From (4.4) and (4.8) the error dynamics equations can be written with the

following equation:

x̃m(k + 1) = Amcx̃m(k) +Bmcw̃(k)− Fmqθ(k + 1) (4.12)

Observations on the dynamic error are made in the next section with the use of

data.

40 4. VELOCITY ESTIMATION METHODS

4.2 Kinematic Kalman filter (KKF)

The Kalman filter based on the kinematic model is called the kinematic Kalman

filter (KKF) [5]. The kinematic model relates angular acceleration α(t) to position

θ by

θ̈(t) = α(t). (4.13)

Considering the real angular acceleration α(t) as the sum of the measurement

a(t) and its noise component wa(t), a state space representation of the kinematic

model has acceleration as an input and the encoder measurement as the system

output. Since the encoder measurements are obtained only intermittently, it is

best to describe the kinematic model in the discrete-time domain.

The zero-order-hold equivalent of (4.13) isx(k + 1) = Akx(k) +Bk(a(k) + wa(k))

y(k) = Cx(k) + qθ(k)

Ak =

 1 Ts

0 1

 , Bk =

 T 2
s

2

Ts

 .
(4.14)

where the subscript k stands for the kinematic model and wa(t) is the noise of the

accelerometer. The accelerometer noise wa(t) is correctly modelled as a zero-mean

Gaussian white noise by nature.

The state estimator is given by

x̂k(k + 1) = Akcx̂k(k) +Bkca(k) + Fky(k + 1), (4.15)

where
Akc = (I − FkC)Ak;

Bkc = (I − FkC)Bk.
(4.16)

The optimal estimator gain Fk is calculated by a discrete time algebraic Riccati

equation as follows:

Fk = MCT
[
CMCT + V

]−1
, (4.17)

M = AkMATk +BkWaB
T
k − AkMCT

[
CMCT + V

]−1 × CMATk . (4.18)

Note that the variance Wa of the input noise wa(k) is readily obtained from the

sensor specification while the perturbation term ŵ(k) is a signal to be estimated.

4.2. KINEMATIC KALMAN FILTER (KKF) 41

From (4.14) and (4.15) the error dynamics equations can be written with the

following equation:

x̃k(k + 1) = Akcx̃k(k) +Bkcwa(k)− Fkqθ(k + 1) (4.19)

Observations on the dynamic error are made in the next section with the use of

data.

Chapter 5

Design and Simulation

As a first step before of the design of controllers and estimators, it is necessary

to determine an approximation of the parameters that are not included in the

project, such as the coefficient of friction and the coefficient of viscous damping.

The second step, with the knowledge of these coefficients, is to design the con-

troller and estimators.

For this type of motor, the job of designing the controller would be much

more complex without using the Moog DS2100 servosystem, since it would be

necessary to design a controller for the PWM inverter, as in [3]. Using the current

loop connected to the DS2100 has made it possible to consider the torque to be

proportional to current supplied, thus simplifying the design of the controller.

44 5. DESIGN AND SIMULATION

5.1 Estimated Friction and Viscosity Damping

Knowledge of friction and viscosity present in the system are an important part

of the control system and estimator design. However, they are also extremely

difficult to determine, because they have some non-linear components and are

difficult to measure in the system. A simulation was carried out on a motor sys-

tem in order to investigate the behaviour of this friction model.

As described in [16], friction exists to some extent in all mechanical systems

where surfaces are in contact and free to move. Friction is usually analysed as two

components: linear and nonlinear friction. Non linear friction is often treated as

having two distinct components: static friction (stiction) element which is the level

of torque required to cause breakaway, and a coulomb friction torque which exists

between surfaces during relative motion. A common model of nonlinear friction,

used by Tung et al [17], postulates a velocity-dependent exponential decay of the

level of the friction from its static value to a constant level of coulomb friction at

high velocity.

Tfric = Tc sgn(ω) + Texpe
−β|ω| sgn(ω) (5.1)

Friction is illustrated in Figure 5.1.

T

-T

T

-T

c

frict

frict

c

ω

Figure 5.1: Relationship of friction and the velocity. Figure found in [16].

The sum of the coefficients, Tc and Texp, represents the static friction level, Tstic
and β is the slip constant which governs the region between stiction and coulomb

5.1. ESTIMATED FRICTION AND VISCOSITY DAMPING 45

friction. This friction characteristic is common to mechanical systems in which a

thin lubrication layer exists on the bearing [18].

To estimate these parameters, the motor was controlled by a sine wave signal

with amplitude of 50mV and frequency of 200mHz. Figure 5.2 left, shows the

voltage and the corresponding current, the input to the system.

0 2 4 6 8 10

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [sec]

C
u

rr
e

n
t
[A

],
 V

o
lt
 [
V

]

Current input

Voltage input

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

T
o

rq
u

e
 [
N

m
]

Torque

Figure 5.2: Left: Sine wave voltage input and corresponding current input. Right:

Sine wave torque input.

This important correspondence is described in Section 3.2 and some tests con-

ducted using the GUI and the current-loop.

The relationship is given by the following equations:

voltinput = voltref − 2.425;

currentinput = −voltinput · 17

2.425
.

(5.2)

In the equation (5.2), currentinput is the input signal to the system, while voltref is

the input signal present in the current-loop to the servosystem. Then voltref must

be converted using the relationship of Section 3.2. Therefore, when a positive value

of voltinput is obtained, the output of the converter, leads to a negative current,

using the relationship in (5.2).

Knowing the current, it is possible to calculate the torque applied to the motor

46 5. DESIGN AND SIMULATION

using the following equation for permanent magnet synchronous motors:

m =
3

2
pΛmgiq (5.3)

where Λmg represents the maximum flux in each phase due to the permanent

magnet and p represents the number of motor poles. The value of pΛmg was

obtained by performing several tests on the system, comparing the current and

torque values read by the GUI. The value is:

pΛmg = 1.58 (5.4)

At this point, it was possible to calculate the corresponding sine wave torque that

excites the system. The torque is shown in Figure 5.2 right. The friction torque

0 1 2 3 4 5 6 7 8 9 10

−80

−60

−40

−20

0

20

40

60

80

Time [sec]

A
c
c
e

le
ra

ti
o

n
 [
ra

d
/s

e
c

2
]

Acceleration

0 1 2 3 4 5 6 7 8 9 10

−20

−10

0

10

20

30

Time [sec]

V
e

lo
c
it
y
 [
ra

d
/s

e
c
]

Velocity

Figure 5.3: Left: Acceleration measured. Right: Velocity measured.

follows the input torque until the input reaches the stiction level indicating that

no torque excites the system, and so the system remains at rest, as shown in

Figure 5.3 right. Motion commences when the input torque exceeds the stiction

level and the friction torque then falls to the coulomb level. In this way, it was

possible to estimate the value of the torque load; the result is mL = 0.3 [Nm].

When the acceleration and velocity measured by the system are known, Figure

5.3, the torque relationship of the mechanical load can be used:

m = mL +Bωm + J
dωm
dt

(5.5)

5.1. ESTIMATED FRICTION AND VISCOSITY DAMPING 47

In this way, it was possible to obtain an approximation of the viscous damping

(parameter B), which amounted to about B = 0.015 [Nm(s/rad)].

This is only a simple approximation of viscous damping, because there are

many simplifications and measurement errors in the model. There are other much

more efficient and effective methods of finding this parameter, but they are still

approximations. One of these methods is to measure the damping coefficient using

constant speed experiments which involve running the motor at constant speed

in response to numerous constant torque demands. At constant speed, accelera-

tion torque is eliminated from the dynamic equation and then relationship can

be derived for the friction terms. Therefore, finding a realistic value of friction

parameters to reality is extremely difficult. In fact multi-value friction and vis-

cous damping characteristics that depend on surface materials and lubrication

are sometimes evident [19].

Typically, the viscosity is very small and is often overlooked. In this case, the

coefficient found has a non trivial magnitude. This may be due to the fact that

there are a large number of moving parts in the system, as can be seen in Figure

3.19.

48 5. DESIGN AND SIMULATION

5.2 Designing a PI speed controller

Firstly, because it is designed for speed control for an isotropic motor it was nec-

essary to design two different controllers, one for speed and one for torque control.

The procedures for the design of these controllers are referred to in [20].This sec-

tion shows the main parts for their design. For more information, see [20].

Figure 5.4 shows a block diagram of the speed control of a brushless motor.

For convenience, the diagram shows unity gain feedback, which is marked with

Figure 5.4: Block Diagram of the control of a isotropic brushless motor. Figure

found in [20].

. The speed reference ωm is compared with the measured speed and through

the speed controller Rω it produces the quadrature current reference iq* which

is proportional to torque. The direct current reference id* is maintained at zero.

The current id does not contribute to motor torque and running at speeds above

base speed is not of interest for the brushless isotropic rotor. The two current

references are compared with their measurements and the errors are drawn from

the current regulators to produce the voltage references uq* and ud*. In practice,

the two voltage references are converted into the corresponding voltage references

5.2. DESIGNING A PI SPEED CONTROLLER 49

uα* and uβ* which, through PWM control of the inverter, apply voltages to the

power the motor. Similarly, the phase currents are measured and converted into

the components id and iq.

From the point of view of control design it is possible that the reference

voltage ud* and uq* produce, with the dynamics that characterize the inverter,

and similar voltages ud and uq applied to the motor which yields the resulting

currents id and iq. With these assumptions, the diagram in Figure 5.4 includes

Gc(s), which is the transfer function of the inverter:

Gc(s) =
U(s)

U∗(s)
=

1

1 + sτc
(5.6)

with τc being linked to the period Tc of the PWM modulation. The motor is de-

scribed by a single block that contains the model. The design of current controllers

is complicated by the fact that the two loops are not mutually independent, but

influence each other due to this cross-coupling between the axes of the motor (d

and q). If the time constant τc of the inverter is small, as is usual, compared to

other time constants in the system, it is possible to eliminate the mutual coupling

between the d and q axes (decoupling). Figure 5.5 shows the block diagram of

current control after decoupling.

Figure 5.5: Block diagram of current control after decoupling. Figure found in

[20].

50 5. DESIGN AND SIMULATION

The control for the brushless motor thus obtained is similar to a DC motor

drive, with the d phase which takes on the role of the field circuit and phase q of

the armature. In other words, the design of the PI controller is greatly simplified.

For the design of controllers and for the subsequent design of the estimators,

the data of the overall system are presented in Tables 5.1.

Type Symbol Value Units

Nominal Torque Mo 2.6 Nm

Nominal speed nN 5500 rpm

Maximum speed nmax 8000 rpm

Nominal current Io 4.8 Arms

Peak current Ip 15 Arms

Output power PN 0.95 kW

Torque constant kt 0.56 Nm/Arms

Voltage constant ke 34.2 Vrms/krpm

Rotor inertia with resolver J 2.09 kg cm2

Viscous damping b 0.015 Nm(s/rad)

Winding resistance at 25◦C R 2.6 Ohm

Winding inductance (phase to phase) L 5.8 mH

Motor pole count np 12

Striction level Fs 0.3 Nm

Noise variance Wa 5 (rad/s2)2

Encoder counter N 212 (ppr)a

Sampling time Ts 0.001 sec

Table 5.1: Experimental conditions.

5.2. DESIGNING A PI SPEED CONTROLLER 51

5.2.1 Design of current control

As a first step in the design of current control, assume the following constants

dependent on motor parameters and drive. The values can be taken from Table

3.1 or 5.1.

• τa = L
R
= 0.0021, electrical time constant;

• τm = J
B

= 0.0139, mechanical time constant;

• τm1 = JR
K2

e
= 0.0018, electromechanical time constant;

• τc = 0.001, time constant of the inverter.

Figure 5.6 shows a diagram of current control in the s domain, where Ri(s) is the

PI controller and Y (s) is the transfer function of the model that links the current

to voltage.

Figure 5.6: Current control scheme in the domain of s. Figure found in [20].

The following open-loop transfer function (without the regulator) is considered:

GHR(s) =
1

1 + sτc
Y (s) =

B

K2
e

(1 + sτm)

(1 + sτc)(1 + sτa)(1 + sτm1)
(5.7)

The steady state characteristics of GHR(s) are obtained by examining the mag-

nitude and phase function GHR(jν) in the variable ν obtained by substituting

s = jν in (5.7).

The current PI controller is defined by the relation:

Ri(s) = KPi +
KIi

s
= KPi

1 + sτRi
sτRi

= KIi
1 + sτRi

s
, (5.8)

where τRi = KPi/KIi is the current regulator time constant. Therefore, the open-

loop transfer function GH(s) is obtained by multiplying the GHR(s) by Ri(s).

52 5. DESIGN AND SIMULATION

After defining the value of the crossover frequency νi and the time constant τRi
of the current regulator, the value of KPi is provided by the following equation:

1 = KPi
B

K2
e

√
(1 + (νiτm)2)

√
(1 + (νiτRi)2)

νiτRi
√

(1 + (νiτc)2)
√

(1 + (νiτa)2)
√

(1 + (νiτm1)2)
(5.9)

Therefore, the phase margin mφ, which does not depend on KPi but on the

crossover frequency, is calculated as

mφ = arg [GH(jνi)] + π (5.10)

that is:

mφ = arctan(νiτRi)+arctan(νiτm)−arctan(νiτc)−arctan(νiτa)−arctan(νiτm1)+
π

2
(5.11)

The values in Table 3.1 produced:

GHR(s) =
172413 (s + 71.77)

(s + 1000)(s + 555.7)(s + 465.5)
(5.12)

By setting a crossover frequency as νi = 1000, and the time constant τRi ap-

proximately equal to the electrical time constant, the following controller was

obtained:

Ri(s) =
9.36(s+ 465.5)

s
(5.13)

Therefore, the following open-loop transfer function was obtained:

GH(s) =
1613773 (s + 465.5) (s + 71.77)

s (s + 1000) (s + 555.7) (s + 465.5)
(5.14)

which has a phase margin mφ = 1.2210[rad] = 69.9573◦.

Figure 5.7 shows the frequency response of the transfer function GH(s).

In this way, the proportional gain and integral gain of the controller were

calculated from the equations 5.9 and 5.13, giving:

KPi = 9.3599;

KIi =
KPi

τRi
= 4357.

(5.15)

5.2. DESIGNING A PI SPEED CONTROLLER 53

100 101 102 103 104 105
−180

−135

−90

−45

Frequency (rad/sec)

P
h
a
se

(d
eg

)

100 101 102 103 104 105
−100

−50

0

50
M
a
g
n
it
u
d
e

(d
B

)

Figure 5.7: Bode diagram of the open-loop transfer function of the current con-

troller.

5.2.2 Design of speed control

The next step was speed control design. The speed control loop, with the addition

of an inertial load mL, is shown in Figure 5.8, where Rω(s) is the speed controller

and Wi(s) is the transfer function of the closed loop current control.

A (Bode) approximation that is often used for the frequency response of

Wi(jν) is as follows:

Wi(jν) =
G(jν)

1 +G(jν)H
=

 1
H

if ν < νi

G(jν) if ν > νi
(5.16)

where it is assumed for convenience that H (static gain feedback) does not de-

pend on s.

54 5. DESIGN AND SIMULATION

Figure 5.8: Block Diagram of Speed Control. Figure found in [20].

Therefore, the transfer function is approximated as:

Wi(s) =
1(

1 + s
νi

)
(1 + sτc)

(5.17)

The PI speed controller is characterized by the KPω gain and a time constant

τRω. The controller has the following transfer function:

Rω(s) = KPω +
KIω

s
= KPω

1 + sτRω
sτRω

(5.18)

The open-loop function GH(s) is as follows:

GH(s) =
KPωKe

τRωJ

(1 + sτRω)

s2
(

1 + s
νi

)
(1 + sτc)

(5.19)

Therefore, the phase margin mϕ is calculated by the following equation:

mϕ = arctan(νωτRω)− arctan(νωτc)− arctan(νωτa)− arctan(νω
1

νi
) (5.20)

A practical way for determining the controller is to choose νω, i.e. the crossover

frequency of the speed controller as the geometric mean between 1/τRω and νi,

and set these two at a distance of about one decade (method symmetric optimal).

A different way is to impose the crossover frequency νω equal to about half the

crossover frequency νi and 1/τRω at least a decade less than this. After some

simulations using MATLAB, the following values were chosen:

• τRω = 0.04, time constant of speed controller;

• νω = 30, crossover frequency of the speed controller.

5.2. DESIGNING A PI SPEED CONTROLLER 55

These values give a speed control:

Rω =
8.6× 10−3(s+ 25)

s
(5.21)

and the following transfer function:

GH(s) =
23.06× 106(s+ 25)

s2(s+ 1000)2
(5.22)

which has a phase margin mφ = 0.81[rad] = 46.75◦.

Figure 5.9 shows the frequency response of the transfer function GH(s).

100 101 102 103 104
−270

−225

−180

−135

−90

Frequency (rad/sec)

P
h
a
se

(d
eg

)

100 101 102 103 104
−100

−50

0

50

100

M
a
g
n
it
u
d
e

(d
B

)

Figure 5.9: Bode diagram of the open-loop transfer function of the speed con-

troller.

The controller parameters were derived from 5.19 and were:

KPω = 0.0086;

KIω =
KPω

τRω
= 0.2152.

(5.23)

56 5. DESIGN AND SIMULATION

To test the response of the controller design, the system was simulated using the

Simulink block diagram, shown in Figure 5.10. Figure 5.11 shows in detail the PI

current control, which was inserted into the "subsystem" in Figure 5.10.

Theta_q
[rad]

Omega
[rad/sec]

Ia

Omega ref
[rad/s]

Theta
 [rad]

Ia_ref

Cm [Nm]

Omega
[rad/s]

Va [V]

Omega
[rad/s]

1

J.s+b

To Workspace

Omega

Theta_q [rad]

Saturation

QuantizerPI Velocity

Omega [rad/s] Ia [A]

PI Control current

Ia ref [A]

Va [V]

Cm [Nm]

Omega [rad/sec]

Ia [A]Omega ref

Omega
[rad/sec]

Integrator

1
s

kv

kt

Figure 5.10: Simulink block diagram of the speed control.

Va_rif
[V] Va [V]Ia ref [A]

Ia [A]

Pel [W]

Pm [W]

Pdis [W]

Pmu [W]

Ia [A]

1

eta []

dP [W]

Veff [V]

1

L.s+R

Transfer Fcn

1

tau_c.s+1

Saturation

P [W]

Integrator

1
s

Gain6

K_Ii

Gain5

K_Pi

b*u^2

Ra*u^2

Omega [rad/sec]

4

Cm [Nm]

3

Va [V]

2

Ia ref [A]

1

Figure 5.11: Simulink block diagram of current control.

Figure 6.28 shows the simulated response to a speed step input of amplitude

10 [rad/sec]. The simulated response has a rise time equal to 0.3 [sec], the time

required for a signal to change from 10% to 90% of the step height. The response

did not exhibit overshoot and was stabilized to the reference signal without os-

cillation.

5.2. DESIGNING A PI SPEED CONTROLLER 57

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

Time [sec]

V
el
oc
it
y

[r
a
d
/s
ec

]

Figure 5.12: System response at a step speed of amplitude 10 [rad/sec].

The controller could be made even faster by changing the parameters of the

controllers, but this was not the main part of the project and special design

specifications were not required.

58 5. DESIGN AND SIMULATION

5.3 Design Model-Based Estimator and Kalman

Filter

Firstly, the Model-Based estimator has been designed using the formulae de-

scribed in Section 4.1 and the values reported in Table 5.1.

The matrices of the Model-Based estimator in (4.7) are calculated as

Am =

 1 J
b

(
1− e− b

J
Ts
)

0 e−
b
J
Ts

 =

 1 0.001

0 0.9307

 ,
Bm =

1

b

 Ts − J
b

(
1− e− b

J
Ts
)

1− e− b
J
Ts

 =

 0.0023

4.617

 .
(5.24)

where Am and Bm are zero-order-hold discrete time equivalents of A and B in

(4.2). As is shown in [1], qθ is bounded by the encoder resolution δθ in (3.10).

This gives the following approximate output noise variance:

V =
q2θ
12

=
δθ2

12
= 1.9609× 10−7 [rad2] (5.25)

Assuming the disturbance observer cannot catch the stiction nor the cogging

torque, the variance of W of the disturbance estimation error w̃(k) was selected

using the stiction level Fs, i.e:

W =
F 2
s

12
= 0.0075 [(Nm)2] (5.26)

In practice, a suitable choice for W will be determined by further trial and error.

Using these values, it was possible to calculate the following Q matrix:

Q = BmWBT
m =

 4.0931× 10−8 8.0895× 10−5

8.0895× 10−5 0.1599

 (5.27)

Therefore, it was possible to solve the discrete-time algebraic Riccati equation in

(4.18), using the MATLAB instruction:

[M, s, e] = dare(A′m, C
′, Q, V);

5.3. DESIGN MODEL-BASED ESTIMATOR AND KALMAN FILTER 59

giving the following one-step prediction error covariance matrix:

M =

 5.0414× 10−7 3.1056× 10−4

3.1056× 10−4 0.3033

 . (5.28)

The observer gain was calculated using equation (4.10):

Fm = MCT
[
CMCT + V

]−1
=

 0.72

443.5102

 . (5.29)

Therefore, using equation (4.9) and observer gain, calculated:

Amc = (I − FmC)Am =

 0.28 2.7023× 10−4

- 443.5102 0.5028

 ,
Bmc = (I − FmC)Bm =

 6.5421× 10−4

3.5809

 .
(5.30)

Regarding the disturbance observer in equation (4.4), disturbance d̂ can be

represented by u and y as:

d̂ (s) = D (s) (Q (s) y (s)− u (s)) (5.31)

In other words, Q(s) is nothing but a low-pass filter with unity gain and D(s) is

the inverse of the nominal plant. Note that the order of the low-pass filter Q(s) is

three and its parameters depend on the estimation gain of the filter, which means

that the design of the disturbance observer is coupled with the design of the state

estimator.

The model-based velocity estimator used the following Q-filter in the distur-

bance observer:

Q(s) =
1 + 3τs

1 + 3τs+ 3(τs)2 + (τs)3
, (5.32)

where τ was equal to 0.01. In discrete-time this corresponds to

Q (z) =
1.373 · 10−2z−1 − 7.176 · 10−4z−2 − 1.215 · 10−2z−3

1− 2.715z−1 + 2.456z−2 − 7.408 · 10−1z−3
(5.33)

The following high-pass filter:

D (z) =
6.27− 18.15z−1 + 17.51z−2 − 5.625z−3

1− 2.715z−1 + 2.456z−2 − 7.408 · 10−1z−3
(5.34)

60 5. DESIGN AND SIMULATION

101 102 103 104
−270

−225

−180

−135

−90

−45

0

Frequency (rad/sec)

P
h
a
se

(d
eg

)

101 102 103 104
−80

−60

−40

−20

0

20

M
a
g
n
it
u
d
e

(d
B

)

100 101 102 103 104
0

45

90

135

Frequency (rad/sec)

P
h
a
se

(d
eg

)

100 101 102 103 104
−40

−20

0

20

M
a
g
n
it
u
d
e

(d
B

)

Figure 5.13: Above: Bode Diagram of the transfer function Q(z). Below: Bode’s

Diagram of the transfer function D(z).

5.3. DESIGN MODEL-BASED ESTIMATOR AND KALMAN FILTER 61

was also implemented.

Regarding the kinematic Kalman filter, the following matrices were found in

(4.14) in the discrete-time kinematic model:

Ak =

 1 Ts

0 1

 =

 1 1× 10−3

0 1

 , Bk =

 T 2
s

2

Ts

 =

 5× 10−7

1× 10−3

 , (5.35)

Qk = BkWaB
T
k =

 1.25× 10−12 2.5× 10−9

2.5× 10−9 5× 10−6

 , (5.36)

where Wa is the variance of accelerometer and is given by its noise variance,

assumed to be Wa = 5 (rad/sec2)2.

In the same way, the discrete-time algebraic Riccati equation in (4.18) could be

solved using the MATLAB instruction:

[M, s, e] = dare(A′k, C
′, Qk, V);

which gave the following one-step-ahead prediction error covariance matrix:

M =

 2.0728× 10−8 1.0412× 10−6

1.0412× 10−6 1.0204× 10−4

 (5.37)

Using the one-step prediction error covariance, it was possible to calculate the

estimation gain in (4.17), giving:

Fk = MCT
[
CMCT + V

]−1
=

 0.0956

4.8022

 , (5.38)

allowing the calculation of:

Akc = (I − FkC)Ak =

 0.9044 9.044× 10−4

- 4.8022 0.9952

 ,
Bkc = (I − FkC)Bk =

 4.522× 10−7

9.976× 10−4

 .
(5.39)

62 5. DESIGN AND SIMULATION

In order to analyse the error dynamics equations of (4.12) and (4.19) in more

detail using the Kalman filter theory, a qualitative comparison is made by com-

paring the estimation error covariance of the estimators. The covariance of the

estimation error is given by the following equation:

Z = M −MCT
[
CMCT + V

]−1
CM, (5.40)

where M is obtained by solving the discrete-time algebraic Riccati equation, as

previously described. Assessment of estimator performance takes into account

the (2,2) element of Z ∈ R2×2 which corresponds to E [ω̃(k|k)2], i.e. the velocity

estimation error, under the assumption of the Gaussian white noise property. In

this way, it is possible to obtain the standard deviations of the velocity estimation

error of the model-based estimator and that of the KKF for various encoder

resolutions.

25 26 27 28 29 210 211 212 213 214
0

0.2

0.4

0.6

0.8

1

Encoder resolution [ppr]

√ Z (
2
,2
)

[r
a
d
/s
ec

]

Model based scheme
KKF

Figure 5.14: Comparison of standard deviations of velocity estimation errors.

Figure 5.14 can be produced using the system data, which shows the stan-

dard deviations of velocity estimation errors using various encoder resolutions.

The figure shows that the KKF standard deviations of velocity estimation errors

5.3. DESIGN MODEL-BASED ESTIMATOR AND KALMAN FILTER 63

are very low even, when the resolution of the encoder is very low. On the other

hand, when the resolution of the encoder is lowered, the standard deviations of

the velocity estimation errors for the model-based estimator rapidly increase.

The Simulink model used for simulations is shown in Figure 5.15. It includes

the PI controller previously described and the two estimators as feedback signals,

in order to use the signal estimated by the model-based system, or the KKF, as

feedback. This is possible using a switch in the feedback.

Theta_q
[rad]

Omega
[rad/sec]

Ia [A]

Omega ref
[rad/s]

Theta
 [rad]

Theta [rad]
Omega

[rad/sec]

Ia ref [A]

Omega
[rad/sec]

Acc
[rad/s^2]

theta_q [rad]

Theta_q [rad]

Cm [Nm]

Cm [Nm]
Cm
[Nm]

Omega_kalm
[rad/sec]

Omega_modBas
[rad/sec]

Omega
[rad/s]

w Estimate disturbance

Acc
[rad/s^2]

Va [V]

Unit Delay

z

1

Unit Delay

z

1

Uniform Random
Number W_a

Uniform Random
Number W

Transfer Fcn

s

T_L.s+1

1

J.s+b

Transfer Fcn

s

T_L.s+1

To Workspace

ErrorMB

To Workspace

ErrorKKF

To Workspace

Omega

To Workspace

Omega_m

To Workspace

Omega_KKF

Theta [rad]

Disturbance Observer

Cm [Nm]

Theta [rad/s]

Uniform Error

Estim disturSaturation

QuantizerPI Velocity

Omega [rad/s] Ia [A]

PI Control current

Ia_rif [A]

Va [V]

Cm [Nm]

Omega [rad/sec]

Ia [A]

Omega_estimated KKF
[rad/s]

Omega_estimated
model−based [rad/s]

Omega_estimated
compare [rad/s]

Omega ref

Omega ref

Model based scheme

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

KKF

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Integrator

1
s

kv

kt

Error Tracking

Figure 5.15: Overall Simulink model.

The two models were implemented using the Discrete State-Space blocks, insert-

ing the matrices in an appropriate manner. In the model, a disturbance was added

to the torque and acceleration signals with the Uniform Random Number blocks,

in order to simulate the noise present in the real model. Note the addition of

the disturbance observer to the right of the diagram in order to implement the

Low-pass and High-pass filters, thus estimating the noise present in the torque.

In order to derive acceleration from the speed, the following transfer function was

used:

N(s) =
s

TLs+ 1
. (5.41)

That is simply a high-pass filter with a pole at high frequency, so as to obtain an

approximation of the acceleration. The choice of TL depends on the bandwidth

64 5. DESIGN AND SIMULATION

of the closed loop system, because the filter must have a bandwidth greater than

this, so that the estimate of the state so obtained is sufficient and does not am-

plify the measurement noise. Note also the use of the Quantizer block to simulate

the quantized position read by the encoder.

Figure 5.16 shows simulated response of the system using as feedback signal

the speed estimated from the KKF using high resolution encoder, equal to 212

[ppr]. The system input has a step at 3 [sec], which brings the velocity from 4

[rad/sec] to 8 [rad/sec].

2 2.5 3 3.5 4 4.5
1

2

3

4

5

6

7

8

9

10

11

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

Velocity

KKF vel estimated

M−B vel estimated

Figure 5.16: Velocity estimation using feedback from KKF, using high resolution

encoder.

Both estimated signals follow the monitoring velocity, but the signal estimated

by the KKF is more accurate and follows the monitoring signal better. The system

response using the velocity estimated by the model-based scheme as a feedback

5.3. DESIGN MODEL-BASED ESTIMATOR AND KALMAN FILTER 65

signal is similar to Figure 5.16, and for this reason is omitted.

Instead, it is important to evaluate the difference in the tracking error of

the two different responses. In order to do this, Figure 5.17 shows the velocity

estimation error using feedback from the KKF and the velocity estimation error

using feedback from the model-based scheme, with high encoder resolution. The

velocity estimation error in both cases is somewhat lower with the use of KKF. A

major difference in the performance can be seen using a low resolution encoder,

28 [ppr]. The estimation errors are shown in Figure 5.18.

In both cases, using an encoder with high or low resolution, speed monitoring

using an encoder with high resolution is equal to 212 [ppr]. In the latter case,

the best performance can be seen from the estimation error, which in this case is

much less when using the KKF model. This corresponds to the desirable outcome

of a real system and that the project wants to show.

However, it should be noted that various approximations were made in the

simulations. By using this approach in the real system, the responses of the system

may be quite different. At this point, it was possible to design and test the models

implemented in Simulink in the real system.

66 5. DESIGN AND SIMULATION

2 2.5 3 3.5 4 4.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

KKF Error

model−base Error

2 2.5 3 3.5 4 4.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

KKF Error

model−base Error

Figure 5.17: Above: Velocity estimation error using feedback from KKF. Below:

Velocity estimation error using feedback from model-based scheme. (Error using

an encoder of high resolution).

5.3. DESIGN MODEL-BASED ESTIMATOR AND KALMAN FILTER 67

2 2.5 3 3.5 4 4.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

KKF Error

model−base Error

2 2.5 3 3.5 4 4.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

KKF Error

model−base Error

Figure 5.18: Above: Velocity estimation error using feedback from KKF. Below:

Velocity estimation error using feedback from model-based scheme. (Error using

an encoder of low resolution).

68 5. DESIGN AND SIMULATION

5.4 Design of DSP-Based Controller Language

Firstly, the PI speed controller was implemented in the C language in order to

test the controller in a real system using the dSPACE board. The C-Code is

reported in Appendix A.1. The commands described in Section 3.5 were used to

implement the code.

In the first part of the code implemented two 6th-order, digital, LP Butter-

worth, filters with flat band characteristics and fc = 250Hz were implemented.

The routine is called filterloop() and is used to filter the signals provided by the

MEMS devices. Signals from two sensors were stored in ADC_1 and ADC_2,

respectively. The average signal from the Vero-Board circuit was stored in ana-

log_avg and the signal from the Hoodwin accelerometer was stored in Hoodwin,

which was not used in the controller. The average of the signals was also calcu-

lated digitally in order to reduce the filtering on the signal used, and stored in

average.

Using the DS2100 servocontroller, in torque-loop mode, it was necessary to

implement the velocity control, as described previously.

The PI controller was implemented with the following lines of code:

speed_error = speed_ref - speed;

Pprop = (speed_error)*Kp;

speed_error_int = speed_error_int + (speed_error)*DT*Ki;

current_PI = Pprop + speed_error_int;

where the speed_error is the difference between the reference signal speed_reference

and the signal of the measured velocity in the system. The values Kp and Ki are

the parameters of the controller, DT is the sampling time and current_PI is the

output current from the controller.

Note the saturation included in the code, to avoid excessive current demand,

which could cause irreparable damage to the inverter and to the motor. Moreover,

the saturation was designed taking into account that the current values used in

5.4. DESIGN OF DSP-BASED CONTROLLER LANGUAGE 69

this project were rather low because the project did not demand high performance

from the motor.

To test the two estimators, the code in Appendix A.2 was implemented. The

appendix includes the code that uses the feedback signal from the KKF. The code

that uses the signal from the model-based scheme is very similar with the only

change being the feedback signal used. Therefore, the discrete-time model of the

two estimators were implemented in the C language using double precision math.

With the functions Initialize_Model_kalman() and Initialize_Model_Base(), it

was possible to initialize the model with the variable x0_ka and x0_mb re-

spectively for the KKF model and the model-based scheme. With the func-

tions UpdateUpdate_Model_kalman() and Update_Model_Base(), it was pos-

sible to update the model. Following each call to the initialization and update

functions, the output vector could be accessed with Output_Model_kalman()

and Output_Model_Base(). If necessary, the state vector could be accessed with

State_Model_kalman() and State_Model_Base(), respectively for the two mod-

els.

Note that the two discrete-time models were implemented including all ma-

trices of the system. The matrix D that in the project was defined as zero. This

allows the use of various discrete-time models with a simple change of the values

in the matrices and the values of their metrics.

In this case, the original encoder signal, 4096 [ppr], was further quantized to

N = 28 = 256 [ppr] with the following lines of code:

encoder = −(ds1102_inc(1) ∗ 8388608);

position_q = (int)((PPR1/(PPR)) ∗ encoder);

position_quan = (position_q/(PPR1 ∗ 4)) ∗ 2 ∗ 3.1415926;

where PPR was equal to 4096 and PPR1 was equal to 256.

Using the functions filterloop2() and filterloop3() both filters Q(s) and D(s) (

low-pass and high-pass filter respectively) were implemented as described in the

previous section, in order to implement the disturbance observer.

Chapter 6

Results and Analysis

This section gives the results obtained in the real system, using the codes pre-

viously described and the dSPACE control board to record the data from the

system. The graphs and figures reported were carried out and processed using

Matlab.

6.1 PI controller response

The first step was carried out to test the response of the PI speed controller in the

real system. This was possible with the use of the code in A.1, which produced

the response shown in Figure 6.1. Figure 6.1 shows the system response using a

step input of height 20 [rad/sec]. In this case the test was conducted using the

original parameters calculated in (5.23). The system response had a rise time of

about 0.1 [sec] (i.e. from 10% to 90% of the step height) and an overshoot of 25%

of the step height.

In order to reduce the overshoot, the integral gain was slightly decreased by

bringing it to a value of KIω = 0.2 from the original KIω = 0.2152. By decreasing

the integral gain it was possible to obtain a lower overshoot and a larger phase

margin, but ,in contrast, a greater steady-state error could be present. Figure 6.2

shows the response of the system using this change to the parameter KIω and a

step input of height 50 [rad/sec].

72 6. RESULTS AND ANALYSIS

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

Time [sec]

V
e
lo

c
it
y
 [

ra
d
/s

e
c
]

Figure 6.1: PI controller response using the original parameters KPω = 0.0086

and KIω = 0.2152.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

110

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

Figure 6.2: PI controller response using the parameters slightly modified, KPω =

0.0086 and KIω = 0.2.

6.1. PI CONTROLLER RESPONSE 73

The system response had a rise time of approximately 0.08 [sec] and did not

overshoot. The signal response followed the reference signal perfectly when the

integral gain was decreased.

Therefore, the controller designed in the previous section, with slight modifi-

cations, had excellent performance in the real system.

However, its performance could be changed by varying the gains. In subse-

quent tests the PI control parameters were as described in this Section (Figure

6.2).

74 6. RESULTS AND ANALYSIS

6.2 Results for KKF and Model-based schemes

At this point, the estimators were tested in the real system using the C-code shown

in A.2. Firstly, the estimators were tested using the original encoder signal, N =

4096 [ppr], both for the inputs of the estimators and for the monitoring signal.

In fact, the successive difference of the original 4096 [ppr] encoder was used for

real velocity monitoring and also to provide a feedback signal.

Therefore, the resolution of the monitoring velocity is given by:

Resolution = δω =
δϑ

Ts
=

2π

212 · 0.001
= 1.5340 [rad/s] (6.1)

This means that the monitoring velocity is guaranteed to be accurate within this

bound.

Using this value of quantization, several tests were carried out on the system,

in order to determine the best value of the input variances W and Wa. The

diagrams in Figure 6.3 and 6.4 show the maximum velocity estimation error

using the model-based scheme and KKF respectively, by varying the values of

input variance W and Wa. Note that the best value for W is 7.5 × 10−3 (Nm)2

with maximum velocity estimation error of 1.2 [rad/sec], and the best value for

Wa is 5 (rad/s2)2 which corresponds to a maximum velocity estimation error of

0.7 [rad/sec].

In this case the following relation is obtained:

J2Wa = 2.1841× 10−7 � 7.5× 10−3 = W

which means that the amplitude of Fk is significantly smaller than the one of Fm.

So using the original signal encoder input parameters of the variances are not

different from those used in simulations. Therefore, in order to see the difference

in amplitude of the two gains of the estimators, the matrices given in (5.29) and

(5.38) can be compared. At this point, the estimators were tested in the real

system using the estimated velocities as feedback signals to the controller.

6.2. RESULTS FOR KKF AND MODEL-BASED SCHEMES 75

7.5× 10−4 7.5× 10−2 7.5 750

0

2

4

6

8

10

Input Variance (W)

|ω̃
| m

a
x
(r
ad

/s
ec
)

Figure 6.3: Velocity estimation error as a function of assumed input variance

value for model-based scheme with high resolution encoder.

10−1 1 10 102 103 104 105 106

0.2

0.4

0.6

0.8

1

1.2

1.4

Input Variance (Wa)

|ω̃
| m

a
x
(r
ad

/s
ec
)

Figure 6.4: Velocity estimation error as Wa varies (KKF with high resolution

encoder).

76 6. RESULTS AND ANALYSIS

Figure 6.5 shows the velocity tracking with estimated velocity, using the ve-

locity feedback from the model-based scheme. The figure shows the response to

a step input to the system with height of 4 [rad/sec]. In fact, the velocity is set

constant at 4 [rad/sec] initially and then changes to 8 [rad/sec].

The estimated velocities from the two estimators can be considered quite simi-

lar, with a slightly greater uncertainty to the signal estimated by the model-based

scheme. In order to better see this response, a magnification where there is a step

was carried out and is shown on the next page (in Figure 6.6 Above). In Figure

6.6 Below the relative estimation errors are shown. In this way, the two responses

can be seen in more detail and their estimation errors can be compared. As can

be seen, the signal estimated by the KKF has lower estimation error, with a peak

equal to 0.4 [rad/sec]. However, even the velocity signal estimated by the model-

based scheme has not very high errors, having a peak of about 0.7 [rad/sec].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
3

4

5

6

7

8

9

V
e
lo

c
it
y
 [
ra

d
/s

e
c
]

Time [sec]

Monitoring

Model−based scheme

KKF

Figure 6.5: Velocity tracking with estimated velocity. Velocity feedback from the

model-based scheme using high resolution encoder.

6.2. RESULTS FOR KKF AND MODEL-BASED SCHEMES 77

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8
3

4

5

6

7

8

9

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

Time [sec]

Monitoring

Model−based scheme

KKF

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [sec]

E
s
ti
m

a
ti
o

n
 E

rr
o

r
[r

a
d

/s
e

c
]

Model−based scheme

KKF

Figure 6.6: Above: Velocity tracking with estimated velocity. Below: estimation

errors. Velocity feedback from the model-based scheme.

78 6. RESULTS AND ANALYSIS

So both estimated velocities are within the bound imposed by the resolution

of velocity monitoring in (6.1). Figure 6.7 shows an enlarged view of the velocity

tracking. Note how there are slight fluctuations in the estimated velocity from

the model-based scheme. These are due to the cogging force, but are not in the

speed estimated by the KKF which perfectly follows the monitoring velocity.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

V
e

lo
c
it
y
 [
ra

d
/s

e
c
]

Time [sec]

Monitoring

Model−based scheme

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

V
e

lo
c
it
y
 [
ra

d
/s

e
c
]

Time [sec]

Monitoring

KKF

Figure 6.7: Enlarged view of the velocity tracking.

The system response was also tested when using the signal estimated by the

KKF as feedback signal to the controller. Figure 6.8 shows the velocity tracking

with estimated velocity feedback from the KKF. In this case, the same previous

descriptions can be done in this case, as for the model-based scheme. Because

the velocity estimated by the KKF has a lower estimation error, it can follow the

monitoring signal better. In this case, a slight offset from the signal, estimated by

the KKF, may be noticed as can be seen from the estimation errors, which are due

to a slight error in the Zero Offset of the output signal from the accelerometers.

This salient point will be discussed in detail below.

6.2. RESULTS FOR KKF AND MODEL-BASED SCHEMES 79

0 1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

Time [sec]

Monitoring

Model−based scheme

KKF

0 1 2 3 4 5 6 7 8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

E
s
ti
m

a
ti
o

n
 E

rr
o

r
[r

a
d

/s
e

c
]

Model−based scheme

KKF

Figure 6.8: Above: Velocity tracking with estimated velocity feedback from the

KKF, using high resolution encoder. Below: estimation errors.

80 6. RESULTS AND ANALYSIS

The estimators were here tested using a signal from the low resolution encoder

(with N = 28 = 256 [ppr]). In order to get a signal from the encoder with low

resolution, the original signal of the encoder is further quantized to a coarser

quantization level. The resolution of the encoder in this case is for the quantized

version of the original 4096 [ppr] encoder by a factor of 24. If the velocity is

estimated using a difference of successive encoder counts, the velocity resolution

becomes:

Resolution = δω =
δϑ

Ts
=

2π

28 · 0.001
= 24.5437 [rad/sec]

which is even larger than the reference velocity. Again, several experiments were

conducted in order to determine the best value of the input variances W and Wa,

using this value of quantization. The diagrams in Figure 6.9 and 6.10 show that

the maximum velocity estimation error using the model-based scheme and KKF

respectively, by varying the values of input variance W and Wa.

7.5× 10−4 7.5× 10−2 7.5 750

1

2

3

4

5

6

7

8

9

10

11

Input Variance (W)

|ω̃
| m

a
x
(r
ad

/s
ec
)

Figure 6.9: Velocity estimation error. Model-base estimator with low resolution

encoder.

6.2. RESULTS FOR KKF AND MODEL-BASED SCHEMES 81

10−1 1 10 102 103 104 105 106

0.5

1

1.5

2

2.5

3

Input Variance (Wa)

|ω̃
| m

a
x
(r
ad

/s
ec
)

Figure 6.10: Velocity estimation error. Kalman estimator with low resolution

encoder.

The best value obtained for the input variance for the model-based scheme

was the same as the one obtained in the design. For the input variance for the

KKF, the best value was chosen as Wa = 10 (rad/s2)2. As can be seen from

the diagrams, the KKF model is less sensitive to changes in input variance in

comparison to the model-based scheme. This will be noted below.

By using this encoder signal, the matrices of the models have changed because

the value of the variance V was varied. The gains of the estimators found using

these parameters are as follows:

Fm =

 0.2422

33.5329

 , Fk =

 0.0294

0.4397

 . (6.2)

Figures 6.11 and 6.12 show the responses of the estimators using feedback from the

model-based scheme and the KKF respectively, using the encoder signal quantized

with N = 28 [ppr].

82 6. RESULTS AND ANALYSIS

3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

Monitoring

Model−based scheme

KKF

3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [sec]

E
s
ti
m

a
ti
o

n
 e

rr
o

r
[r

a
d

/s
e

c
]

Model−based scheme

KKF

Figure 6.11: Above: Velocity tracking with estimated velocity. Feedback from the

model-based scheme using low resolution encoder. Below: Estimation errors.

6.2. RESULTS FOR KKF AND MODEL-BASED SCHEMES 83

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
3

4

5

6

7

8

9

Time [sec]

V
e

lo
c
it
y
 [

ra
d

/s
e

c
]

Monitoring

Model−based scheme

KKF

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

E
s
ti
m

a
ti
o

n
 e

rr
o

r
[r

a
d

/s
e

c
]

Model−based scheme

KKF

Figure 6.12: Above: Velocity tracking with estimated velocity. Feedback from the

model-based scheme using low resolution encoder. Below: Estimation errors.

84 6. RESULTS AND ANALYSIS

As can be seen from the figures, the KKF model perfectly follows the moni-

toring signal and has an estimation error less than the model-based scheme, both

with feedback from the model-based scheme or the feedback signal from KKF.

In this case, taking a value slightly greater of the variance Wa, implies a slightly

faster estimator dynamics. In fact, a faster estimation dynamics implies a higher

gain of the estimator, and this makes the KKF more sensitive to the quantization

effect. In this case, as reported in [1], this does not imply a lower phase delay

but it means that the estimation is more dependent on the position signal which

is corrupted by the quantization error and less dependent on the acceleration

measurement. This slight modification may be caused by increased noise of the

acceleration measured by the MEMS devices. As will be described below, this can

be caused by a misalignment of these devices. Therefore, if there is a good accel-

eration measurement as input to the KKF, the estimation can be more accurate,

even with slower estimation dynamics.

In order to better understand this, the equations of estimation error dynamics

must be considered, the equations are given by (4.12) and (4.19). If the parameter

of viscous damping B is small, the system matrices in (4.7) and (4.14) are related

by the following relationship:

Ak ∼ Am,Bk ∼ JBm. (6.3)

In this way, using the equations (4.12), (4.19) and (6.3) together, the performance

of the model-based estimation method and the KKF can be compared by exam-

ining the effect of w̃ and wa, respectively. Therefore, if W and J2Wa are close

to each other, the closed-loop eigenvalues of Amc will be close to those of Akc.

So their transfer functions from the input perturbation terms w̃(z) and wa(z)

to the velocity estimation errors ω̃m(z) and ω̃k(z), are related by the following

relationship:
ω̃m(z)

w̃(z)
∼ 1

J

ω̃k(z)

wa(z)
, (6.4)

where
ω̃m(z)

w̃(z)
= Cω(zI − Amc)−1Bmc,

ω̃k(z)

wa(z)
= Cω(zI − Akc)−1Bkc.

(6.5)

6.2. RESULTS FOR KKF AND MODEL-BASED SCHEMES 85

with Cω = [0 1]. Accordingly, the closed-loop poles of the KKF can be assigned

to produce significantly slower estimation dynamics than the model-based esti-

mator as long as the magnitude of the variance wa is sufficiently smaller than the

one of (1/J)w̃. As described above, slower estimator dynamics means a smaller

estimator gain and then the KKF less sensitive to the quantization effect. As

noted, the magnitude of (1/J)w̃ is usually significantly larger than that wa unless

it has an unreasonably high noise level or misalignment.

By varying the parameters of the variances W and Wa, choosing respectively

values of 100 (rad/s2)2 and 7.5 × 10−2 (Nm)2, the response in Figure 6.13 was

obtained, where the feedback signal was obtained using the model-based scheme.

1.6 1.8 2 2.2 2.4 2.6
3

4

5

6

7

8

9

Time [sec]

V
e

lo
c
it
y
 [
ra

d
/s

e
c
]

Monitoring

Model−based scheme

KKF

1.6 1.8 2 2.2 2.4 2.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

E
s
ti
m

a
ti
o

n
 e

rr
o

r
[r

a
d

/s
e

c
]

Model−based scheme

KKF

Figure 6.13: Left: Velocity tracking with estimated velocity. Feedback from the

model-based scheme using low resolution encoder. Right: Estimation errors.

The estimated signal by KKF still perfectly follows the signal monitoring, but

the estimated signal by the model-based scheme has many fluctuations and hence

a greater estimation velocity error. This confirms that the sensitivity of the pa-

rameters changing for the KKF compared to the model-based scheme.

Thanks to the results obtained from various experiments, it was possible to

know the advantage and benefits of using accelerometers with the use of a kine-

86 6. RESULTS AND ANALYSIS

matic model. In fact, the use of the kinematic model together with the use of

accelerometers has made the velocity estimate very insensitive to interference

and insensitive to quantization levels of the encoder. The KKF has obtained ex-

cellent results for both the model that uses a high resolution encoder and for the

experiments that use a low resolution encoder, confirming its superiority.

However, some important consideration must be taken into account. In regard

to the model-based scheme, the implementation of the disturbance observer is not

of simple design, and the estimated noise is always very difficult to approximate

to the real noise present in the system. Secondly, the estimation error due to

the encoder quantization effect qθ is amplified by the magnitude of the observer

gain. This is related by the disturbance estimation error W , which is a design

parameter to be selected, that is not a simple task.

An important aspect analyzed by the various experiments is the importance

of a perfect alignment of MEMS devices mounted on the outside of the disk. In

the project [7] and in these experiments, the double sided tape was used to fix

the devices on the disk. This has led to the displacement of the devices from their

original position and hence a wrong reading of the acceleration. The error due

to misalignment is described in detail in section 3.3.1. Even a small shift of the

devices, due to motor torque, causes a change on the offset of the device and in

some cases an increase in signal noise. All this contributes to an increase in the

error of the measured acceleration and therefore a worse estimate of the KKF

model, which receives this signal in input. In fact, with an error of the accelera-

tion signal, in some cases it was necessary to increase the value of the variance

Wa in order to make the estimator from KKF less sensitive to acceleration and

more dependent to the position, which signal is corrupted by the quantization

error.

Figure 6.14 shows an example of misalignment of the sensor. In this case, the

system had a step input that brought the velocity from 50 to 200 [rad/sec], using

high accelerations. In Figure 6.14 the output signal from the devices is shown,

6.2. RESULTS FOR KKF AND MODEL-BASED SCHEMES 87

3 4 5 6 7 8 9

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Time [sec]

M
E

M
S

 a
v
e

ra
g

e
 [

V
o

lt
]

Figure 6.14: Signal average of MEMS devices misaligned.

mediated through the Vero-board circuit. Note how the offset changed when the

speed was changed. The sensors were found to move slightly with the change

of speed. However, this was just an example of a degenerative case, but even if

the sensor was fixed more accurately, a small mistake might always be present.

Therefore, it is important to set the devices aligned as accurately as possible,

using another stronger and less flexible method of fixing the MEMS sensors to

the disk.

Moreover, other aspects must be considered. The power supplied to the ac-

celerometers, though it is assumed constant, always exhibits slight fluctuations

around the desired value of 2.5V due to noise and disturbances. Therefore, the

Zero Offset of the output signal of the accelerometers may vary slightly. Due to

the high amplification applied to the MEMS output, a small offset error can cause

a large error for the calculation of the angular acceleration. This is another aspect

that must be improved for an excellent use of the accelerometers. This could be

solved using the digital output of the sensors, which would not have these disor-

ders.

88 6. RESULTS AND ANALYSIS

Finally, the various delays introduced by the DSP must be taken into account.

In spite of the high working speed of the board, a small delay in the accelera-

tion signal is always present and therefore may cause errors in estimation of the

velocity signal.

Conclusion

The project examines the advantages and benefits of the use of accelerometers in

applications where precision work with relatively low speeds is required. An im-

portant aspect of the use of accelerometers with the kinematic model is to make

the estimated velocities insensitive to perturbation and noise in the system and

make it insensitive to different quantization levels of encoders.

The superiority of using the KKF and the acceleration sensors was confirmed

by the results obtained from various experiments and analysis of the system. This

is interesting from the industrial point of view, as the increasing performance de-

mands of motion control systems require more and more precise instruments,

while trying to keep costs low. In this case, the cost of using one or more ac-

celerometers is significantly lower than using a high resolution encoder.

Despite the excellent results obtained, important considerations were dis-

cussed with regard to the analog output signal of the acceleration. Indeed an

issue which arises from these devices using a analog output, is that the output

signal has a DC offset, about which the signal oscillates while the device is expe-

riencing a constant velocity. This offset is dependent on the supply voltage and,

if there is a small misalignment of the device, the velocity at which device is trav-

eling. This leads to a worse measurement of the acceleration and consequently

a worse estimate from the KKF. Therefore, a better fixing of the devices on the

disk must be done and the use of their digital output must be taken into account,

in order to have an excellent measure of the acceleration.

LogBook

6.3 Week 1

Read final year project report entitled "Development of Rotary Accelerometer

using MEMS Accelerometer" in [7]. This report describes in detail the imple-

mentation of the MEMS accelerometer system, assembled and tested by other

students.

Read the main parts of the Moog manual [11] to get to know the operation

and installation guide of "WinDrive". "Windrive" makes it possible to operate

the motor with speed control or torque control.

I also read the articles [21], [22], [23] and [24] in order to know in more detail

the use the estimators that use the acceleration signal, the use of the disturbance

observer and the compensation of friction.

Read the various C codes written by other students, to acquire data using a

DSP board. When I received the "WinDrive" guide, I installed it and tested it

to learn all the details of the operation.

Once the motor was able to work, I tested the system using an oscilloscope.

I conducted several tests on the system, in order to check that everything was

correct.

Many tests consisted of acquisition data through the DSP and verifying them

92 LogBook

using MATLAB, in order to become familiar with the overall system. For example,

the data recorded by the dSpace system for the individual MEMS is illustrated

in Figure 6.15. The figure also shows the avareged signal of the MEMS.

Figure 6.15: MEMS signal at 10 rad/s.

6.4. WEEK 2 93

6.4 Week 2

Read the main parts of the DSP manual in [25],[26],[27],[28],[29], to learn how

to interface a new board. MATLAB and Simulink can be used for real-time data

acquisition which may be useful in carrying out the project.

Looked for accurate data for the motor and driver on the internet, and subse-

quently found in the data sheet [10], in order to implement the model in Matlab-

Simulink.

Designed the Simulink model and then proceed to design the PID controller,

but for the moment it remains to be completed in detail.

For example, the Simulink model of the velocity tracking experiment with the

model-based scheme is illustrated in Figure 6.16. At the moment the model is

temporary and must be improved.

Figure 6.16: Block diagram of the velocity tracking experiment with the model-

based scheme.

Figure 6.17 shows in detail the block "Motor-Model", which is the motor model

used in simulation. The motor has been brought to the workshop so we can install

an additional encoder on the end of the shaft.

In Figure 6.18 the motor can be seen: on the left without encoder and on the

right with the encoder.

94 LogBook

Figure 6.17: Simulink scheme of the motor model.

Figure 6.18: Right: Motor without encoder. Left: Motor with encoder.

6.5. WEEK 3 95

6.5 Week 3

This week I have implemented a scheme in order to control the motor speed.

To control the speed of the model two controllers are required, one for current

control and one for speed control.

Figure 6.19 shows the complete model with two controllers, the velocity feed-

back from the model-based scheme and the velocity feedback from the KKF.

Figure 6.19: Full Simulink scheme with current control and speed. Velocity feed-

back from the model-base and KKF schemes.

Figure 6.20 shows the model of the current controller in detail.

Figure 6.21 shows Bode’s diagram of the transfer function of the open-loop cur-

rent controller. For the design of the two controllers I used the notes in [20]. I

studied how to implement the errors of torque, and quantization so that they can

implement the model as described in [1]. In fact, the model works perfectly with-

out these errors, as expected, but needs the addition. This step is very difficult

and must be done in the best way to respect as much as possible the real motor

model.

In the future, a more accurate implementation of the model will be to consider

in detail the motor with PWM control.

96 LogBook

Figure 6.20: In detail: PI controller with current feedback.

Figure 6.21: Bode’s diagram of the transfer function of the open-loop current and

velocity controller.

6.6. WEEK 4 97

6.6 Week 4

This week I finished the implementation of the scheme in Simulink.

In the model-based scheme I added a filter in the disturbance observer in order

to estimate the perturbation term.

The result obtained with the simulation appears similar to the result obteined in

[1].

Figure 6.22: Velocity tracking with estimated velocities. Velocity feedback from

the KKF. Left: velocity profiles. Right: Estimation error.

For Example, Figure 6.22 shows the simulation of the velocity estimated using

velocity feedback from the Kalman Filter. Other simulations have been done also

with the base-model feedback.

This week, after a meeting with my coordinator, we also decided to use the

DSP card previously installed and I had to read the manuals in [30], [13] and [31].

I started to connect the encoder to the DSP card and review the possible

differential line receiver. This in order to make a simple circuit to eliminate the

measurement error of the encoder output.

For future work, I studied in detail the operation of synchronous motors with

permanent magnets, isotropic and anisotropic, and their possible drives.

98 LogBook

6.7 Week 5

This week I have connected the encoder in the DSP card. I noted that the DSP

board doesn’t need a filter upstream for the signal because it is already imple-

mented in a noise filter in the card.

In fact, the encoder inputs are designed for incremental position sensors with

differential outputs. The differential output lines of the sensor for the leading

phase must be connected to the encoder inputs Phi0 and /Phi0, respectively. The

same holds for the lagging phase encoder inputs Phi90, /Phi90 and for the index

inputs.

The encoder’s 24 bit counter value is scaled to ±1.0.
To calculate the actual velocity use the following equation:

velocity =
count · 2π · 1000

4 · PPR
,

[
rad

sec

]
(6.6)

The speed is related to the precision of the encoder with the parameter PPR

(Pulse Per Revolution), in our system equal to 4096.

The multiplication by 1000 is needed to estimate the speed per seconds, because

the sampling time in the system is set at Ts = 0.001.

The division by 4 is needed, because the encoder interface uses fourfold multi-

plication for enhanced resolution, i.e. each encoder line produces 4 counts in the

position counter.

Figure 6.23 shows the hardware design of the DSP PC board used in the system.

Unfortunately, the low signal from the encoder index doesn’t work.

For this reason it was necessary to connect the signal index to an inverter chip

so I can get the signal and connect it to the DSP card. To do this I used the

MM74HC04N chip, Figure 6.24.

I studied how to design the speed controller and how to write in C language.

As a first step I considered the current proportional to the torque of the motor,

so at the moment it only requires the design of speed control.

Monday next week I and Moss are going to connect the current loop in the

driver.

6.7. WEEK 5 99

Figure 6.23: Hardware design of the DSP PC board used in the system.

Figure 6.24: Inverter Chip.

100 LogBook

6.8 Week 6

This week Moos has installed the current loop in the position indicated by the

technicians of Moog. Figure 6.25 shows a diagram of the DS2100 driver and the

two points where the input voltage is installed.

Figure 6.25: DS2100, digital card layout.

At first the current-loop didn’t work. Thanks to information from the MOOG

engineers I was able to use the GUI in a command reference and analog torque

mode.

To do this I had to change the parameter "modreq" making it equal to 8209, this

means torque mode and use of the ADC command.

Particular attention is paid to the fact that the values of input voltage vary over

a range of 0-4.85V and notes the calculations in the software assumes is biased

at 2.44V.

6.8. WEEK 6 101

Parameter in the database tab of the GUI the A/D input value can be viewed on

adccmd_g parameter.

After some tests on the system it was found that the voltage and current supplied

to the motor is equal:

• 0 V = -32704 adccmd_g increments (maps to +imax amps command to

the current loop);

• 2.425 V = 0 adccmd_g increments (maps to 0 amps command to the current

loop);

• 4.85 V = +32767 adccmd_g increments (maps to -imax amps command to

the current loop).

So you need to supply a 2.425V bias on the input to get the command 0A current

condition.

Another thing has been done this week: I have written the speed control in

language C using the current-loop output from the DSP card. Before using this

code on the system, there is a need to estimate/approximate the parameter of

viscous damping and load torque in the system.

This is necessary for accurate calculation of the current feedback from the motor,

in order to achieve reality as much as possible.

At the moment, with tests using the GUI and the current loop was extracted the

static friction coefficient, which was equal to 0.39 Nm.

Next week I will test the motor to find a good ratio with which to estimate the

load torque and the viscous damping.

102 LogBook

6.9 Week 7

This week I calculated the coefficients of stiction and viscous damping level of

the system.

To estimate these parameters the motor was controlled by a sine wave signal with

amplitude of 50mV and frequency of 200mHz.

Figure 6.26 on the left, shows the voltage and corresponding current, in input to

the system.

Figure 6.26: Left: Voltage and current in input. Right: Torque in input.

This correspondence is given by the written report in Chapter [6.8] and from

some tests conducted using the GUI and the current-loop.

The relationship is given by the following equation:

currentinput =
voltinput · 17

2.425
;

voltinput = 2.425− voltreference.
(6.7)

In the equation (6.7) voltinput and currentinput are signals in input to the system,

while the voltreference is the input signal present in the current-loop to the driver.

Then, voltreference must be converted using the relationship in Chapter [6.8].

Knowing the current it is possible to calculate the torque applied to the motor

using the following equation for permanent magnet synchronous motors:

m =
3

2
pΛmgiq (6.8)

6.9. WEEK 7 103

where Λmg represents the maximum flux penetrating each phase due to the per-

manent magnet and p represents the number of motor poles. The value of pΛmg

was obtained by performing several tests on the system, comparing the current

and torque values read by the GUI. The value is:

pΛmg = 1.58 (6.9)

At this point it was possible to calculate the corresponding torque as shown in

Figure 6.26 right. Figure 6.27 shows the acceleration and velocity measured in

the system.

Figure 6.27: Left: Acceleration measured. Right: Velocity measured.

In this way, it was possible to estimate the value of the torque load; result is mL

= 0.3 [Nm]. Using the formula that represents the mechanical load:

m = mL +Bωm + J
dωm
dt

(6.10)

it was possible to obtain an approximation of viscous damping (parameter B),

which amounted to about B = 0.015 [Nm(s/rad)].

Knowing an approximation of the parameters that govern the system, I was able

to test the PI controller. The PI controller designed by means of simulation shows

a good response to steps of various amplitude. Figure 6.28 shows the response of

the controller in two different steps.

If necessary, I can change the response of the controller by slightly varying the

104 LogBook

Figure 6.28: Response of the PI controller. Left: amplitude steps of 20 rad/sec.

Right: amplitude steps of 50 rad/sec.

parameters Kp and Ki, in order to obtain a lower rise time and overshoot.

Next week I will finish writing the Kalman filter in C language in order to test it

in the real system.

6.10. WEEK 8 105

6.10 Week 8

This week I finished writing the discrete model of Model-Base and Kalman in C

language.

I tested the two models in the real system using as feedback the motor speed in

order to test the two models only if they pursued the real signal. In first time,

the Model-Base worked quite well but the Kalman’s model presented oscillations

in the output signal. For this reason it was necessary to review the simulated

model in order to find errors in the design of the two models. After a thorough

verification of the matlab code, I found some mistakes in the description of noise

in the model.

The curious fact is that in the simulation the errors were not noticed using

Simulink, but the first time I noticed it in the real system. We understand the im-

portance of designing a system simulation as accurate as possible and preferably

without any errors. After correction of the errors found, the model-based model

seems to work well but there are still some imperfections in the Kalman model.

Figure 6.29 shows the speed estimate from the Model-Base using steps of vary-

ing amplitude. As we can see the estimated speed follows the real speed signal

well.

Figure 6.30 shows the speed estimate from the Kalman model using steps of

varying amplitude. As we can see the real speed is not followed perfectly by the

estimated speed, presenting fluctuations whenever the step change of amplitude.

Although I have long sought the error in the design I haven’t found it yet; when I

do the work of next week will improve the Kalman filter. This will make it possible

to test the two filters using the feedback signal into the system by themselves.

106 LogBook

Figure 6.29: Response Model-Base using actual speed feedback. Left: amplitude

steps of 4 rad/sec. Right: amplitude steps of 100 rad/sec.

Figure 6.30: Response Kalman model using actual speed feedback. Amplitude

steps of 40 rad/sec.

6.11. WEEK 9 107

6.11 Week 9

This week I have implemented the two codes in order to use signals from the

two filters as a feedback to the controller. The first code uses the signal feedback

from the model-Base and the Kalman filter is used to compare the two estimated

signals. The second code uses the signal feedback from the Kalman model and

the model-base is used to compare the two estimated signals.

Unfortunately, a signal from an acceleration sensor was missing on the DSP,

so I have found the cause of the failure. I found out that a sensor wasn’t working

and had to replace it. This took time, in fact to change the sensor I had to do

precision welding because the wires are very thin and require attention in the

welding. Moreover, I had to recalculate the sensitivity of the two sensors, which

is different from the previous sensitivity.

With regard to the wide fluctuations in the signal estimated by the Kalman

filter, these were due to the use of the acceleration signal filtered by a low pass fil-

ter implemented digitally in the code. Therefore, it was possible to use the speed

feedback from the two different models and compare them. Figure 6.31 shows the

speed as feedback signals using the two different models.

Figure 6.31: Velocity tracking with estimated velocities. Left: velocity profiles

using velocity feedback from the model-based scheme. Right: velocity profiles

using velocity feedback from the KKF.

108 LogBook

To better understand, Figure 6.32 shows an enlargement of the two responses.

Figure 6.33 also shows the speed estimation error of the two models. As you can

see from the signals, the model-based tracks the signal better in both cases, if the

speed feedback is by itself or the speed feedback is by the Kalman model. In fact

the speed signal predicted by the model Kalman presents fluctuations that cause

a large error in tracking. This behaviour is completely unexpected and it doesn’t

comply with what was previously done by simulation. I have tried in various ways

to solve the problem but I haven’t found a solution yet. I think that it has caused

delay in the acceleration signal, which perhaps might cause these errors.

Next week it is important to find the cause of these errors in order to obtain

the desired results.

Figure 6.32: Velocity tracking with estimated velocities. Left: velocity profiles

using velocity feedback from the model-based scheme. Right: velocity profiles

using velocity feedback from the KKF.

6.12. WEEK 10 109

Figure 6.33: Velocity tracking with estimated velocities. Left: estimation errors

using velocity feedback from the model-based scheme. Right: estimation errors

using velocity feedback from the KKF.

6.12 Week 10

This week I have implemented the code by inserting the filter for the disturbance

observer. I corrected some errors in the code regarding the input signals in the

two filters.

I also noticed an improvement in the response of the Kalman filter using a

smaller variance due to the quantization error of the encoder. This implies that

the Kalman filter has a smaller estimation gain and it means slower estimator

dynamics. This makes the Kalman filter less sensitive to the quantization effect.

As described in [1], the slower estimator dynamics doesn’t necessarily mean larger

phase delay. This means the estimation is less dependent on the position signal

which is corrupted by the quantization error and more dependent on the acceler-

ation measurement. Therefore, the estimation can be much more accurate even

with slower estimator dynamics if I can get a good acceleration measurement,

which is the input to the system in the Kalman filter.

Disturbance d̂ can be represented by u and y as

d̂ (s) = D (s) (Q (s) y (s)− u (s)) (6.11)

110 LogBook

In other words, Q(s) is nothing but a low pass filter with unity gain and D(s) is

the inverse of the nominal plant. Note that the order of the low pass filter Q(s) is

three and its parameters depend on the estimation gain of the filter, which means

that the design of the disturbance observer is coupled with the design of the state

estimator.

Therefore, in the model-based velocity estimator has implemented the follow-

ing low-pass filter in the disturbance observer in the discrete time:

Q (z) =
1.373 · 10−2z−1 − 7.176 · 10−4z−2 − 1.215 · 10−2z−3

1− 2.715z−1 + 2.456z−2 − 7.408 · 10−1z−3
(6.12)

I also used the following high-pass filter:

D (z) =
6.27− 18.15z−1 + 17.51z−2 − 5.625z−3

1− 2.715z−1 + 2.456z−2 − 7.408 · 10−1z−3
(6.13)

Figure 6.34 shows the Bode plots of the two filters.

Figure 6.34: Left: Bode’s diagram of the transfer function G(z). Right: Bode’s

diagram of the transfer function D(z).

The two filters have been implemented in the code in C.

Unfortunately, they were not tried in the system because there was a malfunc-

tion in the acceleration signal, similar to that of last week. Initially I thought of a

break of another accelerometer but when this was replaced the problem persisted.

I discovered that there was a short circuit in the wiring of the Mercury Slip Ring

6.12. WEEK 10 111

inside the shaft. This problem solved, a new one appeared; a support bearing

shaft was broken, causing considerable friction.

Next week I will have to change the broken bearing and finally I will be able

to test the final code in the real system and acquire the necessary data.

112 LogBook

6.13 Week 11

This week I have fixed the broken bearing and made several tests on the system.

Firstly, I have conducted some tests to find the best value of the error variance

(W) using the model-based, precisely using a quantized signal of the position

with PPR = 4096 and PPR = 256. The same operation was done to find the

best value of the variance of the noise of the acceleration (Wa) using two different

quantization encoders.

The results are shown in Figures 6.35,6.36,6.37,6.38. It was discovered that using

the encoder signal with high resolution, the best value of noise is W = 7.5×10−4

and Wa = 10, for the model-base and Kalman filter respectively. These values

have a lower maximum error of estimation of the signal. When using an encoder

with low resolution the results are very different. The best values are W = 1×10−2

and Wa = 500, greater than those used with a high resolution encoder.

A curious thing was that by including too many operations in the C code,

such as signal filtering and signal estimation, the output signal was saturated

and had very large swing. After some research it was found that the processor

was in overflow.

Next week I am going to test the new filters for the estimation error and I am

going to perform other tests in order to collect the necessary data to compare the

two models.

6.13. WEEK 11 113

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

0

2

4

6

8

10

Input Variance (W)

ω̃
m
a
x
(r
ad

/s
ec
)

Figure 6.35: Velocity estimation error. Model-base estimator with high resolution

encoder.

10−1 100 101 102 103 104

0.8

0.9

1

1.1

1.2

Input Variance (Wa)

ω̃
m
a
x
(r
ad

/s
ec
)

Figure 6.36: Velocity estimation error. Kalman estimator with high resolution

encoder.

114 LogBook

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

0

5

10

15

20

Input Variance (W)

ω̃
m
a
x
(r
ad

/s
ec
)

Figure 6.37: Velocity estimation error. Model-base estimator with low resolution

encoder.

10−1 100 101 102 103 104

0

2

4

6

8

Input Variance (Wa)

ω̃
m
a
x
(r
ad

/s
ec
)

Figure 6.38: Velocity estimation error. Kalman estimator with low resolution

encoder.

6.14. WEEK 12 115

6.14 Week 12

This week I have found an error in the positioning of devices which included an

erroneous offset in the output signal of the accelerometers. I also fixed a bug that

was present in the code implemented in C language and therefore it was necessary

to redo the tests conducted last week to find out the best values of the variances

W and Wa.

Therefore, the diagrams and data presented last week have been changed. In

fact, I have found a good results with regard to the use of KKF with values of

Wa lower than those reported last week. Therefore, various tests were performed

on the system with the use of two estimators in order to collect the necessary data.

The data and the various diagrams will be directly reported in the thesis in

order to do not make unnecessary repetitions.

Appendix A

Code C

1 #include "brtenv.h"

2 #include "math.h"

3

4 #define DT 100e-5

5 #define N 100

6 #define NZEROS 6 /* Cut -Off 1000Hz */

7 #define NPOLES 6

8 #define GAIN 3.198759421e+02

9

10 /* Parameter Declaration */

11 float ADC_in1 =0;

12 float ADC_in2 =0;

13 float ADC_in3 =0;

14 float ADC_in4 =0;

15

16 float encoder =0;

17 float ADC_1filt;

18 float ADC_2filt;

19 float Hoodwin = 0;

20 float accel =0;

21 float exec_time =0;

22 float analog_avg =0;

23 float average =0;

24 float average_filt =0;

25 float PPR = 4096;

118 A. CODE C

26 float offset = 2.45;

27 float position = 0;

28 float position_old = 0;

29 float speed = 0;

30 float speed_ref = 0;

31 float speed_error = 0;

32 float speed_error_int = 0;

33 float acc_diff =0;

34 float acc_linear = 0;

35 float acc_angular = 0;

36 float current_loop = 0;

37 float current_error_old= 0;

38 float current_error = 0;

39 float current_error_shift = 0;

40 float current_PI = 0;

41 float torque = 0;

42 float Volt_out = 0;

43 float Volt_tmp = 0;

44 float counter = 0;

45 float output = 0;

46

47 /* Parameter System */

48 float B = 0.015; /* coefficient viscous damping [Nms] */

49 float J = 0.000209; /* rotor inertia with resolver [kgm ^2] */

50 float sensitivity = 100.51282; /* sensitivity for 1 V in m/s^2 */

51 float R = 0.055; /* radius accelerometer [m] */

52 float p_gamma =1.58; /* p*gamma_mg */

53 float m_load = 0.3;

54 /*Max value*/

55 float Vmax = 5;

56 float current_max = 2;

57

58 /* PI Velocity Control Parameter */

59 float Pprop = 0;

60 float Kp = 0.086;

61 float Ki = 0.2;

62

63 /* Array ’s for Butter filter */

119

64 static float Array[N-1];

65 static float xv[NZEROS +1], yv[NPOLES +1],xv2[NZEROS +1],

66 yv2[NPOLES +1];

67

68 /* %%% */

69 /* Digital Filter 6th Order LP Butter Filter (Flat Band

70 Characteristics) fc=250Hz */

71

72 static void filterloop () {

73

74 xv[0] = xv[1]; xv[1] = xv[2]; xv[2] = xv[3]; xv[3] = xv[4]; xv

[4] =

75 xv[5]; xv[5] = xv[6];

76 xv[6] = ADC_in1 / GAIN;

77 yv[0] = yv[1]; yv[1] = yv[2]; yv[2] = yv[3]; yv[3] = yv

[4];

78 yv[4] = yv[5]; yv[5] = yv[6];

79 yv[6] = (xv[0] + xv[6]) + 6 * (xv[1] + xv[5]) + 15 * (xv

[2] + xv[4])

80 + 20 * xv[3]

81 + (-0.0078390522 * yv[0]) + (

0.0852096278 * yv[1])

82 + (-0.4080412916 * yv[2]) + (1.1157139955

* yv[3])

83 + (-1.8767603680 * yv[4]) + (1.8916395224

* yv[5]);

84 ADC_1filt = yv[6];

85 }

86

87 /* %%% */

88 static void filterloop2 () {

89

90 xv2 [0] = xv2 [1]; xv2 [1] = xv2 [2]; xv2 [2] = xv2 [3]; xv2 [3] = xv2

[4];

91 xv2 [4] = xv2 [5]; xv2 [5] = xv2 [6];

92 xv2 [6] = ADC_in2 / GAIN;

93 yv2 [0] = yv2 [1]; yv2 [1] = yv2 [2]; yv2 [2] = yv2 [3]; yv2 [3]

=

120 A. CODE C

94 yv2 [4]; yv2[4] = yv2 [5]; yv2[5] = yv2 [6];

95 yv2 [6] = (xv2[0] + xv2 [6]) + 6 * (xv2[1] + xv2 [5]) + 15

*

96 (xv2[2] + xv2 [4])

97 + 20 * xv2[3]

98 + (-0.0078390522 * yv2 [0]) + (0.0852096278

* yv2 [1])

99 + (-0.4080412916 * yv2 [2]) + (1.1157139955

* yv2 [3])

100 + (-1.8767603680 * yv2 [4]) + (1.8916395224

* yv2 [5]);

101 ADC_2filt = yv2 [6];

102 }

103

104 /* %%% */

105

106 unsigned int err_cnt;

107 /* error flag for CHKERRXX at last dual -port memory location

*/

108 int *error = (int *) (DP_MEM_BASE + DP_MEM_SIZE - 1);

109

110 /* ---*/

111 isr_t0 ()

112 {

113 begin_isr_t0 (*error);

114

115 service_trace ();

116 count0 = count_timer (0);

117

118 ADC_in1 = ds1102_ad (1);

119 ADC_in2 = ds1102_ad (2);

120 /* 1 */

121 ds1102_ad_start (); /* starts ADC conversion */

122 ADC_in1 = ADC_in1 + ds1102_ad (1);

123 ADC_in2 = ADC_in2 + ds1102_ad (2);

124

125 /* 2 */

126 ds1102_ad_start (); /* starts ADC conversion */

121

127 ADC_in1 = ADC_in1 + ds1102_ad (1);

128 ADC_in2 = ADC_in2 + ds1102_ad (2);

129

130 ds1102_ad_start ();

131 ADC_in1 = 10* ADC_in1 /3;

132 ADC_in2 = 10* ADC_in2 /3;

133

134 analog_avg = 10* ds1102_ad (3);

135 Hoodwin = 10* ds1102_ad (4);

136

137 filterloop ();

138 filterloop2 ();

139

140 average_filt = (ADC_1filt + ADC_2filt)/2;

141 average = (ADC_in1 + ADC_in2)/2;

142

143 /* %%% */

144 /* Regolation Steps input */

145

146 counter = counter + 1;

147 if(counter == 3000){

148 speed_rif = 50;}

149 else if(counter == 6000) {

150 speed_rif = 200;

151 counter = 0;

152 }

153 /* %%% */

154 /* Counts Encoder */

155 encoder = (ds1102_inc (1) *8388608);

156

157 /* Position */

158 position_old = position;

159

160 position = -(encoder *2*3.1415926) /(4* PPR);

161

162 /* Velocity [rad/sec] */

163 speed = -(encoder *2*3.1415926*1000) /(4* PPR);

164

122 A. CODE C

165 /* Clearing the Counter */

166 ds1102_inc_clear_counter (1);

167

168 if(position >position_old + 10) position = position_old;

169 else if(position < (position_old -10)) position =

position_old;

170 else position = position ;

171

172 /* %%% */

173 /* Calculating Acceleration */

174 /* Acceleration difference */

175

176 acc_diff = average - offset;

177

178 /* Calculation Linear Acceleration */

179 /* sensibility 1V is 100 ,51282 m/s^2 */

180

181 acc_linear = acc_diff*sensitivity;

182

183 /* Calculation Angular Acceleration */

184 acc_angular = acc_linear/R;

185

186 /* %%% */

187 /* Torque and Current Calculation

188 m = m_load + B*speed + J*acceleration

189 m = (3/2)*p*gamma_mg*i_q */

190

191 torque = m_load + B*speed + J*acc_angular;

192

193 current_loop = (2/3)*(torque/p_gamma);

194

195 /* %%% */

196 /* Control Speed */

197 speed_error = speed_ref - speed;

198

199 Pprop = (speed_error)*Kp;

200

201 speed_error_int = speed_error_int + (speed_error)*DT*Ki;

123

202

203 current_PI = Pprop + speed_error_int; /* PI controller output */

204

205 /* %%% */

206 /* Saturation to Limit the Current Reference to 15A Peak Current

*/

207

208 if(current_PI >current_max)current_PI=current_max;

209 else if(current_PI < -current_max) current_PI = -

current_max;

210 else current_PI = current_PI;

211

212 /* %%% */

213 /* current Error */

214

215 current_error_old = current_error;

216

217 current_error = current_PI - current_loop;

218

219 /* %%% */

220 /* Second Saturation for Safety */

221 if(current_error >current_max) current_error =current_max;

222 else if(current_error < -current_max) current_error = -

current_max;

223 else current_error = current_error;

224

225 /* %%% */

226 /* Piggy output */

227 Volt_tmp = (current_error *2.425) /17;

228

229 Volt_out = 2.425 - Volt_tmp;

230

231 /* Third Saturation for Safety */

232 if(Volt_out >3.5) Volt_out =3.5;

233 else if(Volt_out < 1.5) Volt_out = 1.5;

234 else Volt_out = Volt_out ;

235

236 /* %%% */

124 A. CODE C

237 ds1102_da(1,ADC_in1 /10);

238 ds1102_da(2,ADC_in2 /10);

239 ds1102_da(3,speed /1000);

240 ds1102_da(4,Volt_out /10);

241

242 exec_time = time_elapsed (0, count0);

243

244 end_isr_t0 ();

245 }

246

247 /* ---*/

248 /* Main Function */

249

250 main()

251 {

252 int i=0;

253

254 init(); /* Initialize Hardware System */

255 *error = NO_ERROR; /* Initialize Error Flag */

256

257 start_isr_t0(DT);

258

259 err_cnt = 0;

260 CHECKERR:

261 while (*error == NO_ERROR); /* Background Process */

262 *error = NO_ERROR;

263

264 init(); /* Initialize Hardware System */

265 start_isr_t0(DT);

266 err_cnt = err_cnt + 1;

267 goto CHECKERR;

268 }

Listing A.1: PI.c

1 #include "brtenv.h"

2 #include "math.h"

3

4 #define DT 100e-5

125

5 #define N 100

6 #define NZEROS 6 /* Cut -Off 1000Hz */

7 #define NPOLES 6

8 #define GAIN 3.198759421e+02

9

10 /* Parameter Declaration */

11 float ADC_in1 =0;

12 float ADC_in2 =0;

13 float ADC_in3 =0;

14 float ADC_in4 =0;

15

16 float encoder =0;

17 float average =0;

18 float PPR = 4096;

19 float PPR1 = 256;

20 float offset = 2.508;

21 float position = 0;

22 float position_old = 0;

23 float position_output = 0;

24 float position_output_old = 0;

25 float position_q = 0;

26 float position_quan = 0;

27 float position_old_quan = 0;

28 float speed = 0;

29 float speed_ref = 0;

30 float speed_error = 0;

31 float speed_error_int = 0;

32 float speed_filt;

33 float speed_estimated_ka = 0;

34 float speed_estimated_mb = 0;

35 float acc_diff =0;

36 float acc_linear = 0;

37 float acc_angular = 0;

38 float acc_angular_old = 0;

39 float current_loop = 0;

40 float current_error = 0;

41 float current_PI = 0;

42 float torque = 0;

126 A. CODE C

43 float torque_input = 0;

44 float torque_old_input = 0;

45 float torque_old = 0;

46 float Volt_out = 0;

47 float Volt_tmp = 0;

48 float counter = 0;

49

50 /* Parameter System */

51 float B = 0.015; /* coefficient viscous damping [Nms] */

52 float J = 0.000209; /* Rotor inertia with resolver [kgm ^2] */

53 float sensitivity = 100.51282;/ * sensitivity for 1 V in m/s^2 */

54 float R = 0.055; /* radius accelerometer [m] */

55 float p_gamma =1.58; /* p*gamma_mg */

56 float m_load = 0.3;

57

58 /*Max value*/

59 float Vmax = 5;

60 float current_max = 2;

61

62 /* PI control velocity value */

63 float Pprop = 0;

64 float Kp = 0.086;

65 float Ki = 0.2; /* Original value = 0.2152 */

66

67 /* Array ’s for Butter filter */

68 static float Array[N-1];

69 static float xv[NZEROS +1], yv[NPOLES +1],xv2[4], yv2[4],xv3[4],

yv3 [4];

70

71 /* Parameter KKF */

72 double x0_ka [2] = {0 ,0};

73 double u_ka [2]={0 ,0};

74

75 /* Parameter Model -Base scheme */

76 double x0_mb [2] = {0 ,0};

77 double u_mb [2]={0 ,0};

78

79 float Q_filt = 0;

127

80 float pos_filt = 0;

81 float estimation_error =0;

82

83 /* %%% */

84 static void filterloop () {

85

86 xv[0] = xv[1]; xv[1] = xv[2]; xv[2] = xv[3]; xv[3] = xv[4];

87 xv[4] = xv[5]; xv[5] = xv[6];

88 xv[6] = speed / GAIN;

89 yv[0] = yv[1]; yv[1] = yv[2]; yv[2] = yv[3]; yv[3] =

90 yv[4]; yv[4] = yv[5]; yv[5] = yv[6];

91 yv[6] = (xv[0] + xv[6]) + 6 * (xv[1] + xv[5]) + 15 *

92 (xv[2] + xv[4])

93 + 20 * xv[3]

94 + (-0.0078390522 * yv[0]) + (0.0852096278

* yv[1])

95 + (-0.4080412916 * yv[2]) + (1.1157139955

* yv[3])

96 + (-1.8767603680 * yv[4]) + (1.8916395224

* yv[5]);

97 speed_filt = yv[6];

98 }

99 /* %%% */

100 /* %%%%%%%%%%%%%%%%%%% Disturbance Observer

%%%%%%%%%%%%%%%%%%%%%%%%%% */

101 /* Low -pass Filter Q(z) */

102

103 static void filterloop2 () {

104

105 xv2 [0] = xv2 [1]; xv2 [1] = xv2 [2]; xv2 [2] = xv2 [3];

106 xv2 [3] = torque_input;

107 yv2 [0] = yv2 [1]; yv2 [1] = yv2 [2]; yv2 [2] = yv2 [3];

108 yv2 [3] = -0.0121* xv2 [0] -0.0007158* xv2 [1] +0.01373* xv2

[2] +0* xv2[3] +0.7408* yv2 [0] - 2.4562* yv2 [1] +2.7145*

yv2 [2];

109 Q_filt = yv2 [3];

110 }

111 /* %%% */

128 A. CODE C

112 /* High -pass Filter D(z) */

113

114 static void filterloop3 () {

115

116 xv3 [0] = xv3 [1]; xv3 [1] = xv3 [2]; xv3 [2] = xv3 [3];

117 xv3 [3] = position_output_old;

118 yv3 [0] = yv3 [1]; yv3 [1] = yv3 [2]; yv3 [2] = yv3 [3];

119 yv3 [3] = 6.27* xv3 [3] -18.1497* xv3[2] + 17.5051* xv3[1]

-5.6254* xv3[0] +0.7408* yv3[0] - 2.4562* yv3 [1] +2.7145*

yv3 [2];

120 pos_filt = yv3 [3];

121 }

122 /* %%% */

123 /* Noice variance accelerometer Wa = 5 [rad/sec ^2] */

124 /* n = #states , m = #outputs , r = #inputs */

125

126 enum {n_Model_kalman = 2, m_Model_kalman = 1, r_Model_kalman =

2};

127

128 void Initialize_Model_kalman(const double* x0_ka);

129 void Update_Model_kalman(const double* u_ka);

130 const double *Output_Model_kalman ();

131 const double *State_Model_kalman ();

132

133 static const double a_ka[n_Model_kalman*n_Model_kalman] =

134 {

135 9.043995286e-01, 9.043995286e-04,

136 -4.802151624e+00, 9.951978484e-01

137 };

138

139 static const double b_ka[n_Model_kalman*r_Model_kalman] =

140 {

141 4.521997643e-07, 9.560047136e-02,

142 9.975989242e-04, 4.802151624e+00

143 };

144

145 static const double c_ka[m_Model_kalman*n_Model_kalman] =

146 {

129

147 0.000000000e+000, 1.000000000e+000

148 };

149

150 static const double d_ka[m_Model_kalman*r_Model_kalman] =

151 {

152 0.000000000e+000, 0.000000000e+000

153 };

154

155 static double x_ka[n_Model_kalman], y_ka[m_Model_kalman];

156

157 void Initialize_Model_kalman(const double* x0_ka)

158 {

159 int i;

160

161 /* Initialize x */

162 for (i=0; i<n_Model_kalman; i++)

163 x_ka[i] = x0_ka[i];

164 }

165

166 void Update_Model_kalman(const double* u_ka)

167 {

168 int i, j;

169 double x_next_ka[n_Model_kalman];

170

171 /* Evaluate x_next = A*x + B*u */

172 for (i=0; i<n_Model_kalman; i++)

173 {

174 x_next_ka[i] = 0;

175 for (j=0; j<n_Model_kalman; j++)

176 x_next_ka[i] += a_ka[i*n_Model_kalman+j]*x_ka[j];

177

178 for (j=0; j<r_Model_kalman; j++)

179 x_next_ka[i] += b_ka[i*r_Model_kalman+j]*u_ka[j];

180 }

181

182 /* Evaluate y = C*x + D*u */

183 for (i=0; i<m_Model_kalman; i++)

184 {

130 A. CODE C

185 y_ka[i] = 0;

186 for (j=0; j<n_Model_kalman; j++)

187 y_ka[i] += c_ka[i*n_Model_kalman+j]*x_ka[j];

188

189 for (j=0; j<r_Model_kalman; j++)

190 y_ka[i] += d_ka[i*r_Model_kalman+j]*u_ka[j];

191 }

192

193 /* Update x to its next value */

194 for (i=0; i<n_Model_kalman; i++)

195 x_ka[i] = x_next_ka[i];

196 }

197

198 const double *Output_Model_kalman ()

199 {

200 return y_ka;

201 }

202

203 const double *State_Model_kalman ()

204 {

205 return x_ka;

206 }

207

208 /* %%% */

209 /* Model Base Filter */

210 /* stiction level 0.3 Nm*/

211 /* n = #states , m = #outputs , r = #inputs */

212

213 enum {n_Model_Base = 2, m_Model_Base = 1, r_Model_Base = 2};

214

215 void Initialize_Model_Base(const double* x0_mb);

216 void Update_Model_Base(const double* u_mb);

217 const double *Output_Model_Base ();

218 const double *State_Model_Base ();

219

220 static const double a_mb[n_Model_Base*n_Model_Base] =

221 {

222 2.800397348e-01, 2.702266228e-04,

131

223 -4.435102419e+02, 5.027758108e-01

224 };

225

226 static const double b_mb[n_Model_Base*r_Model_Base] =

227 {

228 6.542074669e-04, 7.199602652e-01,

229 3.580929817e+00, 4.435102419e+02

230 };

231

232 static const double c_mb[m_Model_Base*n_Model_Base] =

233 {

234 0.000000000e+000, 1.000000000e+000

235 };

236

237 static const double d_mb[m_Model_Base*r_Model_Base] =

238 {

239 0.000000000e+000, 0.000000000e+000

240 };

241

242 static double x_mb[n_Model_Base], y_mb[m_Model_Base];

243

244 void Initialize_Model_Base(const double* x0_mb)

245 {

246 int i;

247

248 /* Initialize x */

249 for (i=0; i<n_Model_Base; i++)

250 x_mb[i] = x0_mb[i];

251 }

252

253 void Update_Model_Base(const double* u_mb)

254 {

255 int i, j;

256 double x_next_mb[n_Model_Base];

257

258 /* Evaluate x_next = A*x + B*u */

259 for (i=0; i<n_Model_Base; i++)

260 {

132 A. CODE C

261 x_next_mb[i] = 0;

262 for (j=0; j<n_Model_Base; j++)

263 x_next_mb[i] += a_mb[i*n_Model_Base+j]*x_mb[j];

264

265 for (j=0; j<r_Model_Base; j++)

266 x_next_mb[i] += b_mb[i*r_Model_Base+j]*u_mb[j];

267 }

268

269 /* Evaluate y = C*x + D*u */

270 for (i=0; i<m_Model_Base; i++)

271 {

272 y_mb[i] = 0;

273 for (j=0; j<n_Model_Base; j++)

274 y_mb[i] += c_mb[i*n_Model_Base+j]*x_mb[j];

275

276 for (j=0; j<r_Model_Base; j++)

277 y_mb[i] += d_mb[i*r_Model_Base+j]*u_mb[j];

278 }

279

280 /* Update x to its next value */

281 for (i=0; i<n_Model_Base; i++)

282 x_mb[i] = x_next_mb[i];

283 }

284

285 const double *Output_Model_Base ()

286 {

287 return y_mb;

288 }

289

290 const double *State_Model_Base ()

291 {

292 return x_mb;

293 }

294 /* %%% */

295 unsigned int err_cnt;

296 /* error flag for CHKERRXX at last dual -port memory location

*/

297 int *error = (int *) (DP_MEM_BASE + DP_MEM_SIZE - 1);

133

298

299 /* ---*/

300 isr_t0 ()

301 {

302 begin_isr_t0 (*error);

303

304 service_trace ();

305 count0 = count_timer (0);

306

307 ADC_in1 = ds1102_ad (1);

308 ADC_in2 = ds1102_ad (2);

309 /* 1 */

310 ds1102_ad_start (); /* starts ADC conversion */

311 ADC_in1 = ADC_in1 + ds1102_ad (1);

312 ADC_in2 = ADC_in2 + ds1102_ad (2);

313

314 /* 2 */

315 ds1102_ad_start (); /* starts ADC conversion */

316 ADC_in1 = ADC_in1 + ds1102_ad (1);

317 ADC_in2 = ADC_in2 + ds1102_ad (2);

318 ds1102_ad_start ();

319 ADC_in1 = 10* ADC_in1 /3;

320 ADC_in2 = 10* ADC_in2 /3;

321

322 average = (ADC_in1 + ADC_in2)/2;

323

324 /* %%% */

325 /* regulation steps input */

326

327 counter = counter + 1;

328 if(counter == 6000) {

329 speed_rif = 4;}

330 else if(counter == 9000) {

331 speed_rif = 8;

332 counter = 0; }

333

334 /* %%% */

335 /* Counts encoder */

134 A. CODE C

336 encoder = -(ds1102_inc (1) *8388608);

337

338 position_old_quan = position_quan;

339

340 position_q = (int)((PPR1/(PPR))*encoder);

341

342 position_quan = (position_q /(PPR1 *4))*2*3.1415926;

343

344 /* Position calculation */

345

346 position_old = position;

347

348 position = (encoder *2*3.1415926) /(4* PPR);

349

350 /* velocity in [rad/sec] */

351

352 speed = (position - position_old)/DT;

353

354 /* Code to avoid encoder error */

355

356 if(position >position_old + 10) position = position_old;

357 else if(position < (position_old -10)) position =

position_old;

358 else position = position ;

359

360 if(position_quan >position_old_quan + 10) position_quan =

position_old_quan ;

361 else if(position_quan < (position_old_quan -10))

position_quan = position_old_quan ;

362 else position_quan = position_quan;

363

364 position_output_old = position_output;

365

366 /* position in input to the KKF and Model -based scheme */

367 /* position calculation */

368

369 position_output = position_quan;

370

135

371 /* filtering of the velocity */

372 filterloop ();

373

374 /* %%% */

375 /* Calculating acceleration */

376

377 /* Acceleration difference */

378 acc_diff = average - offset;

379

380 /* calculation linear acceleration */

381 /* sensivity 1V is 100 ,51282 m/s^2 */

382 acc_linear = acc_diff*sensitivity;

383

384 /* calculation angular acceleration */

385 acc_angular_old = acc_angular;

386

387 acc_angular = acc_linear/R;

388

389 /* %%% */

390 /* Torque and current calculation

391 m = m_load + B*speed + J*acceleration

392 m = (3/2)*p*gamma_mg*i_q*/

393

394 torque_old = torque;

395

396 torque = m_load + B*speed_estimated_ka + J*acc_angular_old;

397

398 torque_old_input = torque_input;

399

400 torque_input = B*speed_estimated_ka + J*acc_angular_old;

401

402 current_loop = (2/3)*(torque/p_gamma);

403

404 /* %%% */

405

406 filterloop2 ();

407 filterloop3 ();

408

136 A. CODE C

409 estimation_error = pos_filt - Q_filt;

410 /*

%%%

*/

411 /* State estimation using Kalman Filter */

412 x0_ka [0]= 0;

413 x0_ka [1]= 0;

414

415 if(count_initialize == 0) Initialize_Model_kalman(x0_ka);

416

417 u_ka [0] = acc_angular_old;

418 u_ka [1] = position_output;

419

420 Update_Model_kalman(u_ka);

421 Output_Model_kalman ();

422

423 speed_estimated_ka = y_ka [0];

424

425 /* %%% */

426 /* State estimation using the Model -Base Filter */

427 x0_mb [0]=0;

428 x0_mb [1]=0;

429

430 if(count_initialize == 0) Initialize_Model_Base(x0_mb);

431 count_initialize += 1;

432

433 u_mb [0] = torque_input + estimation_error;

434 u_mb [1] = position_output;

435

436 Update_Model_Base(u_mb);

437 Output_Model_Base ();

438 speed_estimated_mb = y_mb [0];

439

440 /* %%% */

441 /* Control speed */

442 speed_error = speed_ref - speed_estimated_ka;

443 Pprop = (speed_error)*Kp;

444

137

445 speed_error_int = speed_error_int + (speed_error)*DT*Ki;

446

447 current_PI = Pprop + speed_error_int; /* PI controller output */

448

449 /* %%% */

450 /* To limit the current reference to 15A peak current */

451

452 if(current_PI >current_max)current_PI=current_max;

453 else if(current_PI < -current_max) current_PI = -

current_max;

454 else current_PI = current_PI;

455

456 /* %%% */

457 /* Current Error */

458

459 current_error = current_PI - current_loop;

460

461 /* %%% */

462 /* second saturation for safety */

463 if(current_error >current_max) current_error =current_max;

464 else if(current_error < -current_max) current_error = -

current_max;

465 else current_error = current_error;

466

467 /* %%% */

468 /* Shift current range 0-30*/

469 /* Piggy output */

470

471 Volt_tmp = (current_error *2.425) /17;

472

473 Volt_out = 2.425 - Volt_tmp;

474

475

476 /* third saturation for safety */

477 if(Volt_out >3.5) Volt_out =3.5;

478 else if(Volt_out < 1.5) Volt_out = 1.5;

479 else Volt_out = Volt_out ;

480

138 A. CODE C

481 /* %%% */

482 /* Segnals output */

483

484 ds1102_da(1, speed_estimated_ka /1000);

485 ds1102_da(2, speed_estimated_mb /1000);

486 ds1102_da(3, speed_filt /1000);

487 ds1102_da(4,Volt_out /10);

488

489 exec_time = time_elapsed (0, count0);

490

491 end_isr_t0 ();

492 }

493 /* ---*/

494 /* Main Function */

495

496 main()

497 {

498 int i=0;

499

500 init(); /* initialize hardware system */

501 *error = NO_ERROR; /* pg 63 intialize error flag */

502

503 start_isr_t0(DT);

504

505 /* clearing the counter */

506 ds1102_inc_clear_counter (1);

507

508

509 err_cnt = 0;

510 CHECKERR:

511 while (*error == NO_ERROR); /* background

process */

512 *error = NO_ERROR;

513

514 init(); /* initialize hardware

system */

515 start_isr_t0(DT);

516 err_cnt = err_cnt + 1;

139

517 goto CHECKERR;

518 }

Listing A.2: KAFeedback.c

Bibliography

[1] S. Jeon and M. Tomizuka, “Benefits of acceleration measurement in velocity

estimation and motion control,” Control Engineering Practice, vol. 15, pp.

325–332, March 2007.

[2] S. J. Kwon, W. K. Chung, and Y. Youm, “A combined observer for robust

state estimation and kalman filtering,” Proceedings of the American control

conference, pp. 2459–2464, 2003.

[3] H. W. Kim and S. K. Sul, “A new motor speed estimator using kalman filter

in low speed range,” IEEE Transactions on Industrial Electronics, vol. 43(4),

pp. 498–504, 1996.

[4] S. H. Kim and S. K. Sul, “An instantaneous speed observer for low speed

control of ac machine,” Proceedings of the IEEE applied power electronics

conference and exposition, vol. 2, pp. 581–586, 1998.

[5] D. J. Lee and M. Tomizuka, “State/parameter/disturbance estimation with

an accelerometer in precision motion control of a linear motor,” Proceedings

of the 2001 ASME IMECE, vol. DSC-24578, 2001.

[6] M. T. White and M. Tomizuka, “Increased disturbance rejection in magnetic

disk drives by acceleration feedforward control and parameter adaptation,”

Control Engineering Practice, vol. 5(6), pp. 741–751, 1997.

[7] B. O’Callaghan and D. R. Kavanagh, Development of Rotary Accelerometer

using MEMS Accelerometer Project Report, Department of Electrical and

Electronic Engineering University College Cork, 31 March 2008.

142 BIBLIOGRAPHY

[8] Analog-Device, ADXL210E Datasheet. Accelerometer with Duty Cycle, sup-

plyed directly in http://www.analog.com.

[9] http://www.memagazine.org.

[10] DataSheet-Moog, Brushless Servomotor G400 Series, 2008.

[11] Moog-Manual, DS2100 Digital Controller. Installa-

tion and User’s Manual, supplyed in the website

http://www.moog.com/literature/ICD/ds2100servodrives-um.pdf.

[12] M. K. Hyunchul Shim and M. Tomizuka, “Use of accelerometer for precision

motion control of linear motor driven positioning system,” Industrial Elec-

tronics Society. Proceedings of the 24th Annual Conference of the IEEE, pp.

2409–2414, 1998.

[13] dSPACE Manual, Floating-Point Controller Board, DS1102.

[14] S. Komada, K. Ohnishi, and T. Hori, “Hybrid position/force control of robot

manipulator based on acceleration controller,” Proceedings of the IEEE 1991

international conference on robotics and automation, pp. 48–55, 1991.

[15] B. Wildrow, “Statistical analysis of amplitude-quantized sampled data sys-

tems,” AIEE Transactions on Application and Industry, vol. 81, pp. 555–568,

1961.

[16] J. G. O’Donovan, Control and Estimation Strategies for Nonlinear Motor

Drive Systems Ph.D Thesis, Department of Electrical Engineering and Mi-

croelectronics University College Cork, June 1997.

[17] E. D. Tung, Y. Urushisaki, and M. Tomizuka, “Low velocity friction com-

pensation for machine tool feed drivers,” Proc. American Control Conf., pp.

1910–1914, 1993.

[18] U. Schafer and G. Brandenburg, “Compensation of coulomb friction in in-

dustrial elastic two mass systems through model reference adaptive control,”

Proc. European Conf. Power Electronics and Applications (EPE), pp. 1409–

1415, 1989.

BIBLIOGRAPHY 143

[19] P. E. Dupont and E. P. Dunlap, “Friction modelling and control in boundary

lubrication,” Proc. American Control Conf., pp. 1910–1914, 1993.

[20] S. Bolognani, Azionamenti Elettrici Course Notes, Department of Electrical

and Electronic Engineering, University of Padova.

[21] W. Chen and M. Tomizuka, “Estimation of load side position in indirect

drive robots by sensor fusion and kalman filtering,” AACC American Control

Conference, pp. 6852–6857, 2010.

[22] J. Corres and P. Gil, “Instantaneous speed and disturbance torque observer

using nonlinearity cancellation of shaft encoder,” IEEE Transactions on In-

dustrial Electronics, vol. 4, pp. 540–592, 2002.

[23] Z. Zedong, L. Yongdong, M. Fadel, and X. Xi, “A rotor speed and load torque

observer for pmsm based on extended kalman filter,” IEEE International

Conference on Industrial Technology, pp. 223–238, 2006.

[24] P. Meehan and K. Moloney, Basic Principles of Operation and Applications

of the Accelerometer Report, Limerick Institute of Technology.

[25] dSPACE Manual, ds1104 R&D Controller Board, Installation and Configu-

ration Guide.

[26] ——, MLIB/MTRACE, MATLAB-dSPACE Interface and Trace Libraries.

[27] ——, Real-Time Interface (RTI and RTI-MP), Implementation Guide.

[28] ——, Control Desk, Experiment Guide.

[29] ——, Control Desk, Automation Guide.

[30] ——, Connector Panels and LED Panels. CP1102/CLP1102.

[31] ——, DS1102 Software Environment.

	Declaration
	Acknowledgements
	Sommario
	Introduction
	Purpose
	Micro Electro-Mechanical System Devices
	Estimation velocity

	Relevant theory
	MEMS Accelerometer
	Signal transmission: Slip Rings

	Experimental apparatus
	Brushless servomotor Moog G400 Series
	Moog DS2100CAN Digital Controller Driver
	MEMS Accelerometers characterization
	MEMS Devices Error

	 Analogue Signal Processing
	Digital Signal Processing: dSPACE DS1102
	Incremental encoder

	Velocity estimation methods
	Model-based velocity estimation
	Kinematic Kalman filter (KKF)

	Design and Simulation
	Estimated Friction and Viscosity Damping
	Designing a PI speed controller
	Design of current control
	Design of speed control

	Design Model-Based Estimator and Kalman Filter
	Design of DSP-Based Controller Language

	Results and Analysis
	PI controller response
	Results for KKF and Model-based schemes

	Conclusion
	LogBook
	Week 1
	Week 2
	Week 3
	Week 4
	Week 5
	Week 6
	Week 7
	Week 8
	Week 9
	Week 10
	Week 11
	Week 12

	Code C
	Bibliography

