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Abstract— This work addresses the problem of distributed
multi-agent localization in presence of heterogeneous measure-
ments and wireless communication. The proposed algorithm
integrates low precision global sensors, like GPS and compasses,
with more precise relative position (i.e., range plus bearing)
sensors. Global sensors are used to reconstruct the absolute
position and orientation, while relative sensors are used to
retrieve the shape of the formation. A fast distributed and
asynchronous linear least-squares algorithm is proposed to
solve an approximated version of the non-linear Maximum
Likelihood problem. The algorithm is provably shown to be
robust to communication losses and random delays. The use
of ACK-less broadcast-based communication protocols ensures
an efficient and easy implementation in real world scenarios. If
the relative measurement errors are sufficiently small, we show
that the algorithm attains a solution which is very close to
the maximum likelihood solution. The theoretical findings and
the algorithm performances are extensively tested by means of
Monte-Carlo simulations.

I. INTRODUCTION

In the last decades, the hardware cost reduction and
the appearance of dedicated software for rapid prototyping
have made mobile autonomous robotics becoming a growing
business involving many start-ups. In particular, the advances
in cooperative robotics using multiple vehicles have achieved
results performance in controlled environments, e.g., [1], [2].

Global and relative localization of the vehicles is one
fundamental task that needs to be accomplished in order
to accomplish many more complex tasks. Most of the re-
markable results have been obtained in indoor controlled
environments where multiple cameras are able to track and
estimate the vehicles location and orientation [3]. These esti-
mates are computed at a central location and then forwarded
to the different vehicles. However, such architecture is not
replicable in outdoor unstructured environments. Although
global position system (GPS) sensors and compass sensors
are available, their accuracy might be insufficient for many
tasks, e.g., tight formation control, map-building. As so,
additional sensors, able to measure relative position and
orientation among vehicles, e.g., stereo cameras, ultrasonic
rangers, if paired with GPS and compass could dramatically
improve the accuracy of outdoor robot absolute location.

Localization in unstructured environments has a long
history and a whole area of research, named simultaneous
localization and mapping (SLAM), has been devoted to the
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topic [4]. The main goal is to reconstruct the location and
past trajectory of a vehicle based on sensory data collected
along its travelling. The problem is challenging since estimat-
ing the location from multiple poses is a highly non-linear
problem which might have multiple solutions [5], specifically
if bearing-only sensors [6] or range-only sensors are used [7].
Many advances have been made when both types of sensors
are available. Although these solutions are often batch-based
and cooperation among agents is absent [8].

This work addresses the problem of robust distributed
real-time multi-vehicle localization via wireless communi-
cation. We propose to integrate less precise global sensors
(GPS and compass) with more precise relative positioning
sensors (range and bearing sensors) to achieve global high
accuracy. Intuitively, precise relative sensors allow for the
reconstruction of a relative formation. Differently, compass
and GPS installed in multiple vehicles can provide estima-
tion of the global centroid and orientation of the whole
formation. Another challenge that we want to address is to
provide a solution which is totally distributed, asynchronous
and robust to communication losses. In fact, a centralized
solution is not scalable and subject to a single-point-of-
failure. Moreover, synchronous communication is difficult
to enforce and is prone to failuers. Recent research [9]–[12]
propose distributed yet synchronous solutions for multi-robot
localization. Asynchronous approaches are proposed in [13]–
[15] where robustness of the solutions to communication de-
lays is either theoretically or numerically assessed. However,
robustness to lossy communication is never addressed.

We propose an asynchronous distributed algorithm for
multi-robot localization that integrates GPS, compass, range
and bearing measurements and is robust to packet losses and
random delays. We show that if the range and bearing errors
are sufficiently small, it is possible to linearize the localiza-
tion problem achieving a performance which is very close
to the exact maximum likelihood solution. The algorithm is
based on a broadcast communication protocols not requiring
ACK packets. Therefore is fast and easy to implement.

II. MATHEMATICAL PRELIMINARIES

Resorting to standard graph theory, the estimation problem
can be associated with an undirected measurement graph
G = (V;E) where V ∈ {1, . . . ,N} represents the nodes and
E⊂ V×V (|E|= M) contains the unordered pairs of nodes
{i, j} which are connected to, measure and communicate
with each other. Ni ⊆V denotes the set { j | {i, j} ∈ E}, i.e.
the neighboring set of node i. An undirected graph G is said
to be connected if for any pair of vertices {i, j} a path exists,
connecting i to j. In the problem at hand, we consider a

2016 European Control Conference (ECC)
June 29 - July 1, 2016. Aalborg, Denmark

978-1-5090-2591-6 ©2016 EUCA 2527



communication graph among the nodes which coincides with
the measurements graph G. Moreover, broadcast and asyn-
chronous communications are assumed among the nodes. We
denote with | · | the modulus of a scalar. The incidence matrix
A∈RM×N of G is defined as A= [aei], where aei = {1,−1,0},
if edge e is incident on node i and directed away from it, is
incident on node i and directed toward it, or is not incident
on node i, respectively. We denote with the symbol ‖ · ‖
the vector 2-norm and with [·]T the transpose operator. The
symbol � represents the Hadamard product. Given a vector
v ∈R2, the function atan2(·) : R2→ [0,2π] returns its angle,
i.e., v = ‖v‖e j atan2(v). Given a matrix v ∈ Rm×n, with vctr.
we denote the vector centroid, i.e., vcrt. =

1
n ∑

n
i=1 vi, where

vi is the i- th row of the matrix. The symbol σx denotes
the standard deviation of the generic measurement x. The
operator E[·] denotes the expected value. With N (·, ·) we
denote the normal distribution. The symbol proj(·) : R 7→R2

denotes the function proj(θ) =
[
cosθ sinθ

]T . Finally, I
denotes the identity matrix of suitable dimensions.

III. PROBLEM FORMULATION

Consider the problem of estimating the 2D positions,
expressed in a common reference frame, of N nodes of a
sensor network. Each node is endowed with a set of sensors
that provide both relative and absolute measurements.
In the following, first we introduce the statistical models used
for each type of measurements. Second, we formulate the
non linear Maximum-Likelihood estimation problem. Third,
we introduce a suitable linear and convex reformulation.

A. Measurement Models

We assume the N nodes are provided with a GPS module,
a compass and a relative range and bearing sensors. We
denote with pi = (xi,yi), i ∈ V, the 2D position of node
i in a common inertial frame, and with θi its orientation
with respect to the inertial North axis, assumed to coincide
with the x-axis. Each sensor is described by the following
statistical model:
• pGPS

i = (xGPS
i ,yGPS

i ) represents a noisy GPS measure-
ment of pi = (xi,yi). We assume pGPS

i ∼ N (pi,σ
2
pI).

• θC
i is the compass noisy measurements of θi.

We assume an angular Gaussian distribution [16]
proj(θC

i )∼ N
(
proj(θi),σ

2
θ
I
)
, which approximates the

Langevin distribution [17].
• ri j is the range sensor measurement of the distance

between i and j. We assume ri j ∼ N (‖pi− p j‖,σ2
r ).

• δi j is the noisy measurements of the bearing angle of
the node j in the local frame of node i. For δi j we
adopt an angular Gaussian distribution model that is
proj(δi j)∼ N

(
proj(atan2(p j− pi)−θi),σ

2
δ
I
)
.

We are aware the assumption of Gaussian noises might be
restrictive and represent a limit in practical scenarios where
noises are characterized by non Gaussian distributions.
Remark III.1. Observe that, to reduce the set-up cost,
each node has access to highly noisy absolute measurements
together with precise relative measurements. In particular, the
GPS sensors are usually characterized by σp = 2 [m] [18],

while the compass by σθ = 0.05 [rad] [19]. To retrieve
information about range and bearing different sensors can
be used, e.g., depth-camera, laser, ultrasound. Acceptable
values might be σr = 0.1 [m] and σδ = 0.03 [rad]. Due to
the variability in the accuracy of the available sensors, we
will test our algorithm in a wide range of standard deviation
values. Finally, observe that all the results hold even if a
subset of nodes are provided with a GPS unit. However, for
simplicity, we consider all the nodes endowed with a GPS.

B. Maximum-Likelihood Estimator
We assume that all the measurements are independent

and their probability distributions are given in the previous
section. It is possible to formulate the localization problem
as a Maximum-Likelihood (ML) estimation problem. Let us
define the state and measurements sets, respectively, as

x = {p,θ}= {pi, θi with i ∈ V} ,
y =

{
pGPS

i , θ
C
i , rhk, δhk with i ∈ V, (h,k) ∈ E

}
,

where p := [p1, . . . , pN ]
T and θ := [θ1, . . . ,θN ]

T . Then, the
negative log-likelihood cost function can be written as

J(x) :=− log f
(
y |x
)
= Jp + Jθ + Jr + Jδ + c, (1)

where

Jp =
N

∑
i=1

‖pi− pGPS
i ‖2

2σ2
p

, Jr =
M

∑
(i, j)=1

(ri j−‖pi− p j‖)2

2σ2
r

,

Jθ =
N

∑
i=1

∥∥proj(θC
i )−proj(θi)

∥∥2

2σ2
θ

,

Jδ =
M

∑
(i, j)=1

∥∥proj(δi j)−proj(atan2(p j− pi)−θi)
∥∥2

2σ2
δ

,

and c is a constant term that does not depend on x and y. The
minimization of the cost (1) would provide the ML estimator
for the nodes’ absolute positions and orientations, i.e.:

x̂ML = argminx J(x). (2)

Now let us consider the following equivalent parametrization
of agents’ positions using their centroid pctr. and correspond-
ing deviation ∆pi. This reads as pi = pctr.+∆pi, ∑i ∆pi = 0.
Let us also define ∆p = (∆p1, . . . ,∆pN). Thanks to the new
parametrization, equation (2) is equivalent to:{

p̂ML
ctr. ,∆p̂ML, θ̂

ML}
= argmin

{pctr.,∆p,θ}
J(pctr.,∆p,θ), (3)

s.t. ∑
i

∆pi = 0.

The reformulation (3) lets us show how the ML estimator
exploits the GPS information to solve for the absolute
positioning of the formation’s centroid. Moreover, we charac-
terize the limit behavior of the estimator when range, bearing
and compass noises are very large or very small. The proofs
of the following Lemmas can be found in the technote [20].

Lemma III.1. Consider the negative log-likelihood cost (1).
Then, the ML solution x̂ML which solves (3) is such that

p̂ML
ctr. = pGPS

ctr. , (4)
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where p̂ML
ctr. := 1

N ∑
N
i=1 p̂i and pGPS

ctr. := 1
N ∑

N
i=1 pGPS

i .

Lemma III.2. For fixed GPS variance σp we have
1) lim

max{σθ ,σr ,σδ }→0
p̂ML

i = pGPS
ctr. +∆pi ,

2) lim
min{σr ,σδ }→+∞

p̂ML
i = pGPS

i .

Statement 1) of Lemma III.2 states that if max{σθ ,σr,σδ}→
0, the shape of the formation is perfectly retrieved. Then, the
only source of error between the estimated formation and
the ground-truth is given by the error between GPS centroid
and the true centroid. Statement 2) states that if the relative
measurements accuracies deteriorate, the ML estimator will
“trust” the GPS measurements only.
Unfortunately problem (2) is highly non-linear and hard to
solve. In particular, if the angles are noise-free, the problem
is linear [9]. Conversely, if the angles are not known, the
problem presents many local minima [8]. One possible way
to tackle it, is using a standard gradient descent approach
since the gradient vector of the log-likelihood function can be
computed in closed form using (1). However, such approach
heavily suffers of bad initialization. In fact, the presence of
multiple local minima in (1) causes the algorithm to stop on
the wrong minimizer.
In the following, we resort to a suitable approximation to
reformulate problem (2) in a linear-least square framework.

C. An Approximated Linear Least-Squares Formulation
Here, the idea is to move from the polar coordinate system

to the equivalent Cartesian representation. Indeed, assuming
a perfect knowledge of range, bearing and compass, it is
possible to express the displacement di j as

di j := pi− p j = ri j

[
cos(δi j +θi)
sin(δi j +θi)

]
. (5)

Since the measurements are affected by noise, it is necessary
to map the noise of range, bearing and compass into the
equivalent noise in Cartesian coordinates. Namely, given the
noisy version of (5), that is

di j = pi− p j +ni j, (6)

where ni j is the noise in Cartesian coordinate, we want to
find the expression for its covariance, E[ni jnT

i j] =Σi j, in terms
of the statistical description of range, bearing and compass
measurements noises. After a first order expansion we obtain

Σi j =

[
σ2

x (i, j) σxy(i, j)
σyx(i, j) σ2

y (i, j)

]
, (7)

where

σ
2
x (i, j) = σ

2
r cos2(δi j +θi)+ r2

i j(σ
2
δ
+σ

2
θ )sin2(δi j +θi),

σ
2
y (i, j) = σ

2
r sin2(δi j +θi)+ r2

i j(σ
2
δ
+σ

2
θ )cos2(δi j +θi),

σxy(i, j) =
(
σ

2
r − r2

i j(σ
2
δ
+σ

2
θ )
)

sin(δi j +θi)cos(δi j +θi).

Remark III.2. Since the linear approximation introduced is
based on a first order expansion, its validity holds under the
assumption of sufficiently small measurement errors.
Remark III.3. Note that Σi j in (7) is a function of the true
values of range, bearing and compass. Since it is not possible

to have access to these data, in a real setup these quantities
must be replaced by their corresponding measured values.

Once computed the displacements (6), it is possible to define
the weighted residuals as

Jd =
1
2 ∑
{i, j}∈E

‖pi− p j−di j‖2
Σ
−1
i j
.

Then, it is possible to define an approximation of (1) account-
ing for the GPS measurements and the displacements, as

JLS(p) = Jp + Jd . (8)

The minimization problem, which is a linear least-squares
(LLS), hence solvable in closed form, becomes

p̂LS = argminp JLS(p) . (9)

By assuming G connected, the optimal estimate is given by

p̂LS = (Σ−1
GPS +AT

Σ
−1A)−1(Σ−1

GPSpGPS +AT
Σ
−1d), (10)

where ΣGPS = σ2
pI, Σ is the matrix which accounts for all

the Σi j, and d and pGPS are the vectors obtained stacking
together all the relative distances defined in (6) and the GPS
absolute positions, respectively.
Remark III.4. Note that p̂LS gives only an estimate of the
absolute positions p without providing any estimate of the
absolute orientations. These are retrieved using the compass
and exploited to project the noise in rectangular coordinates.
Remark III.5. Observe that, even if the LLS problem returns
an approximate solution for the problem of equation (2),
since the problem (9) is convex, its solution is unique.

For the LS estimator it is possible to show an optimality
result similar to the one stated in Lemmas III.1 and III.2
for the ML estimator. We state the following Lemma whose
proof follows the arguments used for Lemmas III.1 and III.2.

Lemma III.3. Consider the cost function (8). Then, the
optimal solution p̂LS which solves (9) is such that

p̂LS
ctr. = pGPS

ctr. . (11)

Moreover, for fixed GPS variance σp we have

lim
max{σθ ,σr ,σδ }→0

p̂LS
i = pGPS

ctr. +∆pLS
i ,

lim
min{σr ,σδ }→+∞

p̂LS
i = pGPS

i .

Observe that, to compute p̂LS as in equation (9), one needs
all the measurements, their covariances and the topology of
G to be available to a central computation unit.

IV. DISTRIBUTED AND ASYNCHRONOUS
ALGORITHM

In this section we present a distributed and asynchronous
solution for the minimization problem (9), which is robust to
communication delays and packet losses. In the following,
by distributed, we mean that there is no central unit gathering
all the measurements pGPS and d, having global knowledge
of the graph G and computing p̂LS directly; instead, each
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node has limited computational and memory resources, and
can communicate only with j ∈ Ni. By asynchronous, we
mean that there is no common reference time (generated,
e.g., by a centralized clock source) which keeps all the
updating/transmitting actions synchronized among the nodes.

The implementation presented is inspired by [21], [22],
where it is shown that this strategy is efficient both in
terms of number of iterations and number of sent packets
per communication round, compared to existing alternative
strategies. The algorithm we propose, which we refer to
as the asynchronous gradient-based localization (a-GL), is
based on a standard gradient descent strategy employing an
asynchronous broadcast communication protocol. Namely,
during each iteration there is only one node transmitting
information to its neighbors. Moreover, the time between
two consecutive iterations does not have to be constant. For
ease of notation, hereafter we drop the superscript LS for
single node estimates.
We assume that every node has access to its own measure-
ments and to those of its neighbors nodes, as well as the
associated covariances. Additionally we assume that node i,
i∈V, stores in memory an estimate p̂i of pi and, for j ∈Ni,
an estimate p̂(i)j of p̂ j.
The a-GL is shown in Algorithm 1. Let t0, t1, t2, . . . be the
time instants in which the iterations of the algorithm occur.

Algorithm 1: a-GL Algorihtm
Require: Node i ∈ V store in memory the measurements pGPS

i ,
di j, j ∈Ni, the variances σp, Ni j and the neighbors estimates
p̂(i)j , j ∈Ni.

1: for t = t0, t1, t2, . . . do
# Random node selection

2: Node i ∈ V wakes-up
# Node i self update

3: p̂i← p̂i−α(i)� ∂JLS
∂ pi

# Self-update broadcasting
4: p̂i broadcast to j, j ∈Ni

# neighbors memory update
5: p̂( j)

i ← p̂i , ∀ j ∈Ni
6: end for

In Algorithm 1, α(i) = [αx(i) αy(i)]T is a suitable scaling
factor for the gradient step. Through standard algebraic
computations, one can see that:

∂JLS

∂ pi
=

pi− pGPS
i

σ2
p

+ ∑
j∈Ni

Σ
−1
i j (pi− p j−di j) .

Observe that in order to compute ∂JLS
∂ pi

, node i requires
information coming only from its neighbors. This makes the
algorithm amenable for a distributed implementation. Since
every node has available in memory a copy of the neighbors
estimate, a natural way to evaluate the gradient is

∂JLS

∂ pi
=

p̂i(t)− pGPS
i

σ2
p

+ ∑
j∈Ni

Σ
−1
i j (p̂i(t)− p̂(i)j (t)−di j) ,

It is possible to show that JLS does not increase if

0 < αx(i)≤

(
1

σ2
p
+ ∑

j∈Ni

(γx(i, j)+ γx( j, i))

)−1

, (12a)

0 < αy(i)≤

(
1

σ2
p
+ ∑

j∈Ni

(γy(i, j)+ γy( j, i))

)−1

, (12b)

where γx(h,k) and γy(h,k) represent the diagonal elements
of Σ

−1
i j . In particular, if α(i) coincides with the RHSs of (12)

then the minimum of JLS is attained.
In the following we analyze the robustness of the a-GL.

A. Convergence Analysis in Presence of Packet Losses and
Communication Delays

Given Algorithm 1 to compute the LLS solution (9) in
a distributed and asynchronous fashion, here we consider a
more realistic scenario: presence of delays and packet losses
in the communication channel. Convergence of the a-GL
algorithm to the optimal LS solution is proven, provided the
network is uniformly persistent communicating as defined in
Definition 1, and the transmission delays and the frequencies
of communication failures satisfy the following assumptions.

Definition 1 (Uniformly persistent comm. network). A net-
work of N nodes is said to be uniformly persistent commu-
nicating if there exists a positive integer number τ such that,
for all t ∈N, each node performs lines 3 and 4 of the a-GL
algorithm at least once within the iteration-interval [t, t+τ).

Assumption IV.1 (Bounded packet losses). There exists an
integer L > 0 such that the number of consecutive commu-
nication failures between every pair of neighboring nodes in
the graph G is less than L.
Assumption IV.2 (Bounded delays). Assume node i broad-
casts its estimate to its neighbors during iteration t, and that
the communication link (i, j) does not fail. Then, there exists
an integer D > 0 such that p̂i(t + 1) is used by node j to
perform its local update not later than iteration t +D.

Next we characterize the robustness of the a-GL algorithm
to delays and packet losses. The proof can be found in [21].

Proposition 1 (Proposition V.3 in [21]). Consider a uni-
formly persistent communicating network of N nodes run-
ning the a-GL algorithm over a connected measurement
graph G. Let Assumptions IV.1 and IV.2 be satisfied. Assume
the weights α(i) satisfy Equations (12a)–(12b). Moreover,
assume that p̂i, i ∈ {1, . . . ,N}, p̂(i)j , j ∈Ni, be initialized to
pGPS. Then the following facts hold true

1) the evolution t→ p̂(t) asymptotically converges to the
optimal estimate p̂LS, i.e.,

lim
t→∞

p̂(t) = p̂LS;

2) the convergence is exponential, namely, there exists
C > 0 and 0≤ ρ < 1 such that

‖p̂(t)− p̂LS‖ ≤Cρ
t‖p̂(0)− p̂LS‖. (13)

V. SIMULATIONS

Here, we test the effectiveness of the proposed algorithm.
We consider a regularly spread group of robots placed on a
2D lattice with an inter-node distance of 4 [m]. Each agent
is endowed with sensors characterized by σp = 2 [m] [18];
σθ = 0.05 [rad] [19]; if not differently specified, σr = 0.1
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Fig. 1: Absolute positions for a formation of N = 9 robots, σr = 0.1
[m] and σδ = 0.03 [rad]. The black dashed line highlights the shape
of the real formation as well as the communication graph.

[m] and σδ = 0.03 [rad]. However, due to their variability,
the algorithm is tested for different values of σr and σδ .

A. Performance Measures
Here we introduce some performance measures used in the

following sections. In Section V-B, the estimated positions
are compared with the ground truth, i.e., the true positions
p, in terms of Mean Squared Error (MSE) defined as

MSE(p̂,p) = E
[
‖p̂−p‖2] , (14)

where p̂ denotes the generic vector of positions estimates. We
denote with xctr., yctr., x̂ctr., ŷctr. the centroids of the true and
of the estimated x and y coordinates, respectively. Moreover,
it is convenient to define, for the x coordinate,

∆xi := xi− xctr., ∆x̂i := x̂i− x̂ctr., ∆xctr. := x̂ctr.− xctr. ,

and similarly ∆yi, ∆ŷi and ∆yctr. for the y coordinate. Then,
by recalling the fact that

N

∑
i=1

∆xi =
N

∑
i=1

∆yi =
N

∑
i=1

∆x̂i =
N

∑
i=1

∆ŷi = 0 .

after some algebraic manipulations, it is possible to see that
MSE(p̂,p) = MSECtr.+MSERel.Disp. , where

MSECtr. := E
[
∆x2

ctr.+∆y2
ctr.
]
=

σ2
p

N
N→∞−→ 0 , (15a)

MSERel.Disp. := E

[
N

∑
i=1

(∆x̂i−∆xi)
2 +(∆ŷi−∆yi)

2

]
, (15b)

represent the MSE of the centroids, which scales with N, and
of the relative displacement from the centroid, respectively.
In Section V-C, we compare, in log-scale, the estimates of
the a-GL algorithm with the steady state estimate obtained
with the LS centralized algorithm, i.e.,

log‖p̂(t)− p̂LS‖. (16)

From (13), we expect p̂(t) to exponentially converge to p̂LS.

Number of Nodes
0 200 400 600 800

M
S
E

0

0.1

0.2

0.3

0.4
Absolute Positions MSE

MSE eq:(15)
MSECtr: eq:(16a)
MSERel:Disp: eq:(16b)

Fig. 2: Absolute positions MSE, computed via Monte Carlo simu-
lations, as function of N for σr = 0.1 [m] and σδ = 0.03 [rad].

Remark V.1 (Numeric MSE). Observe that the theoretic
MSE cannot be exactly computed. In the following, we plot
the numeric MSE computed via Monte Carlo simulations.
Remark V.2 (Dependence between σr and σδ ). In the
following we test the proposed algorithm as a function of
σr and σδ . We vary only σr since it is assumed σδ =
atan2(σr,

4
3 ). This lets us approximately draw samples in

a ball centered in the true positions.

B. Steady State Analysis
Here, we analyze the steady state behavior of the a-GL

algorithm as function of N, σr and σδ . Figure 1 shows the
GPS measurements pGPS, the a-GL estimates p̂ ≡ p̂LS and
the minimizer of the log-likelihood p̂ML, respectively. Due to
the many local minima characterizing the ML problem, p̂ML

is computed by exhaustive search around p. From the plot,
it can be seen how, thanks to the additional relative informa-
tion, the estimates outperforms the GPS measurements.
Figure 2, for increasing N, shows the behavior of the MSE
of Eq. (14) and of its components MSECtr. and MSERel.Disp.
of Eqs. (15a)–(15b), respectively. As expected, MSECtr.→ 0
for N→ ∞, while MSERel.Disp. remains almost constant and
comparable to σ2

r . It is clear that two are the main sources
of error: one depending on the relative information, which
lets to reconstruct the shape of the formation with an error
comparable to that of the relative measurements. The other
related to the absolute position reconstruction, obtained from
the GPS information, which for small number of agents is
the greater source of error, but improves with the number of
robots as 1/N. Observe that, when only a subset of N̄ < N
nodes is equipped with a GPS the error scales as 1/N̄.
Figure 3 shows the MSE for increasing σr. The plot shows in
red the behavior of the a-GL algorithm and the ML estimator
in green. Moreover, some limit behaviors are plotted: the
MSE of the GPS measurements (blue dashed line); the MSE
of the mean of the GPS measurements (black dashed line).
These, according to Lemma III.3, are due to the following
facts: (i) for increasing σr the relative sensors become useless
and the estimator “trusts” mainly the GPS; (ii) for small σr
the shape of the formation is “perfectly” known so, the
error is due to the displacement of the GPS mean from the
ground truth mean. Figure 3 shows how the a-GL algorithm
behaves similarly to the ML estimator for the whole range of

2531



<r [m]
0 0.5 1 1.5 2 2.5 3

M
S
E

0

1

2

3

4

5
Absolute Positions MSE

a-GL

min ML

GPS

mean(GPS)

typical <r
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ulations, as function of σr
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for N = 9. The
dark orange vertical dashed-dotted line highlights the behavior
corresponding to σr = 0.1 [m].

σr. Moreover, the difference is almost null for σr ∈ [0.1,0.5]
[m], which characterize practical operating sensors range.

C. Transient Analysis
Here we analyze the robustness of our algorithm. At each

iteration, a node, randomly chosen, wakes up, updates its
state and communicates its estimate to j∈Ni. We assume in-
dependent communication links between neighboring nodes,
each of them characterized by a certain failure probability.
Figure 4 plots the error in (16) for different percentages
of packet losses. As expected, the higher the losses the
slower the convergence. Note that, in a real set-up, different
nodes could wake up and update their estimates at the same
time. This could increase the probability of communication
collision but, at the same time, speed up the convergence rate.

VI. CONCLUSIONS AND FUTURE WORK
In this work we considered the problem of absolute

position reconstruction of a multi-robot formation assuming
each agent is endowed with noisy GPS and compass modules
and finer relative range and bearing sensors. We presented
a fast, robust, distributed and asynchronous LLS algorithm,
which, combining absolute and relative information to re-
construct the global formation, solves for an approximation
of the corresponding ML estimation problem. Exhaustive
simulations show how, for sufficiently small relative errors,
the approximated solution behaves like the ML estimator.
Future avenues, regards the investigation of the impact of the
formation shape and of the communication graph on the rel-
ative formation reconstruction. Moreover, solutions to better
estimate the robots absolute rotations will be investigated.
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