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Abstract— In this paper we consider the problem of designing
coding and decoding schemes for linear control design of a
scalar unstable stochastic linear system in the presence of
a wireless communication channel between the sensor and
the estimator. In particular, we consider a communication
channel which is prone to packet loss and includes quantization
noise due to its limited capacity. We first study the case
of perfect channel feedback, where the transmitter is aware
of the quantization noise and the packet loss history of the
channel. We show that in this case, the optimal strategy among
all possible linear encoders corresponds to the transmission
of the Kalman filter innovation (the difference between the
filtered state estimate at the transmitter and the predicted
state estimate at the receiver) similarly to the differential
pulse-code modulation (DPCM). Although the critical Signal-
to-Quantization Noise Ratio (SQNR) required for stabilizing
the system is the same for innovation forwarding as well as
measurement forwarding at the transmitter, the latter is strictly
suboptimal in terms of control performance. For the case
of imperfect feedback, we assume that the channel feedback
or acknowledgement is randomly lost with a certain erasure
probability, rendering the transmitter ignorant of the control
action taken by the receiver and subsequently applied to the
plant. We propose several heuristic strategies for a suboptimal
Kalman filter design at the transmitter based on estimation of
the channel feedback status and compare their performances
via numerical simulation studies.

I. INTRODUCTION

The interplay between control stability and communication
channels non-idealities has attracted considerable attention
in past decade, mainly driven by the success of wireless
communication and its penetration into automation and con-
trol applications. From a theoretical perspective, we have
witnessed the convergence of control theory, communica-
tion theory and information theory which have obtained
remarkable and interesting results in terms of the ultimate
performance limitations which take into account both the
dynamical systems characteristic, typically their unstable
eigenvalues and non-minimum phase zeros, and the channel
characteristic, typically its capacity [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10].

Nonetheless, there are still important open questions that
need to be answered. For example most of the results
are obtained for scenarios in which the transmitter has
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full knowledge of what happened over the channel in the
past (perfect channel feedback), which guarantees several
separation principles both in terms of controller/observer
design and of source/channel coding, see e.g. [11] for early
references. Differently if the channel feedback is not present
or it is “imperfect”, very few results are available and mainly
based on heuristics [12], [13], [14], [15], [16]. Another
difficulty raises when both packet loss and quantization are
considered simultaneously. In fact, if these two limitations
are considered separately, the resulting optimal strategies can
be quite different. For example, in a scenario with packet loss
only, Gupta et al. [17] showed that the optimal strategy is to
sent the estimate of the state over the channel, which does
not even require channel feedback to the transmitter and it is
therefore quite attractive. Differently, if only rate limitation,
i.e. the maximum number of symbols that can be transmitted
per unit of time, is considered, then differential coding
results to be the optimal strategy as in differential pulse-code
modulation [18]. Obviously, this strategy is rather different
from the one that transmits the complete state estimate.
Recently, in [19] we have shown that a strategy inspired by
DPCM, is optimal in the context of remote estimation when
considering both packet loss and quantization limitations for
a scalar stable system when full channel feedback is present.
However, the optimal strategy in the presence of imperfect
channel feedback remains elusive and only sensible heuristic
have been proposed in [19]. In the context of closed loop
unstable control system, simultaneous analysis of packet loss
and quantization has been studied in [20] assuming that the
transmitter simply forwards a quantized version of the raw
measurement.

In this work we extend the results of [19] and [20] by
considering the possibility to pre-process the raw measure-
ment at the transmitter. We show that the optimal strategy
when full channel feedback is available at the transmitter
is to send the difference from the estimated state at the
transmitter and the predicted state at the receiver as in [19]
and to build a Kalman filter and a state feedback with
constant gain at the receiver as in [20]. However, although the
performance is improved as compared to strategy proposed in
[20], the stability region is the same. In the imperfect channel
scenario, we propose a number of heuristics similarly to
those proposed in [19]. However, differently from remote
estimation, in closed loop systems the effect of packet loss
between the transmitter and the controller appears implicitly
in the measurements observed at the transmitter even in
the absence of any channel feedback. As so, we propose
an on-line strategy to estimate whether a packet has been



lost or received in the same spirit of [16] and we use it
to send a differential signal, which is observed to provide
better performance over the other strategies in extensive
simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we provide the system model of the
networked control system under consideration along with the
LQG problem formulation.

A. Plant Model

We consider a discrete-time linear scalar time-invariant
unstable plant as given below:

xt+1 = axt + but + wt
yt = cxt + vt

(1)

where xt is the scalar state, ut is the scalar control input, and
yt is the scalar measurement or plant output. wt, vt are also
scalar process and measurement noise processes respectively,
independent and identically Gaussian distributed with zero
mean and variances σ2

w, and σ2
v , respectively. We make the

usual assumption that wt, vt, x0 are mutually independent.
Finally, a, b and c are the state, input and output coefficients,
respectively. In our networked control system model, a sensor
senses the plant output yt and transmits a suitable signal st
after some pre-processing to a remote estimator/controller
over a communication channel. We restrict st to be a causal
linear function of the measurements Yt , {y0, y1, . . . , yt}.
The remote estimator/controller block constructs a state esti-
mate and design a linear feedback controller which generates
the control input ut to be fed back to the plant, see Figure
1. The objective of the control design problem is to find
optimal {st} and {ut} such that the average cost J =
limT→∞

1
T

∑T
t=0 E[y2

t ] is (finite and) minimized.

B. Communication channel

We assume that the channel between the sensor (which
senses the plant output) and the remote estimator/controller
is subject to both bandwidth constraints and packet loss.
Thus, the signal transmitted from the sensor is quantized
by a quantizer of fixed but sufficiently high rate to produce
a quantized signal sqt . Under a fine quantization assumption,
it has been established by multiple authors including our
previous work [19] that the error due to quantization can
be represented as an additive white Gaussian noise (AWGN)
which is also independent of the input signal, with a variance
that is proportional to the variance of the input signal st.
Thus, the quantized signal can be written as sqt = st + nt,
where nt is an additive white Gaussian noise (AWGN) with
zero mean and variance E[s2t ]

Λ (note also that E[st] = 0),
where Λ is known as the Signal-to-Quantization Noise Ratio
(SQNR).

Remark 1: The validity of the additive quantization noise
model for high rate uniform scalar quantization has been
rigorously shown in [21] for continuous input densities, and
see also [22] for similar studies. It has been however shown
in these papers as well as many other recent literature such as

in [23] that although in principle only high rate quantization
theory justifies such an additive white quantization noise
model, in practice this model holds as a very good approxi-
mation for moderate rate quantization. If fact, it was shown
in [19] via numerical simulations that, a uniform scalar
quantizer with only 3-4 bits of quantization per sample used
to quantize the signal st provides results that are sufficiently
close to the theoretical values based on the additive noise
model proposed in this work. Note that in a wireless local
area network (WLAN) with orders of megabits per second
data rates (even when shared amongst multiple links), it is not
unreasonable to expect 3-4 bits per sample with a sampling
rate of say 0.1 MHz which is likely to be sufficient for
most physical dynamical systems. Thus, this additive white
quantization noise model is also suitable for use in practical
implementation of estimation over lossy wireless links.

The communication channel is also subject to a packet loss
process γt ∈ {0, 1}, which is modelled as a independent
and identically distributed (i.i.d.) Bernoulli process with
P (γt = 0) = εγ , which is known as the packet loss
probability. When γt = 1, the receiver receives sqt perfectly.
But when γt = 0, the information is lost and the receiver
does not receive anything. We assume that the receiver sends
a packet acknowledgement signal ACK/NACK back to the
transmitter to indicate whether it has received the packet.
In the case of full channel feedback, the transmitter has
exact knowledge of the packet loss sequence {γt}, whereas
in the case of imperfect channel feedback, the ACK/NACK
packet can also be lost randomly according to another i.i.d.
Bernoulli erasure process νt, which is independent of γt.
When νt = 1, the transmitter knows the exact value of γt,
whereas when νt = 0, the transmitter does not know γt. We
also denote P (νt = 0) = εν . It is assumed that when the
ACK/NACK packet is received, it is decoded correctly, as
a 1 bit information can be easily coded with strong error
correcting codes for reliable decoding.

The feedback control channel between the receiver (also
called the remote estimator/controller) is assumed to be
perfect with no delay, packet loss or quantization related
losses.

C. Remote estimator/controller

The remote estimator receives the intermittent sequence
Zt , {z0, z1, . . . , zt}, where zt = γt(st + nt) and has
to produce a control input ut. We shall restrict ourselves
to linear strategies. In the forthcoming section we shall
see that under perfect channel feedback (i.e. when the
transmitter knows the loss sequence Γt , {γ0, γ1, . . . , γt}),
the optimal strategy will be the cascade of a constant gain
state estimator followed by a constant gain (estimated) state
feedback controller. This motivates us to consider, also when
no channel feedback is present, a similar constant gain
“estimator-controller” structure.
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Fig. 1. General scheme of the control system under communication
constraints. The sequence γt is fed back to the coder only when channel
feedback is available.

III. OPTIMALITY OF INNOVATION FORWARDING WITH
FULL CHANNEL FEEDBACK

We now consider a general linear coding-decoding-
controller scheme as follows:

1) a linear coding mechanism produces the signal

st := Lγ (Yt,Ut−1,Zt−1,Γt−1) (2)

where Lγ (Yt,Ut−1,Zt−1,Γt−1) is, conditionally on
the packet loss sequence γt−1, ..., γ0, a linear operator
of its arguments yt, yt−1, .., y0 (the samples to be
encoded), ut−1, .., u0 (the past control signal, which
can be reconstructed at the transmitter side if channel
feedback is available) and zt−1, .., z0 (the past received
signals).

2) The signal st is sent through a lossy and noisy channel
(see Section II-B) and produces the received signal zt
which can be modeled as

zt = γt(st + nt) (3)

where nt is a white noise signal with variance propor-
tional to the variance of st, i.e. V ar{nt} = V ar{st}

Λ
and γt is a binary random variable which models the
loss events.

3) The controller uses the received signals zt to build
the control action at time t as a (conditionally on the
packet loss sequence γt, ..., γ0) linear function Cγ of
the past received signals zτ , τ ∈ [0, t] as well as past
control signals uτ , τ ∈ [0, t)

ut = Cγ (Zt,Ut−1,Γt) (4)

Note that, in principle, the conditional linear mappings
Lγ and Cγ are time-varying. The result of this section is
summarized in the next theorem. The remaining part of the
section proves the result. For convenience of notation we
define

ITxt := {Yt,Zt,Ut−1,Γt−1} IRxt := {Zt,Ut−1,Γt}

which are, respectively, the information set at the transmitter
(ITxt ) and receiver (IRxt ). Denote the state estimates at the
transmitter and receiver as x̂txt|t = E[xt|ITxt ] and x̄t|t =

E[xt|IRxt ].
Theorem 1: Consider the linear model (1) controlled

through a lossy and SNR limited channel (3) using a linear
encoding as in (2) and linear controller as in (4). The optimal
linear quadratic strategy(

C∗γ ,L∗γ
)

:= arg min
Cγ ,Lγ

lim
T→∞

1

T

T∑
t=0

E
[
y2
t

]
(5)

satisfies the following:

st = L∗γ
(
ITxt

)
= x̂txt|t − x̄t|t−1 (6)

and
ut = C∗γ

(
IRxt

)
= −a

b
x̄t|t (7)

The state estimator at the receiver is given by

x̄t+1|k = ax̄t|t + but = 0
x̄t+1|t+1 = x̄t+1|t + kzt+1 = kzt+1

(8)

with k = 1
1+ 1

Λ

.
Proof:

First of all we consider a finite horizon version of the
optimal control problem (5)

JoptT (x0) = min
Cγ ,Lγ

JT (x0)

JT (x0) :=
∑Tx
t=0 Eγ [y2

t ]
(9)

Let us define W := c2 and the cost-to-go

Vt(xt) := min
ut=Cγ(IRxt )

Gt(xt, ut),

Gt(xt, ut) = x2
tW + Eγ

[
Vt+1(xt+1) | IRxt

] (10)

where Eγ denotes the expectation with respect to the se-
quence {γt}. It is clear that V0(x0) = Jopt0 (x0). We shall
now assume that the encoder strategy Lγ is fixed and is
equal to (6), i.e. st = L∗γ(ITxt ) = x̂txt|t − x̄t|t−1. It has
been shown in [19] that this is the optimal encoding strategy
to the purpose of estimating the state at the receiver, i.e. it
minimizes, among all possible linear encodings, the variance
of the state estimation error at the receiver:

pt|t := V ar{xt − x̄t|t}

Let us denote with p∗t|t the optimal value of the estimation
error variance achieved with the optimal encoding (6). Sim-
ilarly we shall use the superscript ∗ whenever the estimation
strategy has been fixed equal to (6). It is possible to show
that p∗t|t does not depend on the input sequence ut. This
is a straightforward extension of the computations in [19]
(see e.g. the equation below (15) in [19]) to account for the
presence of measurable inputs1 in the state update equation
(1). Having now fixed this encoding strategy L∗γ , we define

V ∗t (xt) := min
ut=Cγ(IRxt )

G∗t (xt, ut),

G∗t (xt, ut) = x2
tW + E

[
V ∗t+1(xt+1) | IRxt

] (11)

1Note that, under the assumption that channel feedback is available, the
input ut is known both at the receiver as well as at the transmitter side.



so that

V ∗0 (x0) = J∗T (x0) = min
Cγ

JT (x0) s.t. L = L∗ (12)

Using Lemma 5.1 in [5] one can prove that

G∗t (xt, ut) = x2
tW + E

[
V ∗t+1(xt+1) | IRxt

]
= x2

tW +WQ+
E[c∗t+1 | IRxt ]+
+(ax̄t|t + but)

2W 2 + a2Wp∗t|t

where

c∗T = 0 c∗t = W (p∗t|t +Q) + E[c∗t+1 | IRxt ]

Clearly, using the fact that p∗t|t does not depend on
{uτ}τ∈[0,T ], the minimum of G∗t (xt, ut) is achieved for
ut = −ab x̄t|t = lx̄t|t, which takes the form of a dead beat
controller on the estimated state. The cost-to-go takes the
form:

V ∗t (xt) = x2
tW + c∗t (13)

We shall now show that when a different encoding strategy
is used the value of the cost-to-go is always greater or
equal than V ∗t (xt) in (13). In order to do so we proceed
by induction. First observe that

VT (xT ) = V ∗T (xT ) = x2
TW

and

GT−1(xT−1) = x2
T−1W +WQ+ a2WpT−1|T−1

+(ax̄T−1|T−1 + buT−1)2W 2

Since, regardless of the choice of the input signal
{uτ}τ∈[0,T ], pT−1|T−1 ≤ p∗T−1|T−1, it follows that

G∗T−1(xT−1, uT−1) ≤ GT−1(xT−1, uT−1)

and thus

V ∗T−1(xT−1) ≤ VT−1(xT−1)

Now, assume V ∗t+1(xt+1) ≤ Vt+1(xt+1) holds true for t <
T − 1. From (10) and (11) it follows that

G∗t (xt, ut) ≤ Gt(xt, ut)

and thus, minimizing over uk we have

V ∗t (xt) ≤ Vt(xt)

This concludes the inductive argument and proves that

V ∗0 (x0) ≤ V0(x0) ∀ Lγ

thus proving that L∗γ is the optimal strategy.
We show now that the state estimator at the receiver x̄rxt|t

can be found via a constant gain recursion of the form

x̄t+1|t+1 = ax̄t|t + but + kzt+1 (14)

Following the derivation in [19] (see in particular equation
(12) in [19]) it is simple to show that x̄k|k satisfies:

x̄t+t|t+t = Eγ [xt+1|IRxt+1]
= Eγ [xt+1|IRxt , ut] + Eγ [xt+1|zt+1]
= x̄t+1|t + Eγ [xt+1|zt+1]

= ax̄t|t + but +
Eγ [xt+1st+1]

Eγ [s2t+1](1+ 1
Λ )
zt+1

= ax̄t|t + but + 1
1+ 1

Λ

zt+1

= ax̄t|t + but + kzt+1

(15)

which shows that satisfies a recursion of the form (14) with
a constant gain k = 1

1+ 1
Λ

.
It follows that the optimal encoding-decoding and control

strategies in the infinite horizon case (T → ∞) has exactly
the same structure with l = −ab and k = 1

1+ 1
Λ

. This
concludes the proof.

IV. OPTIMAL LQG COST WITH FULL CHANNEL
FEEDBACK: INNOVATION FORWARDING VS.

MEASUREMENT FORWARDING

As we have seen in the previous section the optimal
linear encoding/decoding/control strategy in the full channel
feedback case is obtained by sending the state innovation
st := E[xt|ITxt ]−E[xt|IRxt−1] = x̂txt|t−x̄t|t−1 and performing
a constant gain state feedback control ut = −ab x̄t|t. The
estimation error x̃txt|t = xt − x̂txt|t is Gaussian distributed
with zero-mean and a steady-state variance ptx∞. It can be
shown from standard Kalman filter steady state analysis that
ptx∞ =

σ2
v p̄
tx
∞

p̄tx∞+σ2
v

where p̄tx∞ is the steady state prediction error
covariance at the transmitter and can be computed as a
solution to an algebraic Riccati equation as

p̄tx∞ =
1

2
(σ2
v(a2 − 1) + σ2

w

+
√

(σ2
v(a2 − 1) + σ2

w)2 + 4σ2
vσ

2
w) (16)

For ease of analysis, we henceforth assume that the trans-
mitter Kalman filter has reached its steady state. When the
transmitter has full channel feedback, it can also reconstruct
a copy of the receiver constant gain Kalman filter (after
receiving γt via the ACK/NACK packet), which is given by
(8). When the optimal control ut = −ab x̄t|t is used the state
update takes the form:

x̄t|t = kγt(x̂
tx
t|t − x̄t|t−1 + nt)

x̄t+1|t = ax̄t|t + but = 0 (17)

where x̄t+1|t, x̄t|t are the receiver predicted and filtered state
estimates, respectively, and k is the constant gain of the
optimal linear filter employed at the receiver. Note that the
transmitter sends the innovation signal st = x̂txt|t − x̄t|t−1 =

x̃t − x̃txt|t after quantization, where x̃t = xt − x̄t|t−1 is the
receiver prediction error. As explained earlier, the effect of
quantization is modelled (under high rate quantization) as
an additive zero-mean white Gaussian noise nt with variance
σ2
n = E[s2

t ]/Λ. It can be shown following the analysis in [19]



that E[s2
t ] = E[x̃2

t ]−ptx∞. For the subsequent analysis, without
loss of generality, we assume b = 1, c = 1 to simplify
the expressions. The receiver prediction error follows the
dynamics

x̃t+1 = a(1− kγt)x̃t + kaγtx̃
tx
t|t + (wt − kaγtnt) (18)

Denoting E[x̃2
t ] = p one can easily see that σ2

n =
(p−ptx∞)

Λ .
Note that here the expectation is taken over the noise
processes wt, nt and the packet loss sequence Γt. Since
yt = xt + vt and x̃t := xt− x̄t|t−1 = xt, it follows also that
the optimal control cost is given by J = limt→∞ E[(x̃t)

2] =
p+ σ2

v .
Next, we can derive the modified algebraic Riccati equa-

tion (MARE) satisfied by p, given as follows:

p = (1− εγ)a2(1− k)2p+ εγa
2p+ σ2

w

+ (1− εγ)k2(ptx∞ + σ2
n)a2

+ 2(1− εγ)k(1− k)a2ptx∞ (19)

where we have used the fact that E[x̃txt|tx̃t] = ptx∞. By
equating the corresponding matrix elements of the left hand
side with the right hand side of (19), we obtain (after some
algebraic manipulations)

p =
σ2
w + a2k(1− εγ)ptx∞

(
2− k(1 + 1

Λ )
)[

1− εγa2 − a2(1− εγ)
(
(1− k)2 + k2

Λ

)] (20)

We can now compute the optimal cost for the full channel
feedback case.

Theorem 2: With perfect causal knowledge of packet loss
sequence Γt at the transmitter, the optimal controller gain and
the optimal filter gain at the receiver are given by lopt = −a
(dead-beat control) and kopt = 1

1+1/Λ The corresponding
steady state control cost limt→∞ E[y2

t ] is given by Joptif =

popt + σ2
v , where

popt =
a2(1− εγ)

ptx∞
1+1/Λ + σ2

w

(1− εγa2)− a2(1−εγ)
Λ+1

(21)

which is finite under the assumption that SQNR Λ is larger
than a critical threshold Λopt = a2−1

1−εγa2 with εγ < 1
a2 .

It is instructive to compare this result against the corre-
sponding analysis for measurement forwarding performed in
[24], where the sensor simply forwards each measurement
yt as a packet, and hence does not need to know packet
acknowledgement process. In this case, it was shown in [24]
that the optimal controller gain is the sane dead-beat control
lopt = −a, and the critical SQNR threshold for stabilization
is also Λopt = a2−1

1−εγa2 with εγ < 1
a2 ., but the optimal control

cost is given by Joptmf = p̄+σ2
v where p̄ satisfies the following

quadratic equation

p̄ = a2p̄+ σ2
w −

(1− εγ)

1 + 1/Λ

p̄

p̄+ σ2
v

(22)

In this case, the optimal constant gain for the receiver
filter is given by k̄ = 1

1+1/Λ
p̄

p̄+σ2
v

. Further details can be
found in [24]. One can therefore draw the conclusion that
with innovation forwarding, one cannot gain in terms of

the critical SQNR threshold, in that it does not enlarge the
stability margin. However, the optimal constant gain for the
receiver filter is given by a simple expression, which is
also the same for innovation forwarding with full channel
feedback for remote estimation as studied in [19]. This is
expected because the optimal control design with innovation
forwarding also employs the same constant gain receiver
filter as remote estimation with innovation forwarding, as
explained in Section III, where we established the optimality
of innovation forwarding at the transmitter when restricted
to linear encoding.

The optimality of innovation forwarding is reflected not
in the enlargement of stability margin, but in terms of
performance, that is, with a reduced control cost Joptif which
is smaller than Joptmf , as guaranteed by Theorem 1.

In the remaining part of the Section we provide an analysis
of the difference Joptmf −J

opt
if which also reveals that it is and

increasing function of the packet loss probability εγ .
Let us first introduce a few notations. Define bp = σ2

v(a2−
1) + σ2

w, cp = σ2
wσ

2
v , and δp =

a2(1−εγ)

1+ 1
Λ

− (a2 − 1). Note

that when Λ > Λopt = a2−1
1−εγa2 with εγ < 1

a2 ., δp > 0. Based
on the above notation, it is easy to show that p̄, as a solution
of (22) satisfies p̄ = 1

2δp
(bp +

√
b2p + 4cpδp), whereas popt

from (21) satisfies

popt =
1

δp

(
(δp + a2 − 1)

σ2
v p̄
tx
∞

σ2
v + p̄tx∞

+ σ2
w

)
(23)

where recall that p̄tx∞ is the steady-state transmitter prediction
error variance, given by p̄tx∞ = 1

2 (bp +
√

(b2p + 4cp)). We
also have the difference between the optimal control cost
with measurement forwarding and innovation forwarding as
Joptmf−J

opt
if , given by p̄−popt = p̃diff . Using the expressions

for p̄ and popt above, one can show the following:

dp̃diff
dδp

=
1

2δ2
p

[
−bp + 2(σ2

w + (a2 − 1)ptx∞

−
b2p + 2cpδp√
b2p + 4cpδp


<

1

2δ2
p

[
−bp + 2(σ2

w + (a2 − 1)σ2
v

−
b2p + 2cpδp√
b2p + 4cpδp


=

1

2δ2
p

bp − b2p + 2cpδp√
b2p + 4cpδp

 < 0 (24)

where the first inequality follows from the fact that ptx∞ =
σ2
v p̄
tx
∞

σ2
v+p̄tx∞

< σ2
v , and the second inequality follows from simple

algebra, and we make use of the definition of bp. Recall
that δp > 0 when Λ > Λopt = a2−1

1−εγa2 with εγ < 1
a2 .

It is also obvious that δp is maximum when εγ = 0 (no
packet loss) and Λ = ∞ (no quantization noise). Therefore
the maximum value of δp = 1. It follows from (24) that



p̃diff is a decreasing function of δp, and attains its minimum
value when δp = 1. This minimum value is given by (from
simple substitution in the expressions of p̄ and popt above)
p̄tx∞ − (a2ptx∞ + σ2

w) = 0, since p̄tx∞, p
tx
∞ are the transmitter

steady-state prediction error and filtering error variances,
respectively. Thus we have the following result.

Theorem 3: The difference between the optimal control
cost with measurement forwarding and innovation forward-
ing with perfect acknowledgements, Joptmf − Joptif , is an

increasing function of δp =
a2(1−εγ)

1+ 1
Λ

− (a2 − 1) as long

as Λ > a2−1
1−εγa2 with εγ < 1

a2 .. If the SQNR Λ > a2−1
1−εγa2 is

kept fixed, then Joptmf − J
opt
if is an increasing function of the

packet loss probability εγ . In addition, Joptmf = Joptif precisely
when δp = 1, or when there is no packet loss and the SQNR
is infinity so that there is no quantization noise.
The above theorem clearly quantifies the difference in the
control performance between the measurement forwarding
and the innovation forwarding strategies.

V. ENCODER-DECODER DESIGN WITH IMPERFECT
CHANNEL FEEDBACK

In this section, we discuss a few suboptimal strategies for
encoder-decoder design when the packet acknowledgements
are erased randomly according to a Bernoulli process νt ∈
{0, 1} where P (νt = 0) = εν . Hence, the transmitter
receives γ̂t = γt when νt = 1, but does not know γt when
νt = 0. We focus on the innovation forwarding scenario since
this is the optimal strategy with perfect channel feedback.
However, since the transmitter does not know γt whenever
νt = 0, it also does not know the control input ut generated
by the controller at the receiver end. Therefore, we focus
on three different strategies for estimating γt at the trans-
mitter whenever νt = 0, see Figure 2. Below, we describe
these three strategies without providing a detailed theoretical
analysis, which is the focus of ongoing work. The first two
strategies do not use the output yt to estimate γt, while the
third one explicitly use it, resulting in a nonlinear scheme.
In all of these strategies, we only design the encoder. The
decoder and the controller are left as the constant gain filter
with kopt and lopt, respectively. In what follows, we assume
b = c = 1 for simplicity, as before.

Randomized policy

In this case, the transmitter replaces γt by γ̂t whenever
νt = 0 by the following rule: P (γ̂t = 1|νt = 0) = β
and P (γ̂t = 0|νt = 0) = 1 − β, where 0 ≤ β ≤ 1.
The value of β is optimized by exhaustive search such that
J = limt→∞ E(y2

t ) is minimized. Of course, γ̂t = γt when
νt = 1.

Soft estimation

In this case, whenever νt = 0, γt is replaced by E[γt] =
εγ as suggested in [15], and when νt = 1, γ̂t = γt, as
before. Note that for both the Randomized policy and Soft
estimation policy, the control cost can be obtained via an
average covariance analysis of the matrix P̄ = E[ξtξ

′
t], where

Quan%zer)

Plant)

Linear)
Controller)

Linear)
Encoder)Es%mator)

Fig. 2. Control scheme with imperfect feedback: when νt = 0 an
estimate of the loss sequence is produced by the “Estimator’ block. Three
strategies are considered: (1) Randomized policy P [γ̂t = 1|νt = 0] = β,
(2) Soft estimation: γ̂t = E[γt] = εγ , (3) Non-linear estimator: γ̂t =
argminγ∈{0,1}(yt+1 − ŷt+1(γ))2.

ξt = [xtx̂
tx
t|t−1]′, and the control cost is given by J = E[x2

t ]+

σ2
v = p̄11 + σ2

v , with p̄11 being the first diagonal element of
P̄ . We leave this analysis and corresponding stability margin
calculations for future work.

Nonlinear encoder design

In this case, we estimate γt from the observed measure-
ment yt+1 at the transmitter by a simple distance-based rule,
whenever νt = 0. Due to the dead beat controller, we have
the control input ut = −ax̄t|t = −akoptγt(x̂txt|t + nt). Then
one can predict a value of yt+1 as a function of γt as
yt+1(γt) = ax̂txt|t − akoptγt(x̂

tx
t|t + nt). We estimate γt as

γ̂t = arg minγ∈{0,1}(yt+1 − ŷt+1(γ))2, similarly to [16].
Clearly, in this case, since γ̂t is a nonlinear function of yt+1,
the encoder implements a nonlinear filter at the transmitter,
implying that a steady state analysis of the feedback control
performance will be difficult and indeed we leave it for
ongoing work.

VI. NUMERICAL RESULTS

In this section we present some numerical results on a
comparative study of the various encoder-decoder design
strategies discussed in the earlier sections. In particular, we
consider a linear dynamical system with a = 1.25, b = c = 1
and σ2

w = 0.02, σ2
v = 0.2 and feedback erasure probability

εν = 0.2. We vary the forward channel (between sensor and
decoder) packet loss probability between 0.1 and 0.4, while
the SQNR is chosen to be Λ(εγ) = 1.2Λopt where Λopt =
a2−1

1−εγa2 . Figure 3 illustrates the control cost performance of
the various encoding-decoding strategies discussed above for
perfect and imperfect channel feedback with measurement
and innovations forwarding. Note that for measurement for-
warding at the transmitter, the channel feedback is irrelevant
to the transmitter, whereas the strategy of innovation for-
warding is optimal when there is perfect channel feedback.
It is clearly seen from the graph that innovation forwarding
does substantially better than measurement forwarding for all
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Fig. 3. Control cost comparison for various encoding-decoding strategies
with measurement and innovation forwarding

packet loss probabilities. Amongst the suboptimal strategies
for encoder design with imperfect channel feedback, it can be
seen that the randomized policy performs the worst, whereas
the soft γ estimation and the nonlinear encoding strategies
perform much better, with the nonlinear encoding strategy
performing the best at lower packet loss probabilities. When
the packet loss probability becomes reasonably high, the
suboptimal schemes can perform poorly. It can also be seen
that the randomized policy performs even poorer than mea-
surement forwarding, implying that the randomized policy
is not very useful when the packet loss probability becomes
higher.

VII. CONCLUSIONS

In this paper, we considered an unstable scalar linear
dynamical system that operates over a channel that is prone
to packet loss as well as quantization noise. We show that
when there is perfect packet acknowledgement available
at the transmitter, the optimal linear encoding strategy at
the transmitter is to encode the innovations defined as the
difference between the transmitter pre-processing Kalman
filtered estimate and the receiver filter predicted estimate.
For this strategy, we also find the optimal controller and
the optimal constant gain receiver filter, which allows us to
characterize the steady-state control cost. We also provide
an analysis that quantitatively characterizes the difference
between the control costs obtained via measurement forward-
ing at the transmitter and the optimal innovation forwarding
strategy described above. For the case of imperfect channel
feedback, we propose three suboptimal encoding strategies
the performances of which are investigated via simulation
studies. Future work will investigate the extension of these
studies to the case of unstable vector systems and consider
further theoretical performance analysis of the suboptimal
strategies for the case of imperfect channel feedback.
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