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Abstract— In this paper we consider the problem of con-
trolling unstable stochastic linear systems in the presence of a
communication channel between the sensors and the actuators.
We propose an LQG architecture that separates the problem of
designing suitable regulators for controlling the plant, referred
to as Plant Encoder/Decoders, from the problem of designing
encoder/decoder for the communication channel. We provide a
mathematical model that takes into account the most important
features of today’s wireless communication protocols such as
quantization errors, limited channel capacity, decoding delay
and packet loss, while still being amenable to analytic treatment.
We then restrict our discussion to a special class of linear
plant encoder/decoders and to a channel with signal-to-noise
(SNR) limitations and packet loss only, and we derive stability
conditions and optimal parameters for the controller design in
the cheap-control setting. Through this analysis we are able to
recover several results available in the literature that treated
packet loss and quantization error separately.

I. INTRODUCTION

Traditionally control theory and communication theory
have been developed independently and have reached consid-
erable success in developing fundamental tools for designing
information technology systems. On one side, the major
objective of control theory was to develop tools to stabilize
unstable plants and optimize some performance metrics in
closed loop under the assumption that the communication
channel between sensors and controller and between con-
troller and plant were ideal, i.e. without distortion, packet
loss or delay. On the other side, the major objective of
communication theory was to develop tools to transmit
information from a stable source to a receiver though a
possibly noisy communication channel where the commu-
nication protocols had no feedback on the source. One of
the reasons for the success of these theories was that, in
many control applications, the effects of the communication
channel impairments was negligible as compared to the
effects of noise and uncertainty in the plants, while in many
communication applications the time dynamics of the source
statistics was slow as compared to the communication speed
of the protocols, so that the source could be safely assumed to
be stationary. With the advent of wireless communication, the
Internet and the need for high performance control systems,
this sharp separation between control and communication has
begun to be questioned and a growing body of literature
has appeared from both the communication and the control
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community, that tries to analyze the interaction between
control and communication.

One line of research has addressed the problem of sta-
bilization of an unstable plant through a rate-limited era-
sure channel where no performance index is considered
besides stability [11], [21], [9]. Another line of research
has applied information theoretic tools finding relationships
between feedback performance and channel capacity [10],
and showing that Shannon’s capacity is not sufficient to
characterize a communication channel from a control per-
spective [14]. Differently, other researchers have tried to
tackle the channel limitations by using analog models in
order to avoid the difficulties associated with explicit design
of encoder/decoder for digital transmission, and to optimize
some performance metrics among all possible stabilizing
controllers [5], [13], [18]. Along these lines, other groups
have modeled the limited capacity of the channel through
a constraint on the maximum signal-to-noise (SNR) ratio
and found fundamental limits that depend on the unstable
eigenvalues of the plant [2], [17], [3]. Finally, another well
explored approach is the analysis of control systems subject
to random packet loss [19], [6], [7], [16] under an LQG
framework.

The above cited works are just a partial overview of
the literature on control systems subject to communication
channel limits that is by no means complete. Indeed, the
current trend is to include multiple channel limitations into
the model, such as packet loss and quantization [22], [8],
which however results in complex optimization problems.

The objective of this work is twofold. The first objective
is to provide a more realistic model of a communication
channel that, while still being mathematically amenable to
analysis, includes packet loss, delay, SNR-limitations and
quantization distortion. The second objective is to propose an
LQG approach for the design of the control blocks in order
to include performance metrics besides stability of the closed
loop system. In fact, from a practical standpoint, stability is
not sufficient and additional performance criteria need to be
satisfied, such as in the LQG framework.

Although we introduce a very general architecture for
networked control systems, in this work we limit our analysis
and design to a simplified channel model that only includes
packet loss and SNR limitations, and to a special class
of linear controllers under the standard LQG cheap-control
setting. Nonetheless, we recover several results available in
the literature and find a stability condition that depends on
both the packet loss probability and the SNR of the channel.
This work extends to a multivariable setting some previous
results which were limited to scalar plants [12].



II. PROBLEM FORMULATION

We consider the problem of stabilizing a possibly unsta-
ble system across a communication channel. The plant is
modeled as a discrete-time linear time-invariant dynamical
system subject to additive measurement and process noise.
More specifically:

xt+1 = Axt +But + wt (1)
yt = Cxt + vt (2)

where x ∈ Rn, u ∈ Rp, y ∈ Rm, vt ∼ N (0, R), wt ∼
N (0, Q), x0 ∼ N (0, P0), and wt ⊥ vt. We also assume that
the pairs (A,B) and (A,Q) are controllable, the pair (A,C)
is observable, and R > 0.

Stabilization is a necessary requirement in any control
system, but in addition to that, often performance indices
need to be optimized in order to achieve an acceptable
behavior of the whole system. A typical choice is the steady
state performance in terms of a quadratic cost index as in the
linear-quadratic-gaussian (LQG) framework. More formally,
in the contest of finite horizon LQG control the cost function
is defined as:

J =
1

T

T∑
t=0

E[x>t Wxt + u>t Uut]

while in the infinite horizon LQG control it is given by:

J = lim
T→+∞

1

N
E

[
T∑
t=0

x>t Wxt + u>t Uut

]
= lim

t→+∞
E[x>t Wxt + u>t Uut] (3)

where the two limits coincide under customary ergodicity
assumptions.We also assume that the pair (A,W ) is observ-
able.

Typical choices for the matrices W,U are

W = CTC, U = ρI (4)

that, for ρ = 0, yield the so-called cheap control scenario, for
which J = limt→+∞ E[||yt||2] − trace(R) that correspond
to steady state output minus the measurement noise power.
Hence, for ease of notation, in the cheap control scenario we
define the cost function as J := E

[
‖yt‖2

]
.

The plant output yt is measured and possibly preprocessed
by a causal Coder/Estimator (COD) that sends data at across
a non-ideal communication channel. At the other end, a
causal Decoder/Controller (DEC) processes the data received
bt and computes the control input ut necessary to stabilize
the plant and optimize the performance index J . A pictorial
representation is given in top panel of Figure 1.

It is a standard practice to decouple the Coder/Decoder
design into two tiers: one associated to the plant (source) and
the other associated to the channel, as shown in the bottom
panel of Figure 1. The goal of the Plant Coder/Decoder
design is to stabilize the closed loop system and possibly to
optimize some additional performance index. These blocks
in control theory framework correspond to filters, estima-
tors, and controllers. Differently, the goal of the Channel
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Fig. 1. Scheme of control system across a communication channel: general
scheme (top), decoupled scheme (bottom).

Coder/Decoder design is to translate the signal st into a
signal at that is suitable for transmission over the commu-
nication channel, in such a way that the signal bt received
from the channel can be decoded into a signal ht that is as
close as possible to the original signal st, i.e. ht ≈ st.1

We observe that decoupling coding/decoding into Plant
Coding/Decoding and Channel Coding/Decoding may not
be the optimal strategy in the context of feedback systems
with unstable plants, as suggested by some recent work on
anytime capacity and coding/decoding for unstable plants
[14]. Nonetheless, we will stick to this approach since greatly
simplifies the overall design and is applicable to current
communication protocols.

III. CHANNEL CODING/DECODING MODELING

As mentioned above, the objective of traditional Channel
Coding and Decoding is transfer a (possibly continuous
valued) signal st across a noisy transmission channel and
reconstruct a signal ht at the receiver, possibly with some
delay τ , as closely as possible to original one, i.e. ht ≈ st−τ .

This is in general obtained via digital communication
techniques that require to (i) quantize the real signal st into
its quantized version sqt , (ii) encode it into a string of bits
at determined by the chosen modulation and coding (iii)
transmit this string across the channel and decode it into

1Note that, the meaning of Plant and Channel Coding/Decoding consid-
ered in this work is different from Source and Channel Coding/Decoding
considered in classical Information Theory, where the role of Source Coding
is to remove the correlation of the signal yt to reduce its bit rate, whereas
Channel coding adds controlled redundancy to the signal before transmission
over the channel to increase its robustness to transmit errors.



another string of bits bt, (iv) map these strings of bits into a
real number ht.

Remark 1 (Scalar output): For simplicity we shall re-
strict our attention to systems with scalar output. In fact,
if the output is not scalar, the issue of deciding how to
encode a vector signal with a finite number of bits is not
entirely trivial. Clearly different coding schemes would result
in different analog channel models. As such we defer these
issues to future work and consider only m = 1 from now on
in the paper.

The quantization noise nt = st − sqt accounts for the
distortion due to the quantization of the real-valued sig-
nal st before transmission. Under the assumption of fine
quantization, i.e., that the number of quantization levels is
sufficiently high, nt can be effectively modeled as a zero-
mean additive random process, with identically distributed
uncorrelated samples of power σ2

n = E
[
n2t
]
, which is also

uncorrelated with st. The number of quantization levels
also determines the information rate Rq of the quantized
signal, which is in turn related to the signal-to-quantization
noise ratio (SQNR), α = E

[
s2t
]
/σ2

n: the larger Rq , the
higher the SQNR. The maximum information rate that can
be reliably transferred through a communication channel is
upper limited by the Shannon capacity Rc of the channel,
so it must hold Rq < Rc. Accordingly, the SQNR cannot
be increased above a certain threshold α∗, which depends
on Rc, i.e. α < α∗(Rc). Therefore in our framework, the
Shannon Capacity Rc basically determines an upper bound
on the possible SQNR α.

The encoding of the quantized signal typically involves
two concatenated codes, an inner and an outer code for
forward error correction and detection of residual errors
(frame check) at the receiver, respectively. As a consequence
three scenarios are possible at the receiver: (i) the transmitted
string at is decoded correctly, i.e. bt = at, (ii) the decoded
string contains errors that are detected by the outer decoder,
which drops the message (erasure) (iii) the decoded string
contains errors that are not detected by the outer decoder,
which accepts a message bt 6= at. These events can be
modeled via the binary variables γt, νt ∈ {0, 1}, where
γt = 0 indicates that an erasure occurred, while γt = 1
denotes that the message was accepted by the receiver, which
means that it is either correct or affected by undetected
errors. The binary variable νt discriminates between these
two last events, so that (νt, γt) = (1, 1) means that an
undetected decoding error occurred, and (νt, γt) = (0, 1)
that no error occurred.

The probability of the erasure and undetected error events,
denoted by εe := P[γt = 0] and ε0 := P[νt = 1|γt =
1], respectively, depend on the forward error correction and
frame check schemes adopted. In case of undetected errors,
the difference between the reconstructed signal ht and the
quantized signal at the transmitter sqt , i.e. mt = ht − sqt ,
would typically be much larger than the quantization noise
nt. For the sake of completeness, we hence included it in
the proposed general channel model, though we observe that
redundancy codes are usually designed in order to guarantee

ε0 � εe, so that undetected error event is typically negligible
in modern communication systems. Finally, the decoding of
the string bt from past strings at requires some decoding
delay τ , therefore the reconstructed signal ht is related to
the transmitted signal st−τ .
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Fig. 2. Equivalent model of Channel COD/DEC using traditional codes

This mathematical modeling of a digital communication
channel is summarized in Fig. 2, and it is characterized by
the parameters ε0, εe, α, τ . These parameters are clearly de-
pendent, since, for example, reducing the erasure probability
εe requires to increase the delay τ or reduce the SQNR α.
A discussion about this dependence is beyond the scope of
this work and it is left for future work.

IV. LQG ARCHITECTURE

Based on the channel model described above, which is
independent of the control application, our goal is therefore
to optimally design the Plant Coding block Ft and the Plant
Decoding block Gt to minimize the performance cost J , and
gain insights in the role played by the channel parameters
(σ2, ε, τ) depicted in Figure 3 in this regard.

!"#$%&'()&

&

!"#$%&)*'&

&

!"#$%&

Fig. 3. General scheme of Networked Control System model with implicit
channel COD/DEC

The encoder and the decoder can be time-varying and
must be causal, i.e. depend only on the past information
set. We denote the history of a generic signal f up to time t
as f t = (ft, ft−1, . . . , f0). The information set available to
the coder always includes the plant outputs yt and the past
quantization errors nt−1. However, it may also include the
past channel erasure γt−1 in case of perfect channel feedback
from the receiver to the transmitter, which can be practically
implemented via a reliable ACK mechanism. Note that in
this scenario, if the plant decoder Gt is deterministic and



known to the plant coder Ft, then perfect channel feedback
implies that the plant coder can reconstruct the past plant
inputs ut−τ , expect in case of undetected errors. The two
scenarios (respectively, without and with channel feedback)
are summarized in the following equations:

st = Ft(yt, st−1, nt−1) (5)
st = Ft(yt, st−1, nt−1, γt−1) (6)

The information set of the decoder includes, besides its
past outputs ut−1, also the output from the channel decoder
ht and packet loss sequence γt, i.e.

ut = Gt(ht, γt, ut−1) (7)

Note that the decoding error events νt are not known to the
receiver nor to the transmitter.

In the framework developed above, the objective is to solve
the following optimization problem:

minFt,Gt J (8)

s.t.
E[s2t ]

E[n2t ]
≤ α (9)

This a formidable optimization problem since it poses only
mild conditions on the possible classes of control functions
F and G, which leads to a large design parameter space.
Most of the channel models and control architectures studied
in the context of NCS can be cast as a special case of the
optimization problem (8)-(9).

In general, the channel parameters (α, εe, τ) are assumed
to be given. Moreover, they are studied singularly. For exam-
ple, great attention has been given to lossy communication
where only the packet loss parameter ε is considered and
the SQNR constraint given in Eqn. (9) is neglected [19],
[15], [6], [7]. Another area of active research is the SQNR-
constrained control that corresponds to the problem where
the channel model includes only the quantization noise σ2

n

and the channel power constrain Eqn. (9) [2], [13], [17],
[18], [3]. Only recently, there is an attempt to consider
more realistic channel models, for instance by including both
packet loss and quantization distortion [22], [8].
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Fig. 4. Special scheme of Networked Control System for scalar output
plants

In this work we address the special case of the general
optimization problem (8)-(9) shown in Fig. 4. We consider a
channel model that includes simultaneously i.i.d packet loss,
quantization noise and a limited SQNR α, but assumes no
decoding delay and no undetected packet error, i.e.

τ = 0, P[νt = 1] = 0, P[γt = 0] = ε, σ2 = αE
[
s2t
]

(10)
Moreover, we restrict our design space to the Plant Decoding
block and we consider no Plant Coding, i.e.

st = Ft(yt, st−1) = yt (11)

Finally, we restrict the Plant Decoder to be obtained with the
cascade of a linear state estimator and a state feedback, i.e.,

ξt = Aξt−1+But−1+γtK
(
ht−C(Aξt−1+But−1)

)
(12)

ut = Lξt (13)
ht = γt(yt + nt) (14)

Note that the estimator is time-varying since it depends on
the sequence γt. In fact, if a packet is not received correctly,
i.e. γt = 0, then the state estimator updates its state using
the model only, while if it is received, i.e. γt = 1, it includes
a correction term based on the output innovation similarly
to a Kalman filter. This scheme is the same proposed in
[15], and does not coincide with the true optimal Kalman
filter as in [19]. However, it has the advantage of being
computationally simpler and allowing explicit computation
of the performance J , as will be shown in the next section.

Finally we will restrict our attention to the cheap-control
setting, i.e. in the scenario where no penalty is placed on the
control input ut and the objective is to minimize the power
of the output plant E[||yt||2].

V. DYNAMICAL EQUATIONS

We now derive the dynamical equation which governs
the state as well as the error evolution for the estimator in
equations (12). In order to do so it is convenient to consider
the “predictor” x̂t so that

x̂t+1 = Ax̂t +But + γtG [ht − Cx̂t]
ξt = x̂t + γtK [ht − Cx̂t]
ut = Lξt = L [I − γtKC] x̂t + γtLKht

(15)

where G := AK. This system has the form of a “Kalman-
like” estimator with constant gain K. If the gain K is
chosen to be the “optimal” Kalman gain,2 which we shall
denote by K∗, then x̂t = x̂t|t−1 and ξt = x̂(t|t), which
are respectively the optimal (constant gain) one-step-ahead
predictor and estimator of the state xt.

Consider the error x̃t := xt − x̂t. The “error” equations
are therefore:

x̃t+1 = xt+1 − x̂t+1 = Axt +But+

+vt −Ax̂t −But − γtG [zt − Cx̂t] =

= Ax̃t + vt − γtG [Cx̃t + wt + nt] =

2Within the class of constant gain linear estimators.



= (A− γtGC)x̃t + vt − γtG(wt + nt)

Substituting the input given by the controller in the predictor
equations:

x̂t+1 = Ax̂t +But + γtG [zt − Cx̂t] =

= Ax̂t +BL [I − γtKC] x̂t + γtBLKzt+

+γtG [zt − Cx̂t]

= [A+BL] x̂t + γt [BLK +G] [zt − Cx̂t] =

= [A+BL] x̂t + γt [BL+A]K [Cx̃t + wt + nt]

The system output is therefore:

yt = Cxt + wt = C [x̃t + x̂t] + wt

It follows that the equation of the feedback loop system are:[
x̂t+1

x̃t+1

]
=

[
(A+BL) γt(A+BL)KC

0 A(I − γtKC)

] [
x̂t
x̃t

]
+

+

[
0
I

]
vt +

[
γt(A+BL)K
−γtAK

] [
wt + nt

]
yt =

[
C C

] [ x̂t
x̃t

]
+ wt

where we use G = AK. Defining

P := Var{[x̂>t , x̃>t ]>} =

[
P11 P12

P21 P22

]
Āγ :=

[
(A+BL) γ(A+BL)KC

0 A(I − γKC)

]
and using the fact that

[
x̂t

x̃t

]
, vt and wt + nt are pairwise

uncorrelated, it follows that:

P = (1− ε)Ā1PĀ
>
1 + εĀ0PĀ

>
0 +

+

[
0
I

]
Q
[

0 I
]

+

+(1− ε)
[
(A+BL)K
−AK

] [
R+N

] [(A+BL)K
−AK

]>

(16)

N = αPy Py =
[
C C

]
P

[
C>

C>

]
+R

Substituting the expression for Py in (16) we obtain:

P = (1− ε)Ā1PĀ
>
1 + εĀ0PĀ

>
0 +

+

[
0
I

]
Q
[

0 I
]

+

+(1− ε)(1 + α)

[
(A+BL)K
−AK

]
R

[
(A+BL)K
−AK

]>

+

+α(1− ε)Φ̄P Φ̄>

(17)
where

Φ̄ :=

[
(A+BL)KC (A+BL)KC
−AKC −AKC

]
For ease of notation we define the operator on the right hand
side of (17) as M(K,L, P ), so that (17) can be written in
compact form as

P =M(K,L, P )

In this work we consider as cost function only the steady
state plant output E[||yt||2] in Eqn. (3), i.e. we assume no cost
in energy expenditure for the control. This is known as the
cheap-control scenario in LQG control and it is equivalent
of setting W := C>C and ρ = 0 in Eqn. (3) which takes
the form:

J = E
[
x>t C

>Cxt
]

=
[
C C

]
P

[
C>

C>

]
(18)

Hence, the LQG-type optimal control problem can be written
as:

J∗ := min
K,L

J

s.t. P =M(K,L, P ) (19)
P ≥ 0

and L∗, K∗ will denote the optimal gains.

VI. SOLUTION TO THE OPTIMAL CHEAP-CONTROL
SCENARIO

We now derive the solution to the LQG-type optimal
control problem (19). The proof technique is borrowed from
[4] and goes through the introduction of the Lagrangian

L(P,Λ, L,K) := J + Tr{Λ (P −M(K,L, P ))} (20)
s.t. P = P> ≥ 0 Λ = Λ> ≥ 0

Accorning to the matrix maximum principle [1] the necessary
conditions for optimality of K∗ and L∗ are

∂L
∂P

= 0
∂L
∂Λ

= 0
∂L
∂L

= 0
∂L
∂K

= 0 (21)

For future reference let us introduce the partition

Λ :=

[
Λ11 Λ12

Λ21 Λ22

]
where all blocks have size n×n. The following proposition
summarizes the optimality conditions.

Proposition 1: Consider the LQG-type control problem
(19); the optimal gains K∗, L∗ can be found solving the
necessary conditions (21) for stationarity of the Lagrangian
(20) and are given by

K∗ = P ∗22C
>Σ−1α

L∗ = −
(
B>Λ∗11B

)−1
B>Λ∗11A

(22)

where

Σα :=

(
1 +

1

α

)(
R+ CP ∗22C

>)+
1

α
CP ∗11C

> (23)

and P ∗11, P ∗22, Λ∗11 and Λ∗22 are found solving the following



(coupled) Riccati-type equations

P ∗11 = AL∗P ∗11A
>
L∗+

+(1− ε)AL∗P ∗22C
>Σ−1α CP ∗22A

>
L∗

P ∗22 = AP ∗22A
> +Q+

−(1− ε)AP ∗22C>Σ−1α CP ∗22A
>

Λ∗11 = A>L∗Λ∗11AL∗

− 1−ε
α C>(K∗)>A>L∗Λ∗11AL∗K∗C+

+ 1−ε
α C>(K∗)>A>Λ∗22AK

∗C + C>C

Λ∗22 = εA>Λ∗22A− 1−ε
α C>(K∗)>A>Λ∗22AK

∗C+
(1− ε)(I −K∗C)>A>Λ∗22A(I −K∗C)+
+(1− ε)A>L∗Λ∗11AL∗+
−(1− ε)(I −K∗C)>A>L∗Λ∗11AL∗(I −K∗C)+
+ 1−ε

α C>(K∗)>A>L∗Λ∗11AL∗K∗C+
+C>C +Q

(24)
where AL∗ := A+BL∗.

Sketch of the proof: In the interest of space we shall
not include a detailed proof (which is straightforward but
tedious) and rather summarize the main steps. It can be
shown that the necessary conditions (21) are satisfied for
P ∗, Λ∗, L∗, K∗ where

P ∗ :=

[
P ∗11 0
0 P22

]
Λ∗ :=

[
Λ∗11 Λ∗11
Λ∗11 Λ∗22

]
and P ∗11, P ∗22, Λ∗11 and Λ∗22, L∗ and K∗ are defined in (24)
and (22). Following the same arguments found in [4] one
can show that this is the unique solution, from which the
thesis follows.

�

Remark 2 (Loss of separation principle): It is clear
that, in general, the optimal values L∗ and K∗ cannot be
found separately and, hence, the separation principle does
not hold. In fact it is apparent from (23) and (24) that
the (steady state) state error covariance P ∗22 depends on
the state variance P ∗11, and hence on the control gain L∗.
It is interesting to observe that this dependence vanishes
when α → ∞ and, then, the separation principle holds
asymptotically, as the quantisation noise power tends to
zero and, in turn, the required channel capacity grows to
infinity. In fact K∗ depends only on P ∗22 and L∗ only
on Λ∗11 and the equations for Λ∗11 and P ∗22 are decoupled
(note that Σ∞ = R + CP ∗22C

>). This is coherent with the
findings in [20] where the same happens when the control
packet arrival probability ν is equal to one (see Fig. 2 and
equations (24-29) in [20]).

A. Analysis for B invertible

In order to get more insight on the role of the packet
loss probability ε and signal to quantization noise ratio α we
consider a MISO systems where the input-to-state matrix B
is square and invertible, i.e. we have n independent control
inputs. Recall also that we have restricted our attention to

the scalar output case, so that the matrix C is a row-vector.
Under this scenario, the optimal gain L∗ in (22) reduces to

L∗ = −
(
B>Λ∗11B

)−1
B>Λ∗11A

= −B−1A
(25)

where, as argued in [4], Λ11 > 0 has been used.
For this choice of L∗ it is apparent that P ∗11 = 0 so that

the steady state variance reduces to

P ∗11 = 0 (26)
P ∗22 = AP ∗22A

> +Q+ (27)
−(1− ε)AP ∗22C>Σ−1α CP ∗22A

> (28)

Σα =

(
1 +

1

α

)(
R+ CP ∗22C

>) (29)

Combining these last two equations we get

P ∗22 = AP ∗22A
> +Q

−ηAP ∗22C>(CP ∗22C
> +R)−1CP ∗22A

>

η := 1−ε
1− 1

α

(30)

and the optimal gain

K∗ = ηP ∗22C
>(CP ∗22C

> +R)−1 (31)

Using the results in [16] it is known that when C is rank
one, the matrix P ∗22 in (30) exists and is unique if and only
if η > 1 − 1∏

i |λui |2
, where {λui } represent the unstable

eigenvalues of the matrix A. Therefore, from (30), we get

1− ε
1 + 1

α

> 1− 1∏
i |λui |2

(32)

from which we observe that packet erasure probability ε, and
SQNR α concur in determining the system performance, as
briefly discussed below.

B. Discussion and related work

We have seen that the design of the optimal control gain
L and the estimator gain K are coupled; the separation
principle is recaptured when either the signal to quantization
noise ratio α goes to infinity or B is invertible. It is also
expected that when B is not invertible the stability condition
of Eqn. (32) is likely to provide a condition that is only
necessary for stability but not sufficient.

Note also that we recover some of the results available in
the literature as special cases. In fact if we let α→∞, then
this is equivalent to consider a channel with infinite capacity
and we obtain the same stability condition in the lossy
network literature [19], [16]. Alternatively, if we assume no
packet loss in the channel, i.e. ε = 0, and recalling that
α ≤ α∗, then the stability condition can be rewritten as

1− 1∏
i |λui |2

<
1

1 + 1
α∗

= 1− 1

1 + α∗

that leads to
SQNR∗ >

∏
i

|λui |2 − 1

which is the same stability condition presented in the context
of SNR-limited control system in [2].



Finally, the bound provided by Eqn. (32) will be useful to
compare different communication protocols. In fact, by using
a corse quantizer, it is possible to reduce the transmission rate
Rq , thus allowing more redundant channel coding schemes
and consequently a smaller packet loss probability ε. How-
ever, a coarser quantizer also gives a smaller α = SQNR∗.
Conversely, when the channel capacity is limited, increasing
α will require an increase of the transmit rate Rq that, in
turn, may yield higher packet loss rates. Therefore, α and
ε are generally coupled and cannot be designed separately.
In a scenario where ε and α are decoupled, e.g., when
packet losses are mainly due to random interference bursts
produced by external emitters, a large SQNR will loose the
constraint on the erasure probability looses, thus increasing
the robustness of the system to packet losses.

VII. CONCLUSIONS AND FUTURE WORK

We have considered an LQG cheap-control problem under
communication constraints. In particular, we proposed a
model that accounts for signal quantization, packet erasure,
packet error and delay. We have argued in fact that there is
a tight connection between these parameters that depends
ultimately in channel Shannon Capacity. We then have
restricted our attention to a specific control architecture in
which the plant outputs are transmitted via a bandlimited
channel and then processed through the cascade of a state
estimator followed by a linear (state) feedback controller;
for ease of exposition we did not consider delays, while
both limited rate and packet drops have been included in our
analysis. We have derived the optimal solution for a general
MISO system under the “cheap control” scenario (i.e. no
penalty on the control signal) and showed that the separation
principle does not hold in general. When the input-to-state
matrix B is invertible the optimal controller has a dead-
beat structure and the optimal estimator is a Kalman-like
constant gain estimator (which accounts for the packet drop
probability). Conditions for stability are derived in terms
a modified algebraic Riccati equation and recapture results
from the literature as special cases.

Future work will include the analysis of the general LQG
problem, i.e. ρ 6= 0 for MIMO plants, i.e. y ∈ Rm,m >
1, and we will explore more sophisticated control schemes
with possible compensator before transmission, i.e. Ft 6=
Identity.
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