Industrial applications of largescale and distributed optimization

HYCON2 Workshop on Distributed Optimization in Large Networks and its Applications, with European Control Conference ECC'13 Zürich, Switzerland, July 16, 2013

Vladimír Havlena^{1,2}, Pavel Trnka²

¹⁾ Department of Control Engineering Faculty of Electrical Engineering Czech Technical University in Prague ²⁾ Honeywell Automation and Control Solutions ACS Global Laboratory Prague

Outline

- Large-scale distributed networked systems
- Water distribution network optimization
 - Hierarchy
 - Control objectives & problem formulation
 - DMPC for transport layer
- Application with AGBAR Barcelona network
 - Benefit evaluation tool
 - Real-time closed loop DMPC demo (EU FP7 WIDE project)
 - Conclusions

Large-scale Networked Systems

Typical large-scale networked systems

- Water / gas distribution networks
- River cascade dams control
- Electricity distribution current smart grid solutions are variations on presented methods
- Logistic problems (integer optimization)

Control solution

- Suitable for Model Predictive Control (MPC)
- Translates to QP for linear dynamic process models
- Computation complexity grows quickly with problem size

Water Network Control Center AGBAR Barcelona

Water supply management

Water treatment layer

- Mechanical / chemical / biological water treatment
 - Different water quality
 - Different processing cost

Water transport layer

- Transport to storage tanks (water towers)
- Control of pumping stations and valves
 - Pumping cost
 - Periodic demand
 - Limited storage capacity

Water distribution layer

- Distribution to end users
 - Control of pressure reducing valves and booster pumps
 - Major losses occur here

Sewage water collection and treatment

Similar hierarchy

Honeywel

Water treatment layer

- Continuous process control methods
 - Large time constants
 - Large storage capacity
 - Cumulative constraints on availability

Water transport layer

- Networked control problem
 - Typical sampling interval 1 hour
 - Control / optimization horizon up to 1 week (need to capture periodic demand, varying electricity tariffs, varying production costs, impact on water quality (storage, ageing)
- Current solution
 - Heuristic control law with operator interventions
- Next generation solution
 - Large-scale spatially distributed control & optimization problem
 - Can be solved by distributed MPC
 - Complex optimization criteria embedded

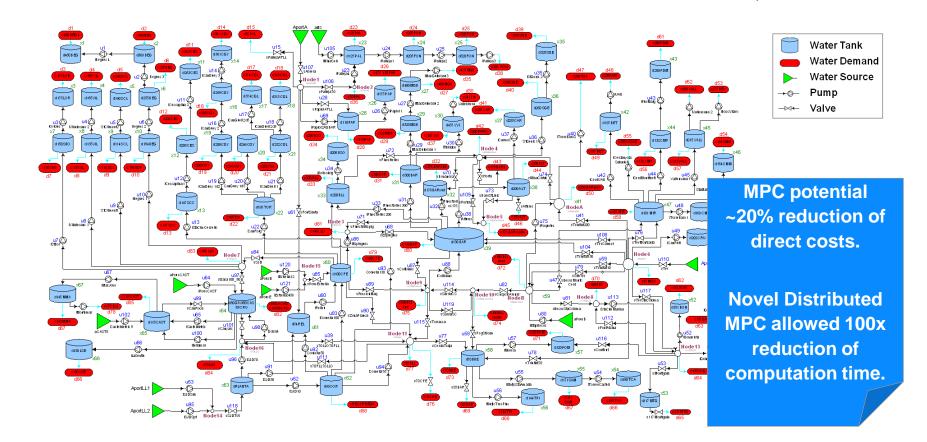
... this talk

Water distribution layer

- Network control problem
 - Sampling period < 1 second (pressure control = stiff problem)
- Current solution
 - PLCs /mechanical PRVs with several preprogrammed pressure levels (day/night) in the distribution network feeding points (Pressure Reducing Valves)
- Next generation solution
 - Active pressure zone control
 - Closed loop, multivariable solution
 - Flow / pressure sensor network
 - Network monitoring and data reconciliation
 - Introduction of smart sensors
 - Leaking detection and failure recovery to minimize water losses
 - Detect abrupt changes (bursts) as well as background losses (drift)
 - Bottom-up approach pressure zone modeling
 - Top-down approach balancing individual metered areas

Barcelona Water Distribution Network

Honeywell



Network Size

- 70 tanks
- 110 pumps/valves
- 80 demands (disturbances)
- 9 water sources

- 1 hour sampling time
- 24-48 step prediction
- 5000 10000 variables

Barcelona Water Distribution Network

Honeywell

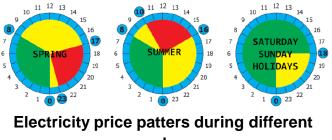
CONTROL OBJECTIVES

- Satisfaction of water demand (avoid exceeding tank safety limits – range control)
- Minimization of operation costs
- Manipulated variables
 - pump flows
 - valve flows
 - water sources production

OPTIMIZATION POTENTIAL

- Time varying electricity price during the day
- Different costs of water sources (rivers, wells, etc.)
- Multiple possible routes from sources to consumers
- Operation costs can be mainly reduced
 - Using network storage capacity by pumping in the periods of cheap electricity
 - Optimal routing of water from sources to tanks and blending

Tank and pumping station



days

Barcelona Water Distribution Network

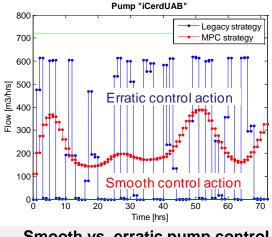
Honeywell

Indirect costs

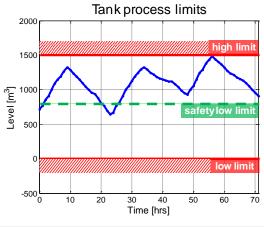
- Reduction of large set point changes for pumps, valves and water sources:
 - Reducing pressure surges (leakage prevention)
 - Reducing equipment tear & wear
- Water ageing long water storage degrades its quality and requires additional chlorination

Constraints

- Hard constraints
 - Actuator limits & rate-of-change limits
 - Pumps, valves and water sources
- Soft constraints
 - tanks minimum safety limits
- Constraints are time variable (maintenance, failures)



Smooth vs. erratic pump control action



Basic MPC problem

- K-step ahead prediction horizon
- Reference tracking
- Hard constraints on MV, ΔMV (all constraints can be time varying)

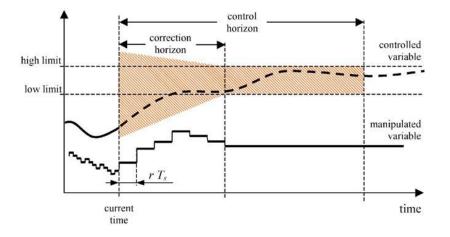
$$\min_{u_1,\ldots,u_k}\sum_{k=1}^K (y_k - r_k)^T Q_k (y_k - r_k) + \Delta u_k^T R_k \Delta u_k$$

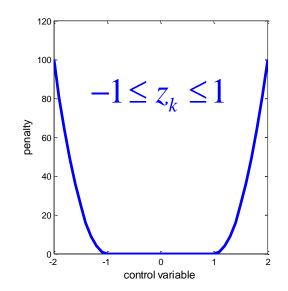
$$u_L \leq u_k \leq u_H; \quad \Delta u_L \leq \Delta u_{t+k} \leq \Delta u_H$$

Range control concept

- Soft constraints on CVs
- Auxiliary variable *z_k*
- Additional degree of freedom for optimization

$$\min_{\substack{u_1,\dots,u_K\\z_1,\dots,z_K}} \sum_{k=1}^K (y_k - z_k)^T Q_k (y_k - z_k) + \Delta u_k^T R_k \Delta u_k$$
$$u_L \le u_k \le u_H; \quad \Delta u_L \le \Delta u_{t+k} \le \Delta u_H$$
$$y_L \le z_k \le y_H$$





MPC problem formulation

Honeywell

Additional "economic" cost terms (linear)

- Pumping cost time varying electricity tarif
- Water sources cost
- Water aging / storage cost

$$\min_{\substack{u_1,\ldots,u_K\\z_1,\ldots,z_K}} \sum_{k=1}^K (y_k - z_k)^T Q_k (y_k - z_k) + \Delta u_k^T R_k \Delta u_k + C_k^P u_k + C_k^W u_k + C_k^S (y_k - y_L)$$
$$u_L \le u_k \le u_H; \quad \Delta u_L \le \Delta u_k \le \Delta u_H$$
$$y_L \le z_k \le y_H$$

100 -80 -**20 -**80 -40 -20 -

control variable

Optimization problem

- Use current state, control sequence $u_1, ..., u_K$ and predicted disturbance sequence $d_1, ..., d_K$ to calculate controlled variables $y_1, ..., y_K$
- Substitute into criterion
- Resulting problem
 - (Large scale) quadratic programming
 - Can be solved in distributed way

Approach: dual decomposition

Distributed MPC problem

$$\min_{u_1, u_2, f} J(u_1, u_2, f) = \min_{u_1, f} J_1(u_1, f) + \min_{u_2, f} J_2(u_2, f)$$
$$\underline{u}_i \le u_i \le \overline{u}_i, \underline{f} \le f \le \overline{f}, \underline{x}_i \le x_i \le \overline{x}_i$$

Duplicating complicating variable *f*

 $\min_{u_1, u_2, f_1, f_2} J_1(u_1, f_1) + J_2(u_2, f_2) \qquad \text{s.t.} \qquad f_1 = f_2$

Lagrangian

$$L(u_1, u_2, f_1, f_2, \lambda) = J_1(u_1, f_1) + J_2(u_2, f_2) + \lambda^T (f_1 - f_2)$$

Dual function

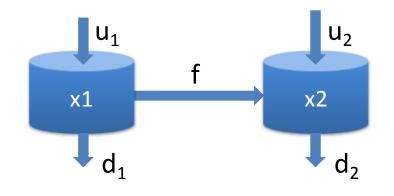
can be separated

$$g(\lambda) = \min_{u_1, u_2, f_1, f_2} L(u_1, u_2, f_1, f_2, \lambda) \qquad g_1(\lambda) = \min_{u_1, f_1} J_1(u_1, f_1) + \lambda^T f_1 = g_1(\lambda) + g_2(\lambda) \qquad g_2(\lambda) = \min_{u_2, f_2} J_2(u_2, f_2) - \lambda^T f_2$$

Optimal solution (saddle point theorem) – "shadow price"

$$\lambda^* = \arg \max_{\lambda} g(\lambda)$$

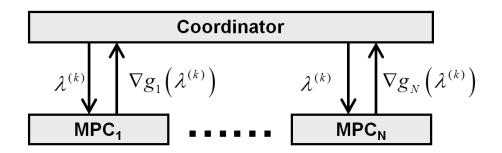
14



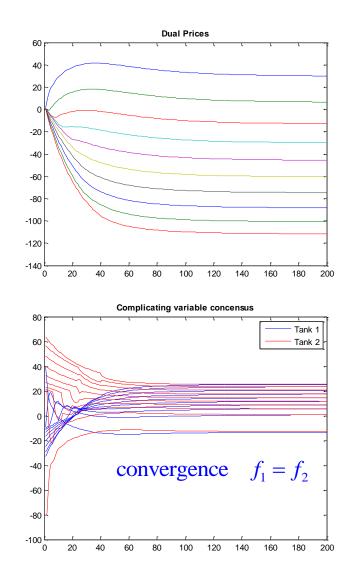
Honeywell

Maximizing dual function (grad. method)

$$\lambda^{(k+1)} = \lambda^{(k)} + \alpha^{(k)} \left(\frac{\partial g_1}{\partial \lambda} + \frac{\partial g_2}{\partial \lambda} \right) \bigg|_k \frac{\partial g_1}{\partial \lambda} \bigg|_k = f_1^{(k)^*} \left| \frac{\partial g_2}{\partial \lambda} \right|_k = -f_2^{(k)^*}$$



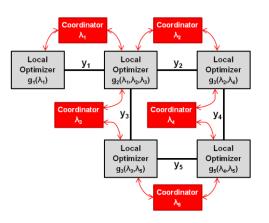
- MPC control horizon K = 20
- Simple gradient method
 - High number of iteration (~ 200)
- Large improvement
 - Nesterov accelerated gradient method
 - Still too many iterations for Barcelona sized network



Price coordination

Honeywell

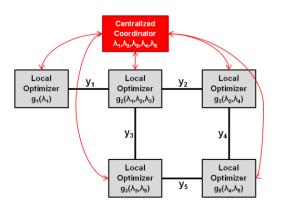
$$\max_{\lambda} g(\lambda), \qquad g(\lambda) = \sum_{i} g_{i}(\lambda)$$



LOCAL (distributed)

- Gradient method exploiting problem structure (components computed locally)
 - $\frac{\partial g}{\partial \lambda_3} = \frac{\partial g_2}{\partial \lambda_3} + \frac{\partial g_3}{\partial \lambda_3}$
- Computing derivatives requires to solve local sub-problems for given λ

$$\left. \frac{\partial g_i}{\partial \lambda} \right|_k = f_i^{(k)*}$$



CENTRALIZED

- Captures the multivariable problem (interactions between λ_i)
- Significantly improved convergence
 - Newton type methods
 - Quasi-Newton type methods
 - Structure: local optimizers provide components of Hessian
- Requires centralized communication
- Coordinator computation complexity

Honeywell

17

 For LQ problem, local dual functions are piece-wise quadratic on polytopic regions

Parametric price coordination

 Local controllers provide quadratic parameters valid in current polytopic region

 $g_i(\lambda) = \lambda^T A_i \lambda + b_i^T \lambda + c_i \quad s.t. \quad \lambda \in P_i$

Optimal local solution is affine in current region

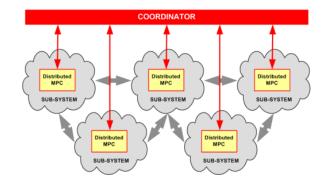
$$\begin{bmatrix} x_i^*(\lambda) \\ f_i^*(\lambda) \end{bmatrix} = F_i \lambda + g_i \quad \text{for} \quad H_i \lambda \le k_i$$

• Optimal dual solution can be obtained in single step if feasible

$$\nabla^2 g(\lambda_k) v_k = -\nabla g(\lambda_k)$$
 such that $\lambda_k + v_k \in \bigcap P_i$

otherwise use damped Levenberg-Marquardt

$$\left(\varepsilon I + \nabla^2 g(\lambda_k)\right) v_k = -\nabla g(\lambda_k)$$



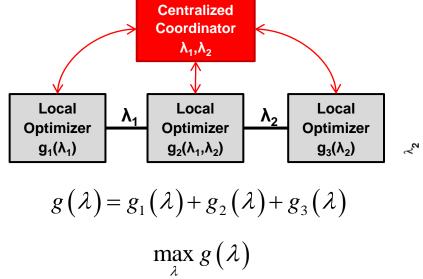
Parametric coordination – example

-50 × -50

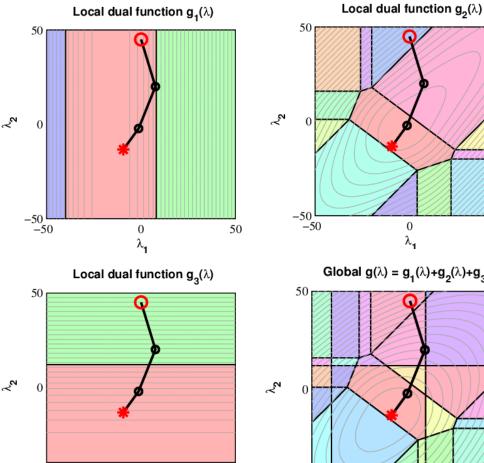
0

λ,

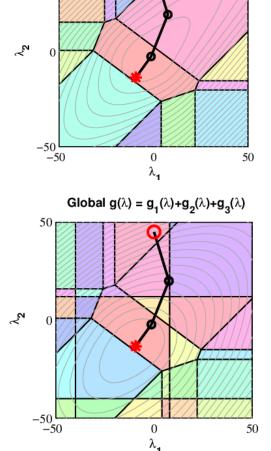
Honeywell



- Illustration of the local dual functions composition
- Coordinator can use this fact to improve convergence and reduce communication load



50



Parametric coordination – example

يم

0

-50

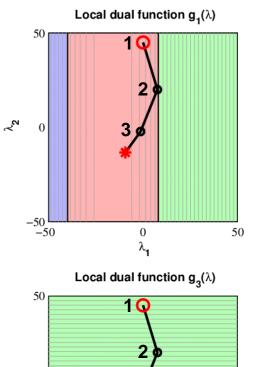
-50

Honeywell

- Local controllers return quadratic parameters and their polytopic validity region around given price vector (local solution)
 - $g_{i}(\lambda) = \lambda^{T} A_{i} \lambda + b_{i}^{T} \lambda + c_{i}$ such that $\lambda \in P_{i}$ i.e. $H_{i} \lambda \leq k_{i}$
- Local solutions are kept between iterations
 - Recalculation required only if invalidated by shadow price update

 $\lambda^{(k+1)} \notin \mathbf{P}_i$

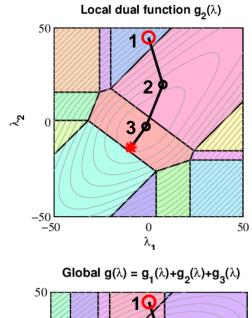
- Coordination process
 - Newton method with Levenberg-Marquardt damping
 - Switching on region borders not efficient

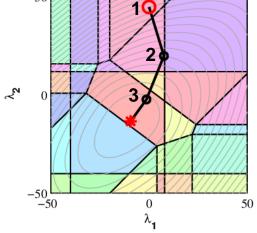


3

0

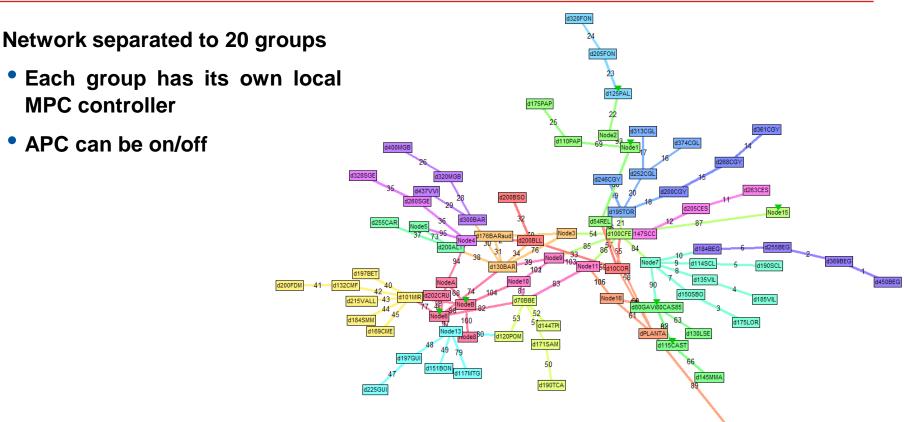
λ,





50

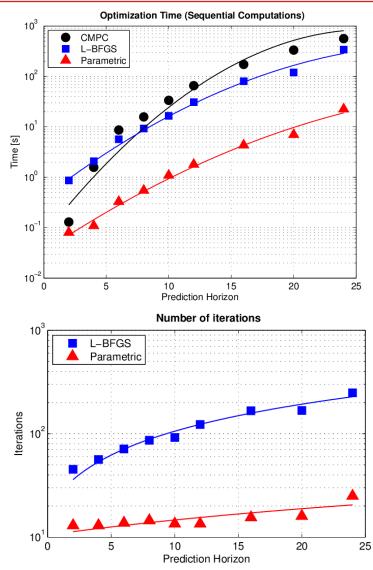
DMPC Results on Barcelona Network

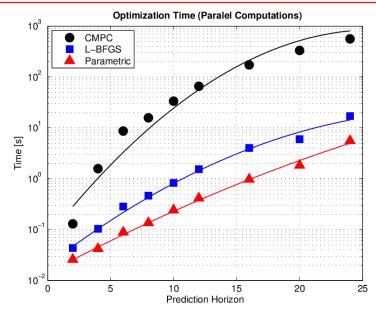


- Coordination methods compared
 - Centralized MPC
 - Distributed MPC / L-BFGS coordination
 - Distributed MPC / Parametric coordination

DMPC Results on Barcelona Network

Honeywell



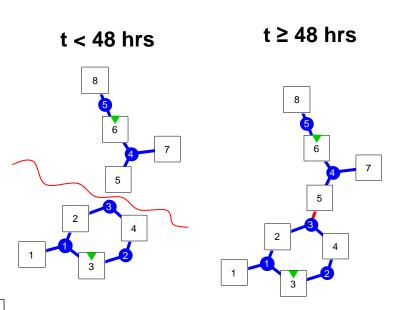


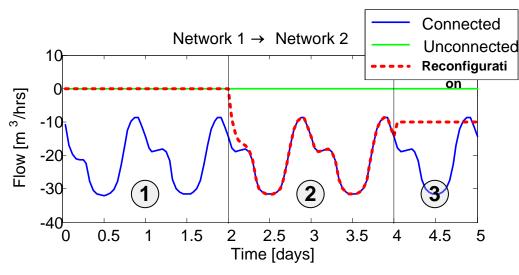
Summary

- ~10x reduction in a number of iterations (compared to Quasi-Newton L-BFGS)
- Only ~25% of local problems are recalculated in each iteration
- ~100x faster than centralized MPC
 ~10x faster than L-BFGS

Decentralized control based on Dual Decomposition allows simple changes in network configuration without any global adjustments while preserving centralized MPC optimality:

- 1 t<48 networks are unconnected
- 2 t=48 networks are connected
- 3) t≥96 connecting pump is switched to MAN



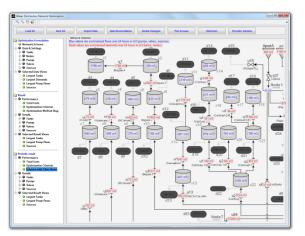


Blue line – optimal control of connected networks on the whole interval

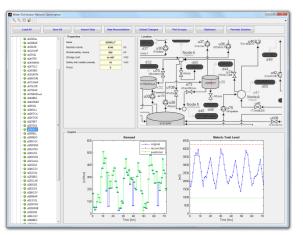
Green line – optimal control of unconnected networks on the whole interval

Off-line tool with GUI (in Matlab)

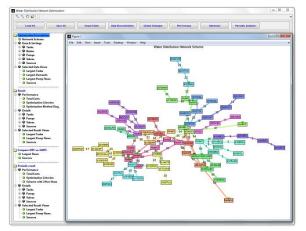
- Building water network topology
- Setting process limits and prices
- Importing historic data (with reconciliation)
- Performing optimization
- Comparing flow and tank level trajectories between historic data and MPC strategy
- Evaluating benefits (pumping and water costs)

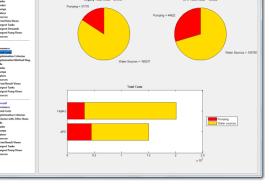


Network topology



Network object details view

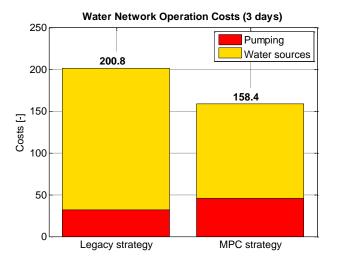




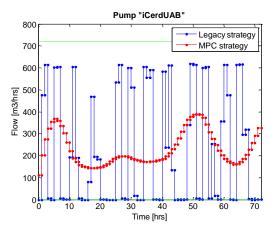
Costs evaluation

Operation costs comparison

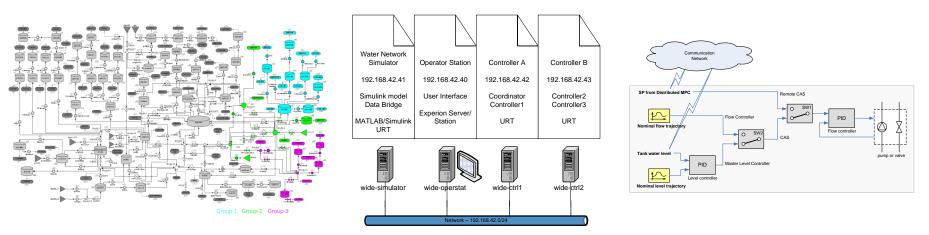
- ~20% direct cost savings
 - Increased pumping cost
 - Reduced cost of water treatment
 - Periodic operation enforced
- Indirect savings
 - smooth MV's operation / source loading
 - leakage prevention by small pressure surges
 - reduced equipment wear & tear



Indirect benefits (calm control actions)



- **Complete control solution on 3 selected areas of Barcelona Water Network**
 - Algorithms implemented in C++ for Honeywell Unified Real Time (URT) platform infrastructure for implementing advanced process control (power plants, chemical processes)
 - Design of basic control layer and backup control strategy (industrial Experion PIDs)
 - **Operator panels (industrial Experion HMIweb)**
- **Demonstrates project life cycle the ability of distributed MPC to replace legacy control in** multiple steps for smooth transition between legacy and advanced control strategy
- Water network is simulated hidden for control layer by standard OPC connectivity
- Areas controlled by 3 distributed MPC controllers

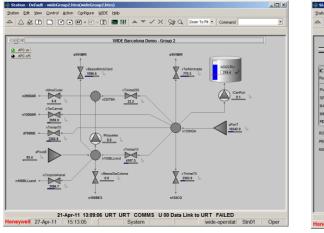


3 selected areas of Barcelona network

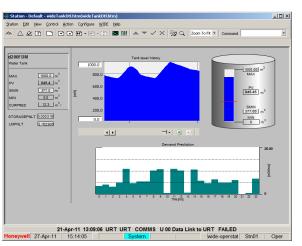
Control configuration on 4 computer: Flow controller with backup control

Implementation: Real-time DMPC Demo

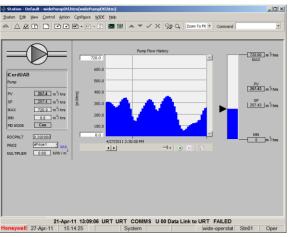
Honeywell



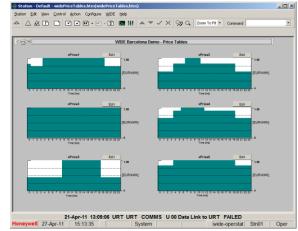
Network part detail



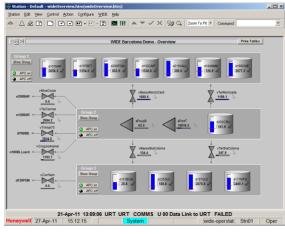
Tank details and history

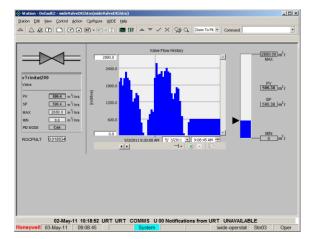


Pump details and history



Electricity price patterns definitions





Valve details and history

Conclusions

- Distributed optimization is a strong framework for challenging size problems
- Distributed implementation of MPC is straightforward
- MPC-like sparse QP problems can be coordinated very efficiently
- Solution based on DMPC is mature for real applications