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Abstract— This paper deals with the source-seeking problem
in which a group of autonomous vehicles must locate and
follow the source of some signal based on measurements of
the signal strength at different positions. First, we show that
the gradient of the signal strength can be approximated by
a circular formation of agents via a simple weighted average
of the signal strength measured by the agents. Then, we
propose a distributed source-seeking algorithm based on a
consensus method which is guaranteed to steer the circular
formation towards the source location using the estimated
gradient direction. The proposed algorithm is provided with
two tunable parameters that allow for a tradeoff between speed
of convergence, noise filtering and formation stability. The
benefit of using consensus-based algorithms resides in a more
realist discrete time control of the agents and in asynchronous
communication resilient to delays which is particularly relevant
for underwater applications. The analytical results are finally
complemented with numerical simulations.

I. INTRODUCTION

Detecting the source of a signal is relevant to many com-
plex applications as environmental monitoring [8], search
and rescue operations [9], odor source detection [13], sound
source localization [22] and pollution sensing [11]. Source
localization is also a fundamental problem in nature. In-
spired by some bacteria behavior which are able to find
chemical sources, the problem of seeking a maximum using
autonomous vehicles is studied in [12], [14].

There are different approaches to deal with this topic in
the current literature. For example, several source-seeking
algorithms are based on gradient-descent methods. If it is
available, the gradient of the signal strength can be used to
produce a gradient-descent algorithm for a vehicle or group
of vehicles [2]. However, in practice the agents are only
capable of collecting measurements of the signal strength
and the gradient information is usually unknown. In this
situation, the gradient can be approximated using spatially
distributed measurements of the signal distribution. In the
literature there are two different strategies to collect dis-
tributed measurements. The first one uses a single vehicle
which changes its position over time in order to measure the
signal propagation in different positions [2], [3]. The other
option consists in multiple vehicles collaborating to collect
concentration measurements at different locations [8], [15].

The application of extremum-seeking techniques to the
source localization problem has been analyzed under dif-
ferent constraints using a single nonholonomic vehicle [21],
[5]. The idea is to add an excitatory input to the vehicle
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steering control in order to approximate the gradient of the
signal strength and using this information to drive the vehicle
towards the source. A novel stochastic approach based on
the clasical extremum seeking algorithm is introduced in
[12] and [18]. A recent paper [1] proposes a strategy to
streer a single robot to the maximum of a scalar field based
on a stochastic gradient-descent algorithm. This approach is
applicable to robots with various types of dynamics. The
main disadvantage of these strategies is that in order to
collect sufficient information, the vehicle may have to travel
over large distances. As a consequence, in this situation the
vehicle convergence to the source location may be slow.

Some collaborative methods using multi-agent systems
have been proposed in recent literature. In [8], [6] a group
of vehicles equipped with appropriate sensors estimates the
model parameters of the scalar field via collected measure-
ments. A least-squares approximation is applied in order to
steer the group of agents to the source location. Other works
are based on distributed estimation of the concentration
plume [17], [16]. In this case, the function signal is estimated
or approximated and the source localization becomes a
distributed optimization problem. These strategies rely on
a prior model of the signal distribution, which might not be
known a-priori if the environment is unknown.

Other alternative approaches to estimate the gradient of
the signal in a cooperative way are available. For example,
a collaborative control law to steer a circular formation of
nonholonomic vehicles to the source of a signal distribution
using only their direct signal measurements is presented
in [15]. In [10] a distributed source-seeking algorithm is
proposed using optimization tehcniques. The main drawback
of both works is the assumption about the spatial propagation
of the signal (concave function). Motivated by behaviors
of fish groups seeking darker regions the authors of [19]
proposed a distributed source-seeking algorithm for a group
of vehicles with no explicit gradient estimation.

The present paper addresses an alternative solution to the
source localization problem. In order to locate the source
of a scalar field, we consider a group of vehicles equipped
with sensors which measure the field of interest such as,
temperature, salinity, pollutant flow. In this situation, the
fleet of vehicles can be seen as a mobile sensor network.
We will show that a group of vehicles uniformly distributed
in a circular formation, is able to approximate the gradient
direction of the measured signal. The problem is tackled in a
2-dimensional space, hence the configuration considered is a
planar formation. No prior knowledge of the environment
or convexity of the signal field are required. In order to
keep the formation and to steer its center towards the source



location, we propose a distributed algorithm based on the
multidimensional Newton-Raphson consensus strategy from
[20]. The suggested strategy thus inherits the good properties
of consensus algorithms [7], namely their simplicity, their
potential implementation with asynchronous communication
schemes, their ability to adapt to time-varying network
topologies, and their resilience to packet loss and random
delay.

The rest of the paper is organized as follows. First,
Section II presents the problem statment introducing the
model of the agents and some assumptions of the signal
strength. In Section III, preliminary results on gradient ap-
proximation and distributed optimization are presented. Sec-
tion IV exposes the main contribution, a distributed source-
seeking algorithm based on Newton-Raphson consensus.
Section V includes illustrating simulation results. Finally, we
will present our conclusions and future directions.

II. PROBLEM FORMULATION

The main objective of this paper is to design a distributed
algorithm to steer a group of agents to the source location
of a field of interest.

A. Agents

Consider a circular formation of N agents described by
a radius D > 0, an arbitrary rotation angle φ0 and a given
center point c = [cx cy]

T ∈ R2. In a real situation the given
center could be an external reference corrupted by noise or
could not be avaiable to all the agents, thus, we assume that
each agent computes its own center ci ∈ R2. Therefore, the
position of each agent i = 1, . . . ,N at time k is given by the
following equation:

ri(k) = ci(k)+DR(φi)e (1)

where ri(k) = [xi(k) yi(k)]T ∈R2 is the position vector, φi =

φ0 + i 2π

N is the rotation angle, R(φ) =
[

cosφ −sinφ

sinφ cosφ

]
is the rotation matrix, and e = [10]T . If all the agents
compute the same center, i.e., ci(k) = c(k),∀i, then this
previous equation describes a formation where the agents
are uniformly distributed on a circle of radius D centered at
c(k).

B. Signal strength

Each agent represents a mobile sensor or a vehicle equiped
with a sensor which is able to measure the signal strength
emitted by the source. The source could be a point of chem-
ical contamination and the signal would be the chemical’s
concentration in the environment, for instance. Alternatively,
the source could be a radio transmitter and the signal would
be a radio frequency transmission.

In mathematical terms, the signal distribution emitted by
the source is a bidimensional spacial function representing
the scalar field with a maximum or with a minimum in the
position where the source is located. The distribution of the
signal strength in the environment will be described by an
unknown positive spatial mapping σ(z) : R2 → R+, and so
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Fig. 1. Problem formulation

agent i measures the signal strength at its position ri(k), as
σ(ri(k)). We assume here that the signal is emitted by a
single source such that the source is the only maximum of the
scalar field. The signal distribution is assumed to decay away
from the position of the source. Therefore, the following
assumption is considered:

Assumption 1 Function σ belongs to C 2 i.e., is continuous
up to the second partial derivative, its first partial derivative
is zero only at the souce position z∗, i.e., ∇σ(z∗) = 0, its
second partial derivative is defined for all z∈R2, it is strictly
negative, and bounded such that the Hessian matrix satisfies

0 < m1 ≤ ‖H(z)‖ ≤ m2

Moreover each scalar component of the global maximizer z∗

does not take value on the extended values ±∞.

C. Control objectives

Using a gradient-descent algorithm the group of agents
can be driven to the source of the the signal distribution,
see [2], [15]. Nevertheless, the gradient information is not
usually available. In that situation, we propose a cooperative
approach in order to satisfy the following control objectives:

(i) estimating the gradient

(ii) keeping the circular formation of agents

(iii) steering the formation towards the source location
The gradient direction of the signal distribution can be

estimated via concentration measurements collected by a
circular formation of agents. This result will be analyzed
in Section III-A. The estimated direction of the gradient
will be the reference velocity of the formation center in
order to steer the group of agents to the source location as
represented in Fig. 1. In order to keep the fotmation, the
agents must reach an agreement on the center position of
the circular formation, therefore a consensus algorithm on
centers ci will be implemented. To acomplish the objective
(iii), the common center of the circular formation will be
driven towards the source using the estimated direction of
the gradient. In order to achieve all the control aims, we
propose a distributed algorithm based on the Newton-Rapson
consensus method for distributed optimization from [20].



III. PRELIMINARY RESULTS

A. Gradient approximation by a fixed circular formation

Consider a circular formation of agents given by (1) with
ci(k) = c, ∀i, taking measurements of a signal distribution
σ(z). Let ∇σ(c) = [∇xσ(c)∇yσ(c)]T ∈R2 denote the gradi-
ent of σ(z) at the center of the circular formation. Based on
the previous result from [4] following lemma is proposed:

Lemma 1 Let σ : R2→R be a bounded function and σ(ri)
be the measure collected by agent i where ri is its position
vector given by (1) with ci(k) = c. Considering a fleet of
N > 2 agents uniformly distributed along the circle centered
at c, the following equation is satisfied:

1
N

N

∑
i=1

σ(ri)(ri− c) =
D2

2
∇σ(c)+o(D2) (2)

Proof: If we use first order Taylor expansion of each
measurement σ(ri) about the point c and recalling that ||ri−
c||=D, then the following equation holds for all i= 1, . . . ,N:

σ(ri)−σ(c) = ∇σ(c)T (ri− c)+o(D) (3)

By multiplying the previous equation by the relative vector
(ri− c) and summing over i = 1, . . . ,N, we get:

1
N

N

∑
i=1

σ(ri)(ri− c)+ c
1
N

N

∑
i=1

(ri− c) =

=
1
N

(
N

∑
i=1

(ri− c)(ri− c)T

)
∇σ(c)+o(D2)

Since the agents are distributed uniformly along a fixed
circle, then we have ∑

N
i=1(ri− c) = 0 and

∑
N
i=1(ri− c)(ri− c)T = D2

∑
N
i=1 R(φi)eeT R(φi)

T

= D2 R(φ0)
(
∑

N
i=1 R(i2π/N)eeT R(i2π/N)T

)
R(φ0)

T

= D2 R(φ0)

(
∑

N
i=1

[
cos2(i2π/N) 0.5sin(i4π/N)

0.5sin(i4π/N) sin2(i2π/N)

])
R(φ0)

T

= D2 R(φ0)(
N
2 I2)R(φ0)

T = ND2

2 I2

since cos2 φ = 1/2(1+cos(2φ)), sin2
φ = 1/2(1−cos(2φ)),

and ∑
N
i=1 cos(2i 2π

N ) = ∑
N
i=1 sin(2i 2π

N ) = 0 for N > 2, where
I2 ∈ R2×2 represents the identity matrix. Thus, the equality
of Eq. (2) is satisfied.
This result provides an approximation of the gradient of the
signal distribution at the center c(k) of a circular formation
at each instant k.

B. Gradient-ascent consensus

Source localization can be appoched using optimization
methods. Mathematically, the source-seeking problem is
equivalent to find the maximum or minimum of a scalar
function σ(z) :R2→R. In [20], a multidimensional gradient-
ascent consensus for distributed optimization is presented. In
this paper, the authors assume that N agents, each endowed
with a local multidimensional strictly convex cost function
σi(z), aim to collaborate in order to minimize or maximize
the global cost function σ̄(z) = 1

N ∑
N
i=1 σi(z), i.e. the average

of all local cost functions. Algorithm 1 provides a strategy to

move the center ci of each agent i at the global maximum of
σ̄(z) under the assumption that they can exactly compute
the gradient of their own cost function. To simplify the
notation, we indicate with bold letters vectors obtained by
collecting local variables into a single column vector, i.e.
c = [cT

1 cT
2 . . . cT

N ]
T ∈ R2N and h = [hT

1 hT
2 . . . hT

N ]
T ∈ R2N ,

where hi ∈ R2 are defined in Algorithm 1.
The communication topology of the agents is defined

by means of a graph G . Let G = (V,E) be an undirected
communication graph. The set of nodes (agents) is denoted
by V = {1, . . . ,N} and the set of edges (i, j) ∈ E represents
the communication links. Let P ∈ RN×N denote a stochastic
matrix, i.e. a matrix whose elements are non-negative and
P1 = 1, where 1 := [1, . . . ,1]T ∈ RN . It is consistent with
a graph G if Pi j > 0 only if (i, j) ∈ E. Such matrix P
is also often referred as a consensus matrix. A stochastic
matrix P is doubly stochastic if also 1T = 1T P. The essential
spectral radius of a stochastic matrix is defined as esr(P) =
maxλi 6=1 |λi(P)|, where λi(P) indicates the eigenvalues of P.
In the sequel, ⊗ denotes the Kronecker product.

The Algorithm 1 works as follows: Lines 6 and 7 are
local computation needed to track the local quantities which
are necessary to compute the approximated gradient as in
Lemma 1. Line 9 is needed to compute the average of
these local quantities and it is based on standard consensus
communication given by the matrix P. Line 11 instead is
responsable for steering the center of each agent towards
the estimated center of the source hi(k). It is fundamental
that the steering of the agents’ center is sufficiently slow
as compared to the computation of the average given by
the matrix P, otherwise these centers might diverge and the
estimated center of the source hi(k) can be totally wrong.
Such separation of time scales is regulated by the parameter
ε: the smaller it is, the slower the convergence to the source
is, but at the benefit of a guaranteed stability.

Algorithm 1 Distributed gradient-ascent consensus [20]
1: for i = 1, . . . ,N do
2: hi(0) = gi(0) = ci(0)+∇σi(ci(0))
3: end for

4: for k = 1,2, . . . do
5: for i = 1, . . . ,N do
6: gi(k) = ci(k−1)+∇σi(ci(k−1))
7: h̃i(k) = hi(k−1)+gi(k)−gi(k−1)
8: end for
9: h(k) = (P⊗ I2)h̃(k)

10: for i = 1, . . . ,N do
11: ci(k) = (1− ε)ci(k−1)+ εhi(k)
12: end for
13: end for

Lemma 2 Let us consider Algorithm 1 where ||ci(0)−z∗||<
r for some arbitrary r > 0, and P is a doubly stochastic
matrix with essential spectral radius esr(P)< 1. Then there



exists ε̄r > 0 (possibly depending on r) such that ∀ε ∈ (0, ε̄r)

lim
k→∞

ci(k) = z∗, ∀i

exponentially fast.

Proof: The formal proof is given in [20], but we
still want to provide a sketch of the proof for the benefit
of understanding. The proof is based on the separation of
time-scales and basically reduces first to study the fast-
dynamics and proving that it has exponential convergence
to a manifold, and later to study the slow dynamics when
the fast variables are constrained to live in the manifold.
Fast Dynamics: If we set ε = 0, then ci(k) = ci(0) = ci
for all k ≥ 0. This implies that gi(k) = ci +∇σi(ci) for all
k≥ 1, and therefore h̃i(1) = ci+∇σi(ci) and h̃i(k) = hi(k−1)
for k > 1. As a further consequence, the dynamics of h
becomes h(k) = (P⊗ I2)h(k− 1) for k ≥ 1, which implies
that limk→∞ hi(k) = 1

N ∑
N
i=1 (ci +∇σi(ci)) = h̄(c) exponen-

tially fast with rate given by esr(P).
Slow Dynamics: If we insert the steady state of the fast
dynamics hi(k) = h̄(c) into the slow dynamics we get

ci(k) = (1− ε)ci(k−1)+ ε h̄(c(k−1))

Since each system is driven by the same forcing term
h̄(c(k−1)), then limk→∞ ci(k)− c j(k) = 0, therefore we can
restrict our attention to the scenario where ci(k) = c̄(k),∀i,
which implies that h̄(c(k)) = c̄(k) + 1

N ∑
N
i=1 ∇σi(c̄(k)) =

c̄(k)+∇σ̄(c̄(k)) whose dynamics are given by

c̄(k+1) = (1− ε)c̄(k)+ ε(c̄(k)+∇σ̄(c̄(k)))
= c̄(k)+ ε∇σ̄(c̄(k))

which is the standard gradient-ascent update. If ε is suffi-
ciently small, then the separation of time-scale holds and
limk→∞ ci(k) = limk→∞ c̄(k) = z∗.

Remark 1 Although in the theorem we considered a con-
stant consensus matrix P, the same conclusion applies even
for time-varying consensus matrices P(k) with possibly ran-
dom but bounded time-delay, as long as the slow dynamics
is sufficiently slow as compared to the convergence rate of
the product of the consensus matrices P(k). Since the slow
dynamics are regulated by the tunable parameter ε , this is
always possible. This implies that asynchronous communica-
tion does not impair the algorithm, however P(k) still need to
be doubly stochastic such as in symmetric gossip consensus
in order to exactly compute the exact average of the local
vectors h̃i(k).

IV. DISTRIBUTED SOURCE-SEEKING

As presented in previous section, if the gradient is not
available, the direction on the gradient of a signal strength
can be approximated by a group of agents distributed uni-
formly along a circular formation. If we assume all-to-all
and instantaneous communication, all the agents compute the
same estimated gradient direction and then this direction can
be used to drive the formation towards the source following a

gradient-descent method as shown in [15], [4]. However, the
all-to-all communication assumption is not realistic and in
several situations each agent communicates only with their
neighbors.

Our main contribution is to modify previous algorithm
in order to use the collaborative estimation of the gradient
direction presented in Lemma 1 and thus, to achieve the
source-seeking task in a distributed way. At each instant k,
each agent computes its position ri(k), its center ci(k) and
its estimated gradient vector fi(k) = σ(ri)(ri(k)−ci(k)). The
objective for the agents is now, to reach an agreement on the
centers’ position ci and to compute the vector f̄ (k) at each
time k defined by:

f̄ (k) =
1
N

N

∑
i=1

σ(ri)(ri(k)− ci(k)) (4)

which is a good approximation of the gradient direction of
the measured signal distribution. The aim for the formation
is to reach the source location, such that, limk→∞ ci(k) = z∗.

The proposed source-seeking strategy is described in Al-
gorithm 2, which is very similar to Algorithm 1. There are
two differences: the first difference being that ∇σi in Line 6
is substituted with σ(ri)(ri−ci), while the second difference
is the inclusion of a local low-pass filtering of the local
signal gi(k) in order to make the algorithm more robust
to measurement noise. The low-pass filter is regulated by
the parameter α which tradeoffs smoothing of the signal
(α ≈ 0) with responsiveness to changes of the signal gi(k)
(α ≈ 1). Indeed, for α = 1, Algorithm 2 and Algorithm 1
are substantially the same.

Algorithm 2 Distributed source-seeking algorithm
1: for i = 1, . . . ,N do
2: hi(0)= g̃i(0)= g̃i(−1)=ci(0)+σ(ri(0))(ri(0)−ci(0))
3: end for

4: for k = 1,2, . . . do
5: for i = 1, . . . ,N do
6: gi(k) = ci(k)+σ(ri(k))(ri(k)− ci(k))
7: g̃i(k) = (1−α)g̃i(k−1)+αgi(k)
8: h̃i(k) = hi(k−1)+ g̃i(k−1)− g̃i(k−2)
9: end for

10: h(k) = (P⊗ I2)h̃(k)
11: for i = 1, . . . ,N do
12: ci(k) = (1− ε)ci(k−1)+ εhi(k)
13: end for
14: end for

This algorithm has two tunable parameters, namely ε and
α that can be used to tradeoff rate of convergence, robustness
to noisy measurements and formation stability. A formal
statement of the properties of this algorithm is given in the
following theorem:

Theorem 1 Let σ : R2 → R be a bounded function which
satistifies Assumption 1 and σ(ri) be the measure collected
by agent i where ri(k) is its position vector given by (1). Let



us consider Algorithm 2 where ||ci(0)− z∗|| < r for some
arbitrary r > 0, α ∈ (0,1], and P is a doubly stochastic
matrix with essential spectral radius esr(P)< 1. Then there
exists ε̄ > 0 (possibly depending on r and α) such that for
all ε ∈ (0, ε̄)

lim
k→∞

ci(k)− c j(k) = 0, ∀i, j

exponentially fast. Moreover, all the centers ci converge
asymptotically to the neighborhood of the maximum of the
signal distribution σ(z) located at z∗.

Proof: We present here a sketch of the proof which
follows the same steps that in previous Lemma 2 based on
the separation of time-scales.
Fast Dynamics: If we set ε = 0, then ci(k) = ci(0) = ci for all
k ≥ 0 and thus, according to Eq. (1) the position of agent i
becomes ri(k) = ci+DR(φi)e = ri(0) = ri for all k≥ 0. This
implies that gi(k) = ci +σ(ri)(ri− ci) for all k ≥ 1 and thus
∀α ∈ (0,1] g̃i(k) = ci+σ(ri)(ri−ci) for all k≥ 1. Therefore
h̃i(1) = ci+σ(ri)(ri−ci) and h̃i(k) = hi(k−1) for k > 1. As
a further consequence, the dynamics of h becomes h(k) =
(P⊗ I2)h(k−1) for k ≥ 1, which implies that

lim
k→∞

hi(k) =
1
N

N

∑
i=1

(ci +σi(ri)(ri− ci)) = h̄(c)

exponentially fast with rate given by esr(P).
Slow Dynamics: If we insert the steady state of the fast
dynamics hi(k) = h̄(c) into the slow dynamics we get

ci(k) = (1− ε)ci(k−1)+ ε h̄(c(k−1))

Since each system is driven by the same forcing term
h̄(c(k− 1)), then limk→∞ ci(k)− c j(k) = 0, which implies
that the circular formation of agents is maintained and
their position vectors depend on the common center, such
that ri(c). Therefore we can restrict our attention to the
scenario where ci(k) = c̄(k),∀i, which implies that h̄(c(k)) =
c̄(k) + 1

N ∑
N
i=1 σ(ri(c̄(k)))(ri(c̄(k))− c̄(k)). Therefore, each

agent computes the estimate of the gradient direction f̄ (c̄) =
∑

N
i=1 σ(ri)(ri − c̄). Thanks to Lemma 1 dealing with the

appoximation via a circular formation of agents of the
gradient of a signal strength at the circle center, the following
equation holds:

h̄(c(k)) = c̄(k)+ f̄ (c̄(k)) = c̄(k)+
D2

2
∇σ(c̄)+o(D2)

And thus the dynamics of c̄ are given by

c̄(k+1) = (1− ε)c̄(k)+ ε(c̄(k)+ D2

2 ∇σ(c̄)+o(D2))

= c̄(k)+ ε
D2

2 ∇σ(c̄)+ εo(D2)

which is the standard gradient-ascent update away from the
approximation error o(D2). Thanks to the Taylor’s theorem
we can quantify this error. Since Assumption 1 is satisfied,
the Hessian of the signal strength is bounded and thus the
error of the gradient approximation is negligible with respect
to 1

2 D3m1. If ε is sufficiently small, then the separation
of time-scale holds and limk→∞ ci(k) = limk→∞ c̄(k) which
converges to the neigborhood of z∗.
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Fig. 2. Source-seeking Algorithm 2 via a circular formation of agents
(ε = 0.2, α = 1)

V. SIMULATION RESULTS

In this section we present some simulations to show the
convergence of the proposed source-seeking algorithm. For
all simulations, the scalar field is a combination of two
ellipsis and thus with non convex level curves given by

σ(z) = exp
(
−zT S1z

)
+ exp

(
−zT R(π/4)T S2R(π/4)z

)
where S1 = 1

100

[
1/
√

30 0
0 1

]
, S2 = 1

100

[
1 0
0 1/

√
15

]
. The

maximum corresponding to the source is located at z∗ =
[0 0]T represented by the black ×. The communication
topology considered is a ring, where agents can communicate
only to their left and right neighbors, and thus the symmetric
circulant communication matrix is

P =

 1/2 1/4 0 1/4
1/4 1/2 1/4 0
0 1/4 1/2 1/4

1/4 0 1/4 1/2


Fig. 2 shows a simulation of four agents modeled by (1)

with radius D = 1.5 computing Algorithm 2. The control
parameters are ε = 0.5 and α = 1. The void green circles
represents the agents at three different iterations, the initial
conditions, an intermediate state at k = 4000 and the final
state at k = 8500. The red stars represent the position of
each center ci(k) during the source-seeking task. Thanks to
Algorithm 2, the fleet of agents reaches a consensus on the
center position and the formation is steered to the source
location.

Fig. 3 displays the evolution of the first component of the
centers’ trajectories cx,i at the first iteration steps for three
simulations of four agents computing Algorithm 2 with α = 1
and different values of ε . The number of iterations to reach
the source position for each simulation are respectively k =
22000, k = 8500, and k = 4500. Reasonably, the larger is
the value of ε the faster is the convergence of the algorithm
and hence the circular formation reach the souce location
in fewest iterations. However, as displayed in Figure 3, the
centers’ trajectories ci oscillates for largest values of ε .

Fig. 4 shows a simulation of four agents modeled by (1)
with radius D = 1.5 computing Algorithm 2. The control pa-
rameters are ε = 0.5 and α = 0.5. The signal measurements
are corrupted by zero-mean Gaussian noise w(k). Thanks
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Fig. 3. Evolution of the first component of the centers cx,i for α = 1 and ε = 0.2, ε = 0.5 and ε = 1 respectively.
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Fig. 4. Source-seeking Algorithm 2 via a circular formation of agents when
the measurements are corrupted by Gaussian white noise (ε = 0.5, α = 0.5)

to Algorithm 2, the fleet of agents reaches a consensus
on the center position and the formation is steered to the
neiborghood of the source location.

Fig. 5 displays the evolution of the first component of the
centers’ trajectories cx,i at the first iteration steps for three
simulations of four agents computing Algorithm 2 with ε =
0.5 and different values of α . The signal measurements are
corrupted by zero-mean Gaussian noise w(k). The number
of iterations to reach the source position for each simulation
are respectively k = 28000, k = 14000 and k = 12000. The
low-pass filter regulated by parameter α allows attenuating
the measurement noise and hence the centers’ trajectories are
smoother for smaller values of α . However, the smaller is
this parameter, the slower is the convergence to the source
location.

VI. CONCLUSION AND FUTURES WORKS

This paper provides a distributed solution to the 2-
dimensional souce localization problem. Our cooperative
approach considers a group of agents which are able to
measure the signal distribution emitted by the source. No
previous acknowledgment of the signal is assumed. Firstly,
we show that collecting the measurements of agents uni-
formly distributed along a circular formation, the gradient
of the signal strenght at the center of the formation can
be extimated. Using this information, a distributed source-
seeking algorithm is proposed in order to steer the fleet of
vehicles to the source location. This result is based on a
Newton-Raphson consensus algorithm for distributed opti-
mization. Our solution allows keeping the circular formation,
estimating the gradient of the signal and driving the center of

the formation to the maximum of the scalar field of interest.
Moreover, we included a low-pass filter in order to make the
algorithm more robust to measurement noise.

Future works will be focused on extending previous al-
gorithm to the 3-dimensional case. Another future direction
is to approximate the Hessian of the signal distribution at
the center of the circular formation in order to improve the
convergence rate of our source-seeking algorithm.
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[4] L. Briñón-Arranz, A. Seuret, and C. Canudas-de-Wit. Collaborative
estimation of gradient direction by a formation of AUVs under
communication constraints. In Proc. of the 50th IEEE Conference
on Decision and Control, 2011.
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