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Abstract: In this paper we address the problem of distributed Kalman filtering for spatio-temporal
Gaussian Process (GP) regression. We start our analysis from a recent result that bridges classical non-
parametric GP-based regression and recursive Kalman filtering to perform efficient estimation of spatio-
temporal processes. Inspired by results on distributed Kalman filtering, we propose two algorithms to
perform distributed GP regression in sensor networks. The first contribution is a procedure in which
each sensor estimates a local copy of the entire process. The main idea is to combine a classical average
consensus information filter running among neighboring sensors with local Kalman filter which is
optimal with respect to the partial information gathered by means of the consensus. The procedure,
in the limit of the average consensus filter, is proven to be in one-to-one correspondence with the
classical Kalman procedure which assumes a central processing unit collecting and processing all the
measurements at once. To enhance the estimation performance, as second contribution we propose a
modified algorithm in which neighboring nodes perform consensus among the partial state estimates.
Finally, theoretical results are further complemented with numerical simulations and comparison with
alternative solutions available in the literature.
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1. INTRODUCTION

In the last decades two major concepts are emerging among
many others: “Learning” and “Dig-Data”. These are often right-
fully considered as closely related, however they call for differ-
ent challenges. Indeed, while the ultimate goal of “Learning”
is to learn from data, “Big-Data” analysis calls for efficient
computational paradigms to manipulate great amount of data.
Regarding “Learning” and, especially, in machine learning
(Cucker and Smale, 2001; Williams and Rasmussen, 2006), one
major approach is based on Gaussian Process (GP) regression
(O’Hagan and Kingman, 1978), i.e., a Bayesian learning frame-
work where GP are used as non-parametric priors for the mod-
eled process. While in the classical GP learning framework,
i.e., Kriging (Cressie, 1990), the modeled process is consid-
ered static, to capture many interesting rapidly varying spatio-
temporal phenomena (e.g., wind and ocean currents), extension
of the methodology to the case of spatio-temporal processes has
become of great interest. Typically time can be simply regarded
as an additional input feature (Williams and Rasmussen, 2006).
However, it is well known that this approach is inefficient due
to the heavy computational and storing requirements which has
cubic growth with the number of collected measurements. Thus
the approach is not suitable to exploit the time varying nature of
the processes. Nevertheless, much effort has been put in order to
cope with the computational complexity needed to implement
GP regression methods. Examples are the use of sparse approx-
imation (Williams and Rasmussen, 2006; Oh et al., 2010) and
finite memory approaches based on truncated observation (Xu
et al., 2012). Conversely, in the context of dynamical learning,
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the Kalman filter (Kalman, 1960) offers an efficient recursive
procedure for learning dynamical processes, conditioned to a
state-space knowledge of the process to learn. In view of this,
a substantial body of literature (O’Hagan and Kingman, 1978;
Hartikainen and Särkkä, 2010; Särkkä and Hartikainen, 2012;
Särkkä et al., 2013; Carron et al., 2016) is growing on the study
of the connection between GPs and Kalman filtering. The main
idea is to build equivalent state-space representations of the
processes where Kalman filtering can be applied.
Regarding “Big-Data” analysis, regardless of the regression
approach used (namely classical GP based methods, classical
Kalman filtering or the combination of the two) a major is-
sue remains open: distributed/parallel computation. Indeed, the
advent of the “Big-Data” era asks for parallelisation of the
computational burden among many processing units since it is
inconceivable to run algorithms on one single (super-)computer.
Another critical drawback induced by the manipulation of Big-
Data is privacy. Indeed, to disclose the minimum amount of
possibly sensible information, it is desirable to exchange only
local information among computational units. Last but not least,
sparsity interpreted as locality of physical interactions, repre-
sents one additional issue. Indeed, many processes are sparse by
nature since spatial correlation between data is only local. Thus,
distributed paradigms turn out to be more suitable and efficient
than their centralized counterparts. Hence, as opposed to both
GP based methods and classical Kalman inference which were
born as centralized procedures and represent the state of the art
for “Learning”, distributed optimization tools (Bertsekas and
Tsitsiklis, 1989) have become the core for “Big-Data” analysis.

In this work we are intereseted in combining these three as-
pects, namely GP based regression, Kalman filtering and dis-
tributed computation for learing time varying spatio-temporal



processes. We start our analysis from the recent work by Carron
et al. (2016). There, under suitable separability assumptions on
the spatio-temporal Kernel describing the time varying process,
the authors showed that the process, sampled over a finite di-
mensional set of input locations, can be described as the output
of a suitable dynamic linear system. Based on that, periodic
measurements can be used to develop a Kalman filtering al-
gorithm providing a minimum mean-square estimate of the
process. However, the procedure requires a central processing
unit to gather, store and process all the measurements at once.
Conversely, here we assume that measurements are sampled
from devices which are endowed with mild computational and
communication capabilities. By exploiting a local exchange of
information between neighboring devices, we compute local
estimates of the entire process. In this regard we refer to the vast
literature on distributed Kalman filtering (R.Carli et al., 2008;
G.Battistelli et al., 2015; F.S.Cattivelli and A.H.Sayed, 2010)
and, in particular, we take inspiration from the seminal work by
Olfati-Saber (2007) where the author developed a Kalman in-
formation filter with an embedded consensus iteration to com-
bine the information coming from neighboring sensors. Our
contributions are mainly two. (i) First, we combine a consensus
information filter running among neighboring sensing devices
with a purely local Kalman procedure. The latter, conversely to
Olfati-Saber (2007), is optimal with respect to the partial infor-
mation gathered and, as the number of communication rounds
between a measurement sampling period grows to infinity, it is
proved to coincide with the classical centralized algorithm. (ii)
Second, we extend our consensus information filter to perform
state consensus. Numerically, we compare our solutions against
the result of Olfati-Saber (2007) and it is shown how this ap-
proach let us enhancing the overall estimation performance.

The remainder is organized as follows. In Section 2 we briefly
recall the major results of Carron et al. (2016) which we take as
starting point. In Section 3 we present our major contribution.
In Section 4 we report some numerical simulations and we
compare our solution against Olfati-Saber (2007). Finally, in
Section 5 we offer some concluding remarks.

2. A KALMAN FILTER ALGORITHM FOR DYNAMIC
GAUSSIAN PROCESSES

Let X be a compact set of Rd , d ∈ N+. Let f (x, t) be a
unknown time-varying function, defined over X , i.e., f : X ×
R+ → R. We assume f to be modeled as a zero-mean Gaus-
sian Process with covariance K. Since f is time-varying, K
represents a spatio-temporal kernel, i.e., K : X ×X ×R+×
R+→ R .

We assume to be able to sample f only on a finite dimensional
subset Xmeas ⊆ X consisting of a collection of M given
locations, namely,

Xmeas := {x1, . . . ,xM |xi ∈X } .

More precisely, we assume to have M sensors, labeled 1 through
M, which are located at the M given locations (the i-th sensor
is located at xi) : for i ∈ {1, . . . ,M}, sensor i collects measure-
ments at discrete time instants t = kT , k = 0,1,2, . . ., being T
the sampling time, of the form

yi(kT ) = f (xi,kT )+ vi(kT ) , (1)

where vi(kT ) is a zero-mean white noise of variance σ2,
namely, vi(kT )∼N (0,σ2).

Authors in Carron et al. (2016) have shown that, under some
assumptions on the kernel K, the process f sampled over Xmeas,
or, equivalently, the M-dimensional vector

f(t) := [ f (x1, t), . . . , f (xM, t)]T ,

can be described as the output of a suitable dynamic linear
system. Based on that, the measurements in (1) can be used
to develop a Kalman-filter algorithm providing a minimum
mean-square error estimate f̂ of f. These concepts are formally
explained in the next Assumption and Proposition.
Assumption 1. (Generating Kernel properties).
The kernel function K, covariance of the Gaussian process
f (x, t), is separable in time and space and stationary in time,
namely,

K(x,x′, t, t ′) = Ks(x,x′)h(τ) , τ = t ′− t .
In addition, the power spectral density Sr(ω) =W (iω)W (−iω)
of h(τ) is a rational function of order 2r, where W (iω) is like
in (A.1). �

According to the above Assumption we restrict to the specific
yet sufficiently rich class of separable spatio-temporal kernel
functions, stationary in time. In addition, since the power spec-
tral density of h is a rational function of order 2r, it is possible
to provide for it a state-space representation as described in
Appendix A.
The following proposition exploits Assumption 1 to show that
the process f(t), admits an equivalent exact continuous-time
state-space representation.
Proposition 2. (Equivalent CT-SS representation for f(t)).
Consider the process f(t) : Xmeas ×R+ 7→ RM generated by
the spatio-temporal kernel K satisfying Assumption 1. Let
the triplet (F,G,H) be a state-space representation for Sr(ω)
as described in Appendix A. Then, f(t) admits the following
strictly proper state-space representation

Si :
{

ṡi(t) = Fsi(t)+Gwi(t)
zi(t) = Hsi(t)

i ∈ {1, . . . ,M} ,

f(t) = K̄1/2
s z(t)

(2)

where

• i is an index cycling through all the input locations of
Xmeas;

• z(t) := [z1(t), . . . ,zM(t)]T ;
• K̄s ∈ RM×M is obtained sampling Ks over Xmeas;
• for i∈ {1, . . . ,M}, wi(t)∼N (0, I) and si(0)∼N (0,Σ0),

with Σ0 computed as solution of the Lyapunov equation
FX +XFT +GGT = 0. �

The proof can be found in Carron et al. (2016). Observe that the
subsystems Si in (2) are independent one from each other i.e.,
one can easily verify that E

[
si(t)T s j(t)

]
= 0 ∀t,∀i 6= j.

Now, let s =
[
sT

1 , . . . ,s
T
M
]T and w(t) = [w1, . . . ,wM]T , then we

can write in a more compact form,

{
ṡ(t) = (I⊗F)s(t)+(I⊗G)w(t)
f(t) = K̄1/2

s (I⊗H)s(t) .
(3)

Observe that Equation (3) gives a continuous-time state-space
representation for the process. However, measurements in (1)
are taken in discrete time. Thus, the goal is to reconstruct
the estimate f̂(kT ) of f(t) at the discrete time instants, kT ,
k = 0,1,2 . . . , defined as



f̂(kT ) := E [f(kT ) |{xi,yi(kT )} , i ∈ {1, . . . ,M}] . (4)

In the following, since there is no risk of confusion, we drop
the sampling time T from kT and use just k to denote the
corresponding discrete time instant. The estimate f̂(k) can be
computed by developing a proper Kalman filter for the dis-
cretized version of the continuous-time model in (3), which is
written as {

s(k+1) = As(k)+n(k)
y(k) = Cs(k)+v(k) . (5)

where

• A = exp(I⊗F)T ;
• n(k) is a zero-mean random Gaussian noise with variance

Q = I⊗ Q̄, where

Q̄ =
∫ T

0

(
eFτ
)

GGT (eFτ
)T

dτ ;

• y(k) = [y1(k), . . . ,yM(k)]T and v(k) = [v1(k), . . . ,vM(k)]T ;
• C =

[
CT

1 · · · CT
M
]T with

Ci = eT
i K̄1/2

s (I⊗H) ,

where ei denotes the i-th vector of the canonical basis.

Observe, that, according to the previous notation, the measure-
ment yi(k) can be written as

yi(k) =Cis(k)+ vi(k) .

Moreover, it is important to remark the matrix A is stable.
Indeed, the fact that matrix F derives from a state-space rep-
resentation of a stationary power spectral density, implies that
F is stable and, in turn, the stability of A. It easily follows that
the pair (A,Ci) is detectable for all i ∈ {1, . . . ,M} and the pair
(A,Q) is stabilizable.

Next, we illustrate the Kalman regression algorithm (denoted
hereafter as the KR algorithm), which bridges Gaussian pro-
cesses regression and Kalman filtering on Xmeas. We assume
that there is a central unit (CU) which, during each iteration of
the algorithm, collects all the measurements and performs all
the computations.
The KR algorithm works as follows. At the beginning of the
k-th iteration, the CU has in memory the variables f̂(k− 1),
ŝ(k− 1|k− 1) and Σ(k− 1|k− 1): f̂(k− 1), ŝ(k− 1|k− 1) rep-
resent the filtered estimate of f(k− 1) and s(k− 1), given the
measurements y(0), . . . ,y(k− 1) while Σ(k− 1|k− 1) denotes
the covariance of the error s(k− 1)− ŝ(k− 1|k− 1). During
the k-th iteration the CU collects the measurements y(k) =
[y1(k), . . . ,yM(k)]T and, successively, performs the following
standard Kalman computations

ŝ(k|k−1) = Aŝ(k−1|k−1)

Σ(k|k−1) = AΣ(k−1|k−1)AT +Q
ŝ(k|k) = ŝ(k|k−1)+L(k)(y(k)−Cŝ(k|k−1))
Σ(k|k) = Σ(k|k−1)−L(k)CΣ(k|k−1)

L(k) = Σ(k|k−1)CT (CΣ(k|k−1)CT +R
)−1

f̂(k) = K̄1/2
s (I⊗H) ŝ(k|k) . (6)

The filter is initialized as ŝ(0| − 1) = 0, Σ(0| − 1) = I ⊗ Σ0,
where Σ0 is solution of the Lyapunov equation FX +XFT +
GGT = 0. With these initializations, it has been shown in

Carron et al. (2016) that the estimate f̂(k) generated by the KR
algorithm coincides with minimum mean-square error estimate
defined in (4). Finally, notice that from (6) we have

E[(f(k)− f̂(k))(f(k)− f̂(k))T ] =

K̄1/2
s (I⊗H)Σ(k|k)(I⊗H)T K̄1/2

s .
(7)

Next we provide an explicit example to help the reader’s in-
tuition on how, starting from a rational PSD, it is possible to
retrieve its discrete-time state-space representation.
Example 3. Consider the exponential time kernel h(τ)= λe−σt |τ|

satisfying Assumption 1 since its PSD Sr is equal to

Sr(ω) =

√
2λσt

(σt + iω)

√
2λσt

(σt − iω)
(8)

which is rational of order 2. Now, consider a zero-mean Gaus-
sian process f (x, t) with covariance

K(x,x′,τ) = Ks(x,x′)h(τ) = e−σx(x1−x2)
2
λe−σt |τ| (9)

that is, a Gaussian spatial kernel and an exponential time kernel.
Thanks to Proposition 2, since K satisfies Assumption 1, f(t)
admits a state space representation. In particular, given Sr as in
(8) with

W (iω) =

√
2λσt

(σt + iω)
,

it is easy to see the state-space model matrices are equal to

F =−σt , H =
√

2λσt , G = 1 , (10)

while the matrix K̄1/2
s is computed as the Cholesky factorization

of the sampled kernel K̄s. Finally, the discrete time state-space
representation for f(k) is given by

F̄ = e−σt T , H =
√

2λσt , Q̄ =
∫ T

0
e−2σt τ dτ .

�
Remark 4. It is worth noticing that, in cases when the PSD S of
h is not rational it is always possible to build a rational PSD
Ŝr which approximate the true one. Different approximating
methods can be used, e.g., Taylor series expansion or Pade
approximation. This leads to an approximate state-space model
for f(t). �

3. DISTRIBUTED KALMAN REGRESSION

The KR algorithm we have illustrated in the previous Section,
requires the presence of a central unit which collects all the
measurements taken by the sensors and processes this informa-
tion to compute the update and the prediction steps as described
in (6).
In this Section, we provide a distributed version of the KR-
algorithm (denoted hereafter as the d-KR-1 algorithm), where
each sensor is assumed to be endowed with computational ca-
pabilities and is allowed to exchange information with some
of the other sensors. In particular, the admissible communica-
tions are described by an undirected graph G = (V,E ), where
V = {1, . . . ,M} is the set of nodes (node i refers to sensor i)



and E ⊆ V ×V is the set of edges : (i, j) ∈ E if and only if
sensor i can communicate with sensor j. We define by Ni the
neighborhood of sensor i, i.e.,

Ni = { j ∈V : (i, j) ∈ E } .

It is worth remarking that a convenient way to describe the pos-
sible connections among the components of a wireless sensor
network is given by the geometric graph, where, for a given
communication radius r, r > 0, we have that (i, j) ∈ E if and
only if the following geometric condition is satisfied

‖pi− p j‖ ≤ r ,

where pi and p j denote the positions of node i and node j,
respectively.
In the distributed setup we are interested, each sensor i, i ∈
{1, . . . ,M}, has local estimates of the entire process f, of the
state s and of the corresponding covariance error, denoted in
the following as f̂i, ŝi and Σi, respectively. At the beginning of
each iteration, sensor i takes the measurements yi; the basic idea
is that, before taking the next measurement, the sensor interacts
with its neighbors in order to increase the amount information at
its disposal to provide an estimate ŝi with a smaller covariance
error Σi. In particular, the sensors resort to a standard average
consensus algorithm, to decrease the uncertainty associated
to the measurements they take. However, observe that the
observation matrices Ci are, in general, different with each
other, and, thus, the sensors are not homogeneous. For this
reason, inspired by the Information form of the Kalman filter,
the sensors do not perform an averaging operation on yi but on
the associated information vectors which are classically defined
as

zi =CT
i R−1yi .

We formally describe the d-KR-1 algorithm next. At this aim,
let P be a doubly-stochastic matrix compatible with the com-
munication graph G . Assume that, at the beginning of the k-th
iteration, sensor i, i ∈ {1, . . . ,M}, has in memory the quantities
ŝi(k− 1|k− 1), Σi(k− 1|k− 1) and f̂i(k− 1) and it takes the
measurement yi(k). Before taking the subsequent measurement
yi(k+ 1), sensor i, firstly, runs m steps of the consensus algo-
rithm ruled by the matrix P and, secondly, updates ŝi, Σi based
on the information gathered from this message exchange with
its neighbours.
To be more precise, let zi(0;k) = CT

i R−1yi(k). Then, for h =
0, . . . ,m−1, sensor i perform the following two actions

(1) it sends to its neighbors the variable zi(h;k) and it gathers
from them the variables z j(h;k), j ∈Ni;

(2) it computes zi(h+1;k) as
zi(h+1;k) = Piizi(h;k)+ ∑

j∈Ni

Pi jz j(h;k) . (11)

At the end of the m consensus steps, each sensor has at its
disposal the variable zi(m;k) which can be seen as a fictitious
measurement ỹi(k) of the state s(k) by introducing a proper
observation matrix C̃i and a proper noise ṽi. Indeed, observe
that, if [Pm]i j denotes the element in the i-th row and j-th
column of the m-th power of the matrix P, then we can write

ỹi(k) = zi(m;k) =
M

∑
j=1

[Pm]i j

σ2

(
CT

j C js(k)+CT
j v j(k)

)
= C̃is(k)+ ṽi(k) , (12)

where

C̃i =
M

∑
j=1

[Pm]i j

σ2 CT
j C j , ṽi(k) =

M

∑
j=1

[Pm]i j

σ2 CT
j v j(k) .

Notice that, as for the KR algorithm, we have that for all i ∈V ,
the pair (A,C̃i) is detectable. Moreover, note that ṽi(k) is a zero-
mean noise with variance R̃i, given by

R̃i = E
[
ṽi(k)ṽi(k)T ]= M

∑
j=1

[Pm]2i j

σ2 CT
j C j .

Sensor i uses ỹi(k), C̃i and R̃i to update ŝi and Σi according to
the following standard Kalman-filter equations

ŝi(k|k−1) = Aŝi(k−1|k−1)

Σi(k|k−1) = AΣi(k−1|k−1)AT +Q
ŝi(k|k) = ŝi(k|k−1)+Li(k)

(
ỹi(k)− C̃îsi(k|k−1)

)
Σi(k|k) = Σi(k|k−1)−Li(k)C̃iΣi(k|k−1)

Li(k) = Σi(k|k−1)C̃T
i
(
C̃iΣi(k|k−1)C̃T

i + R̃i
)†

f̂i(k) = K̄1/2
s (I⊗H) ŝi(k|k) . (13)

The filter is initialized as, for all ∈ {1, . . . ,M}, ŝi(0| − 1) = 0,
Σi(0| − 1) = I ⊗ Σ0, where Σ0 is solution of the Lyapunov
equation FX +XFT +GGT = 0.
We stress the fact that to compute the filter gain of Eq. (13)
we make use the pseudoinverse operator (·)†. This precaution,
which can be made without loss of generality thanks to results
in classical Bayesian filtering, is necessary since the measure-
ments noise variance matrix R̃i is, in general, only positive
semidefinite.
Observe that sensor i to compute the above equations needs to
know the matrix C̃i and R̃i, or, equivalently, for j ∈ {1, . . . ,M},
the weights [Pm]i j and the matrix C j. However, observe also
that the matrices C j, j ∈ {1, . . . ,M}, can be derived from the
knowledge of the input locations x1, . . . ,xM , and of the Kernel
K. The above observations are made precise in the following
Assumption.
Assumption 5. For i ∈ {1, . . . ,M}, sensor i knows the set of the
input locations Xmeas, the structure of the Kernel K, and the i-th
row of the matrix Pm. �

The following Proposition characterizes the stability of the
local filters.
Proposition 6. Assume Assumption 5 holds true and consider
the d-KR-1 algorithm described above. Then, given m ≥ 0, we
have that, for all i ∈ V , the local filters described by (13) are
stable, that is, there is a M-upla of definite positive matrices
Σ̄1, . . . , Σ̄M , such that

lim
k→∞

Σi(k|k) = Σi, i ∈V.

�

Proof. Observe that the stability of the matrix A implies that
the pair (A,C̃i) is detectable for all i∈V and that the pair (A,Q)
is stabilizable. These two facts imply the convergence of the
local Kalman filter described in (13). �



It is worth remarking that together with the result stated in the
previous Proposition, we have that there is also a M-upla of
matrices L̄1, . . . , L̄M , such that, for i ∈ V , lim

k→∞
Li(k) = L̄i and

the matrix (I− L̄iC̃i)A is stable.

Now, observe that for a given m, during the k-th iteration sensor
i updates the estimates f̂i having at its disposal a weighted
combination of the information quantities CT

i R−1yi(k); from
standard consensus theory, we know that as m increases, ỹi(k)
approaches 1/M ∑

M
j=1 CT

j R−1y j and we expect the estimate f̂i
to converge to the estimate computed in the centralized KR
algorithm. This observation is made precise in the following
Proposition which characterizes the performance of the d-KR-1
algorithm in the asymptotic case m→ ∞.
Proposition 7. Assume Assumptions 5 holds true and consider
the d-KR-1 algorithm described above. Then, for m → ∞,
or, equivalently, for Pm → 1/M11T , 1 we have that the local
estimates generated by d-KR-1 are such that, for any k,

f̂1(k) = . . .= f̂M(k) = f̂(k)

where f(k) is the estimate computed by the KR algorithm. �

Proof. Observe that, for m→ ∞, we have that

ỹi(k) =
1

σ2M

M

∑
j=1

CT
j C js(k)+

1
σ2M

M

∑
j=1

CT
j v j(k)

and

R̃i = E
[
ṽi(k)ṽi(k)T ]= 1

σ2M2

M

∑
j=1

CT
j C j .

Therefore C̃i = MR̃i. Applying the Information filter form
equivalent to the one described in (13), we have that the in-
formation at disposal of sensor i is C̃T

i R̃−1
i ỹi, which can be

manipulated as
C̃T

i R̃−1
i ỹi(k) = Mỹi(k)

=
1

σ2

M

∑
j=1

CT
j C js(k)+

1
σ2

M

∑
j=1

CT
j v j(k)

=
1

σ2 CTCs(k)+
1

σ2 CT v(k)

=
1

σ2 CT y(k)

Observe that, 1
σ2 CT y(k) is exactly the information which is at

disposal of the CU in the KR algorithm. This concludes the
proof. �

Remark 8. Observe that the estimate f̂i is defined over all the
set Xmeas. However there might be some applications where
the sensor i needs to have a good estimate of f only in a
local neighborhood of xi. In view of this, observe that in
general the spatial Kernel Ks are decaying functions of the
distance between the input locations. Moreover, usually the
communication graph in sensor networks is geometric, i.e.,
each sensor communicates with those sensors that are the most
spatially correlated ones with it. In this case we expect that
just after few iterations of the consensus algorithm, sensor i
has at its disposal sufficient information to compute a good
local estimate of f, that is, to compute an estimate f̂i which,
in a neighborhood of the input locations xi, is quite similar to

1 The symbol 1 denotes the vector with all the components equal to one.

the estimate f̂ provided by the KR algorithm. This fact will be
stressed later on in the numerical Section. �

Remark 9. The d-KR-1 has been inspired by Algorithm 1 in
Olfati-Saber (2007). However, in Algorithm 1, the sensors em-
bed only one consensus-like iteration to fuse the information
coming from the neighbors within each Kalman iteration, while
in d-KR-1 algorithm, the sensors are allowed to perform many
consensus iterations. In this sense d-KR-1 algorithm can be
viewed as an extension of Algorithm 1. Moreover, in Algo-
rithm 1 the messages coming from the neighbors are uniformly
weighted thus leading to the use of a weighting matrix that, in
general, might not be a doubly stochastic matrix as opposed
to what done in the d-KR-1. We stress that the fact that the
weighting matrix is doubly stochastic is of crucial importance
for the result stated in Proposition 7. �

3.1 Performing consensus on the state estimates

Inspired by Algorithm 3 proposed in Olfati-Saber (2007), in
this Section we provide a modified version of the d-KR-1
algorithm (which we refer to as d-KR-2), where the nodes share
information also about the state estimates they store in memory
and perform consensus steps also on these quantities. To be
more precise, the consensus phase of the k-th iteration of the
d-KR-1 algorithm is modified as follows.

Let zi(0;k) = CT
i R−1yi(k) and let z̄i(0;k) = ŝi(k − 1|k − 1).

Then, for h = 0, . . . ,m− 1, sensor i perform the following two
actions

(1) it sends to its neighbors the variables zi(h;k), z̄i(h|k), and
it gathers from them the variables z j(h;k), z̄ j(h;k), j ∈Ni;

(2) it computes zi(h+1;k) as in (11) and, similarly, it updates
z̄i(h+1;k) as

z̄i(h+1;k) = Piiz̄i(h;k)+ ∑
j∈Ni

Pi j z̄ j(h;k).

At the end of the m consensus steps, each sensor has at its
disposal the fictitious measurement ỹi(k) = zi(m;k) and the
averaged estimate s̄(k− 1|k− 1) = z̄i(m;k). Sensor i uses this
information to perform computations in (13), replacing ŝi(k−
1|k− 1) with the averaged estimate s̄(k− 1|k− 1); specifically
the first Equation (13) is modified as

ŝi(k|k−1) = As̄i(k−1|k−1) (14)

while all the other ones remain the same. In particular, notice
that the evolution of the matrices Σi(k− 1|k− 1), Σi(k|k− 1)
are exactly the same generated by the d-KR-1 algorithm but, in
this case, they do not represent anymore the covariance of the
errors ei(k− 1|k− 1) = s(k− 1)− ŝi(k− 1|k− 1) and e(k|k−
1) = s(k−1)− ŝ(k|k−1), respectively.
To characterize the evolution of the d-KR-2 algorithm, let
n(k) =

[
n1(k)T , . . . ,nM(k)T

]T , ṽ(k) =
[
ṽ1(k)T , . . . , ṽM(k)T

]T ,
e(k|k)=

[
e1(k|k)T , . . . ,eM(k|k)T

]T , Σ̃(k|k)=E
[
e(k|k)e(k|k)T

]
.

We have the following Proposition.
Proposition 10. Consider the d-KR-2 algorithm. Then the dy-
namics of the error e(k|k) are as follows

e(k|k) = (I−B(k))(Pm⊗A)e(k−1|k−1)+
+(I−B(k))(1⊗n(k−1))−D(k)ṽ(k)



where 2 B(k) = blkdiag
{

L1(k)C̃1, . . . ,LM(k)C̃M
}

and D(k) =
blkdiag{L1(k), . . . ,LM(k)}. Accordingly, we have that

Σ̃(k|k) =
(I−B(k))(Pm⊗A) Σ̃(k−1|k−1)((I−B(k))(Pm⊗A))T +

(I−B(k))N (I−B(k))T +D(k)Ṽ D(k)T ,

with N =E
[
(1⊗n(k−1))(1⊗n(k−1))T

]
, Ṽ =E

[
ṽ(k)ṽ(k)T

]
.

�

Proof. Observe that, from (14), it follows that
s(k)− ŝi(k|k−1)

= As(k−1)−A
M

∑
j=1

[Pm]i j ŝ j(k−1|k−1)+n(k−1)

=
M

∑
j=1

[Pm]i j A(s(k−1)− ŝ j(k−1|k−1))+n(k−1) .

The last Equation can be rewritten, in vector form, as
e(k|k−1) = (Pm⊗A)e(k−1|k−1)+1⊗n(k−1) . (15)

From the third Equation of (13) we get that
s(k)− ŝi(k|k)
= s(k)− ŝi(k|k−1)−Li(k)

(
C̃is(k)−C̃îsi(k|k−1)+ ṽi(k)

)
or, equivalently,

ei(k|k) = ei(k|k−1)−Li(k)C̃iei(k|k−1)−Li(k)ṽi(k) ,
which, in vector form, yields

e(k|k) = (I−B(k))e(k|k−1)−D(k)ṽ(k) .
Plugging the expression of e(k|k−1) obtained in (15), into the
previous Equation we get the first result stated in the Propo-
sition. Finally, the dynamics of Σ̃(k|k) is obtained by comput-
ing the expectation of e(k|k)e(k|k)T noting that e(k− 1|k− 1),
n(k−1) and ṽ(k) are zero mean and mutually independent. �

Now, recall from the analysis of d-KR-1 algorithm that the
matrix Li(k) converges to a steady-state matrix L̄i. This implies
that there exists B̄ such that lim

k→∞
B(k) = B̄. Therefore, it fol-

lows, from standard filtering theory, that the d-KR-2 algorithm
is stable, namely, Σ̃(k|k) converges to a definite positive matrix
¯̃
Σ, if and only if the matrix (I− B̄)(Pm⊗A) is stable.

Observe that the doubly stochastic matrix Pm couples the dy-
namics of the local filters ruled by the matrices (I−Li(k)C̃i)A,
i∈V . Indeed, if P is the identity, i.e., no consensus is performed
on the state estimates ŝi, we recover the d-KR-1 algorithm. In
general, it is not clear whether the stability of the matrices (I−
L̄iC̃i)A, i ∈V imply the stability of the matrix (I− B̄)(Pm⊗A)
or not. To understand this point will be object of our future
research. In the simulative example we illustrate in Section 4,
the stability of (I− B̄)(Pm⊗A) has been checked numerically.

We will see, in the proposed example, how the performance
of d-KR-2 algorithm outperforms the performance of d-KR-1
algorithm both during the transient and at the steady state.
Remark 11. The d-KR-2 has been inspired by Algorithm 3 of
Olfati-Saber (2007). As in Algorithm 1 also in Algorithm 3
the sensors embed only one consensus iteration to fuse the

2 The operator blkdiag(A1, . . . ,AM) builds a block diagonal matrix whose i-th
diagonal block is equal to the matrix Ai.
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Fig. 1. RMSEi, at k = 100, of the estimate f̂i, i = 15, obtained
with the d-KR algorithm for different values of consensus
iterations m.

neighbors information, related to both state estimates and mea-
surements. This is a first difference with respect to our d-KR-2
where the agents perform a given number of consensus steps.
A second difference is that, in Algorithm 3, the consensus-like
step on the state estimates is premultiplied by a matrix which in
our set-up would coincide with a scaled version of Σi(k|k); but
no theoretical convergence analysis of this scheme is provided
in Olfati-Saber (2007). �

4. SIMULATIONS

In this section we present some simulations to show the effec-
tiveness of the proposed algorithms.
We assume to work on a 1D space. More specifically, X con-
sists of a straight line of total length (M− 1)`. Xmeas consists
of M = 31 sensors equally spaced along X with inter nodal
distance ` = 0.6 [p.u] which, for illustration purposes, are la-
beled i= 0, . . . ,M−1 and from which we collect measurements
every T = 0.2[s]. The measurements are corrupted by white
Gaussian noise with σ = 0.35 [p.u.]. In view of our distributed
settings, the sensors are allowed to communicate with a com-
munication radius r = `. Consequently, Ni = {i− 1, i+ 1} for
i = {1, . . . ,M−2}, while N0 = {1} and NM−1 = {M−2}. The
communication matrix P is chosen to be the doubly stochastic
matrix

P =



2
3

1
3

1
3

1
3

1
3

. . .
1
3

1
3

1
3

1
3

2
3


.

Finally, as explained in Section 3, between each iteration of the
Kalman filter, we perform m consensus iterations.
The selected process is drawn by a spatio-temporal Gaussian
kernel K satisfying Assumption 1 where

Ks(x,x′) = λxe−σx‖x−x′‖2 , h(τ) = λte−σt |τ| ,

with λx = 2.5, σx = 0.17 Hz, λt = 2 and σt = 0.3 Hz. To
conclude the simulation set-up we recall that, as mentioned
in Example 3, the rational PSD Sr(ω) of h is as in Eq. (8).
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Fig. 2. Estimates f̂i, i = 15, and corresponding confidence
interval, at k = 100, obtained with the d-KR-1 algorithm,
for different values of consensus iterations m.
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Fig. 3. Estimates f̂i, i = 24, and corresponding confidence
interval, at k = 100, obtained with the d-KR-1 algorithm,
for different values of consensus iterations m.

Then, the compact discrete-time state space representation of
the entire system is as in (5) where the continuous time matrices
F , G, H are as in Eq. (10).

4.1 Performance of the d-KR-1 Algorithm

Here we test our d-KR Algorithm as described in Section 3. We
recall from Proposition 7 that, in the limit m→∞, the local filter
of each agent behaves exactly as the centralized KR algorithm.
In view of this, for different values of m, Figure 1 shows the
rooted mean squared error RMSE over the domain Xmeas of
the estimate f̂i, i = 15, which, at a given instant k, is computed
as

RMSEi(k) =
√

diag(E[(f(k)− f̂i(k))(f(k)− f̂i(k))T ])

=

√
diag(K̄1/2

s (I⊗H)Σi(k|k)(I⊗H)T K̄1/2
s ) ,

where the operator diag(·) creates a vector with the diagonal
elements of its argument and where, with a slight abuse of no-
tations, the sqrt(·) is meant to be component-wise. It turns out
the RMSEi is a vector defined over the input location contained
in Xmeas. As expected for increasing m the RMSEi tends to
mimic the performance of the centralized filter. Moreover, it
is worth noting how, for small m, the estimation i-th compo-
nent of RMSEi is already sufficiently small. This means that
the local estimate f̂i on xi (and for continuity also in a small
neighborhood of it) is already quite accurate. This can be noted
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Fig. 4. Evolution of ARMSEi, i= 15, averaged over 2000 Monte
Carlo runs.

in Figure 2 as well, which reports the process f and the estimate
f̂i, i = 15, for different values of m with their corresponding
confidence intervals (equal to ±3× RMSEi). Observe that for
m = 1 the estimate is accurate only around xi. Conversely, for
m = 10 the estimate becomes accurate over almost the domain
Xmeas. This suggests that to have a sufficiently accurate local
knowledge only few consensus steps are required. As stressed
in Remark 8, this behavior is partially induced by the particular
form of the chosen Kernel function. Indeed, Ks is an expo-
nentially decaying function of the distance between the nodes.
Thus, the spatial correlation is majorly local. Finally, similarly
to Figure 2, Figure 3 reports the behavior corresponding to node
i = 24. The qualitative trend is the same of the previous figure.
The only difference is that now the estimate is more accurate
around i = 24.

4.2 Performance of the d-KR-2 Algorithm

Here we compare our d-KR-2 algorithm as described in Section
3.1 with the d-KR algorithm of Section 3 and with Algorithm 3
of Olfati-Saber (2007). We recall that the main difference
between the d-KR-2 and the d-KR-1 algorithms is that in the d-
KR-2 the nodes not only perform consensus on the information
received from neighboring nodes but they perform consensus
over the state as well. For the three algorithms, Figure 4 shows
the evolution of the empirical averaged rooted mean squared
error ARMSE corresponding to node i= 15, computed, at every
iteration k, as

ARMSEi(k) =

√
1
T

1
M

T

∑
t=1
‖̂fi(k)− f(k)‖2

averaged over T = 2000 Monte Carlo runs. To perform a fair
comparison between Algorithm 3 in Olfati-Saber (2007) we
plot the d-KR-1 and the d-KR-2 algorithms for m = 1 only.
This is because in Olfati-Saber (2007) the nodes perform only
one embedded consensus step for each Kalman iteration. The
figure highlights that by comparing the d-KR-1 and the d-KR-2
algorithms it is worth noting that performing state consensus
is advantageous in both the transient and the steady state
performance. A similar outcome holds comparing the d-KR-2
against Algorithm 3 in Olfati-Saber (2007).

5. CONCLUSIONS

In this work we addressed the problem of efficient distributed
Gaussian Process based regression. We built our analyses on



recent results in Carron et al. (2016) which bridges Kalman
filtering and classical non-parametric GP based regression to
efficiently estimate spatio-temporal processes. Inspired by re-
sults in Olfati-Saber (2007) on distributed Kalman filtering, we
proposed two distributed algorithms which combine an average
consensus filter running among neighboring nodes of a sensor
network and a local Kalman filter. In the first procedure the
nodes perform consensus over the information gather from
neighboring nodes which is proved to behave exactly as the
classical centralized procedure as the number of communica-
tion rounds per measurement sampling period goes to infinity.
In the second, to enhance the estimation performance, the nodes
perform consensus also over the states of neighboring nodes.
The algorithms are compared against results in Olfati-Saber
(2007). In particular, our second contribution showed better
transient evolution as well as improved steady state behavior.

Appendix A. SPECTRAL FACTORIZATION OF RANDOM
PROCESSES

Here, we recall some notions about spectral factorization of
random processes and realization theory. In particular we want
to show how, a specific class of processes admits an equivalent
exact state-space representation.
Consider a stationary random process f (t) with covariance
h(τ). Thanks to the Wiener-Khinchin theorem, it is known that
the power spectral density (PSD) of the process is equal to the
Fourier transform of its covariance h, i.e.,

S(ω) := F [h(τ)](ω) .

Moreover, in the particular case when S = Sr is rational of order
2r, thanks to spectral factoriation Wiener (1949), its PSDs can
be rewritten as Sr(ω) =W (iω)W (−iω) with

W (iω) =
br−1(iω)r−1 +br−2(iω)r−2 + · · ·+b0

(iω)r +ar−1(iω)r−1 + · · ·+a0
. (A.1)

If necessary, to obtain the form (A.1) numerator and denomi-
nator coefficients of W are expanded and scaled. Finally, from
realization thoery, we have that rational functions of the form
(A.1) are in correspondance to the equivalent continuous time
state space representation Mohinder and Angus (2001) (com-
panion form) given by{

ṡt = Fst +Gwt

zt = Hst
(A.2)

where wt ∼N (0, I), the model matrices are equal to

F =


0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
−a0 −a1 −a2 . . . −ar−1

 , G =


0
0
...
0
1

 ,

H = [b0 b1 b2 . . . br−1] ,

and the initial state is s0 ∼ N (0,Σ0), with Σ0 computed as
solution of the Lyapunov equation FX +XFT +GGT = 0.
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