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Abstract: In this paper we study the problem of designing optimal consensus
algorithms for distributed estimation of dynamical systems. In particular, we
show that for fixed estimation gain, the problem of finding optimal consensus
matrix is convex and can be efficiently performed numerically. We also provide
some numerical examples to common scenarios, like symmetric geometric random
graphs, which are representative models for wireless sensor networks.
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1. INTRODUCTION

Recently Wireless Sensor Networks have attracted
the interest of a large research community since
they can be used to monitor very large scale ar-
eas with fine resolution. However, collecting mea-
surements from distributed wireless sensors nodes
at a single location for on-line data processing
may not be feasible due to long packet delay and
limited bandwidth of the wireless network. As a
consequence there is a growing need for in-network
data processing tools and algorithms that provide
high performance in terms of on-line estimation
while reducing the communication load among
all sensor nodes. In this work we will focus on
distributed estimation of dynamical systems for
which sensor nodes are not physically collocated
and can communicate with each other according
to some underlying communication network. For
example, suppose that we want to estimate the
temperature in a building that changes according
to a random walk, i.e T (t + 1) = T (t) + w(t),
where w(t) is a zero-mean random variable with
covariance q, and we have N sensors that can
measure temperature corrupted by some noise, i.e.
yi(t) = T (t) + ni(t), where ni(t) are independent
zero-mean random variables with same covariance

r. If all measurements were instantaneously avail-
able to a single location, it is well known from
the centralized Kalman filter that the optimal
steady state estimator would have the following
structure:

T̂ (t + 1) = (1− l∗)T̂ (t) + l∗mean(y(t))

where mean(y(t)) := 1
N

∑N
i=1 yi(t), and 0 < l∗ <

1 is the optimal Kalman gain that depends on
the process noise covariance q and the equivalent
measurement noise variance r/N . In a distributed
setting, it is not possible to assume that all
measurements are instantaneously available at
a specific location, since communication needs
to be consistent with the underlying multi-hop
communication graph G, and each sensor nodes
has its own temperature estimate T̂i(t). However,
if it was possible to provide an algorithm that
computes the mean of set of number only through
local communication, the optimal estimate could
be computed at each sensor node as follows:

T̂i(t + 1) = (1− l∗)mean(T̂ (t)) + l∗mean(y(t))
= mean

(
(1− l∗)T̂ (t) + l∗y(t)

)

These algorithms are known as average consensus
algorithms and can be solved by using updates
z+ = Qz, where z is the vector whose entries are



the quantities to be averaged 1 and Q is a doubly
stochastic matrix, i.e. a matrix with properties
Qij ≥ 0,

∑
j Qij = 1 and

∑
i Qij = 1. Under

some weak connectivity properties, these matrices
guarantee that limm→∞[Qmz]i = mean(z), i.e.
all elements of vector Qmz converge to their
initial mean mean(z). Therefore, provided it is
possible to communicate sufficiently fast within
two subsequent sensor measurements, i.e. m À 1,
then intuitively we can assume that the following
distributed estimation strategy yields the optimal
global state estimate:

z = (1− l∗)T̂i(t) + l∗yi(t)
{

measur. &

predict. stage

T̂i(t + 1) = [Qmz]i consensus stage

Olfati-Saber (Olfati-Saber et al., 2005a) and
Spanos et al. (Spanos et al., 2005a) were the first
to propose this two-stage strategy based on com-
puting first the mean of the sensor measurements
via consensus algorithms, and then to update and
predict the local estimates using the centralized
Kalman optimal gains. This approach can be ex-
tended to multivariable systems where the process
evolves according to T (t + 1) = AT (t) + w(t)
and the state is only partially observable, i.e.
yi(t) = CiT (t)+vi, as shown in the static scenario
by Xiao et al. (Xiao et al., 2005) (A = I, w(t) =
0) and in the dynamic scenario in (Spanos et
al., 2005b)(Olfati-Saber, 2005b). In this context,
i.e. m À 1, it natural to optimize Q for fastest
convergence rate of Qm, which correspond to the
second largest singular value of Q, for which there
are already very efficient optimization tools avail-
able (Xiao et al., 2004) (S.J. Xiao et al., 2007).
The assumption m À 1 is reasonable in appli-
cations for which communication is inexpensive
as compared to sensing. However, there are many
other important applications in which the num-
ber m of messages exchanged per sampling time
per node needs to be small, as required in static
battery-powered wireless sensor networks. There-
fore the assumption that [Qmz]i ≈ mean(z) is
not valid. In this context, for example, it is not
clear whether maximizing the rate of convergence
of Q is the best strategy. Moreover, also the op-
timal gain l becomes a function of the matrix Q
and the number of exchanged messages m, which
is unlikely to coincide with the optimal central-
ized Kalman gain proposed in all the aforemen-
tioned papers (Olfati-Saber et al., 2005a)(Spanos
et al., 2005a)(Spanos et al., 2005b)(Olfati-Saber,
2005b)(Xiao et al., 2005). Recently, Alriksson at
al. (Alriksson et al., 2006) and Speranzon et
al. (Fischione et al., 2006), considered the case
m = 1, i.e. sensors are allowed to communicate
only once between sampling instants. Both works

1 The entries of z can be real numbers, complex numbers
or even matrices

provide design methodologies to simultaneously
design the estimator gain l and the consensus ma-
trix Q but they rely on suboptimal heuristic op-
timization problems. In particular, in (Alriksson
et al., 2006) the authors propose a local on-step
prediction strategy to alternatively optimize l(k)
and Q(k) at any time step k, while in (Fischione
et al., 2006) the authors approximate it as an
optimization problem based on convex relaxation
that try to optimize performance while guaran-
teeing stability of the estimator. However, none
of the two works provide optimality criteria for
their strategies.
In this paper, we want to study the interaction
between the consensus matrix Q, the number of
messages per sampling time m, and the gain l.
With respect with the aforementioned works, we
consider a simpler scenario with a scalar state and
sensors can measure the state affected by gaussian
noise with the same covariance, which still cap-
tures some of the most important features of the
problem. This analysis provides useful guidelines
for choosing the local filter gain l and the consen-
sus matrix Q also for more general scenarios. As a
side result of our analysis we also see that the stan-
dard recipe of choosing Q optimizing the second
largest eigenvalue is not necessarily the best thing
to do; similarly choosing the centralized optimal
gain lc is not necessarily the optimal strategy. We
also provide some numerical examples based on
random geometric graphs which represents a re-
alistic model for wireless sensor networks, and we
show that our strategy outperforms the strategy
proposed in (Alriksson et al., 2006), thus showing
that the latter does not converge to the optimal
values.

2. PROBLEM FORMULATION

Consider a set V of N sensor nodes which are
labeled i = 1, 2, . . . , N. These sensors can com-
municate on a network modeled as a direct graph
G = (V, E), where the edge (i, j) is in E if and
only if the node i can transmit its information to
the node j. We assume that the graph G is time-
invariant. A physical process with state x ∈ R

evolves according to the continuous-time system

ẋ(t) = v(t) (1)

where v(t) is a continuous-time white noise 2

of zero mean and intensity q ≥ 0, that is
E[q(t)q(s)] = qδ(t − s). The initial condition is
also a random variable with expectation x0 and
variance σ.

2 We recall that what is commonly referred to as “continu-
ous time white noise” can be thought of as the “derivative”
of a Wiener process which, unfortunately, is nowhere dif-
ferentiable. More rigourously x(t) is a Wiener process.



Each sensor take measurements of the physical
process according to the equation

yi(kT ) = x(kT ) + ni(kT ) (2)

where T is the time-sampling and k the index in-
dicating the k-th measure. Note that yi ∈ R, ∀ i.
We shall denote y(kT ) = [y1(kT ), . . . , yN (kT )]∗

and n(kT ) = [n1(kT ), . . . , nN (kT )]∗. Moreover
the noise processes ni(kT ) ∈ R are such that
E[n(kT )] = 0, E[n(kT )n(hT )] = rIδhk where δhk

is the Kronecker delta. Note also that (2) can be
rewritten in the following vector form

y(kT ) = x(kT )1+ n(kT ). (3)

where 1 = [1 . . . 1]∗. From now on we assume,
without loss of generality, that T = 1. Suppose
now that, between each pair of subsequent mea-
surement update indices k and k + 1, the each
node exchanges m messages; we assume that these
transmissions take place at the following times
k + δ, k + 2δ, . . . , k + (m − 1)δ, k + mδ, where
δ = 1

m . Note that k + mδ = k + 1. Moreover
suppose that the i-th sensor possesses at each
of the above indices a estimate of x(k) that, by
convention, we indicate by the following notation
x̂i (k+δ|k) , x̂i (k+2δ|k) , . . . , x̂i (k+(m− 1)δ|k) ,
x̂i (k+1|k). More compactly we can write

x̂ (k + hδ|k)=[x̂1 (k + hδ|k) , . . . , x̂N (k + hδ|k)]∗ .

We assume that these estimates are updated ac-
cording to the following rule{

x̂ (k|k) = (1− l) x̂(k|k − 1) + ly(k)
x̂ (k + hδ|k) = Q(k)x̂ (k + (h− 1)δ|k) (4)

where Q(k) is a suitable matrix compatible with
the communication graph and where 0 < l <
1, ∀ k ≥ 0. From now on we assume that l(k) = l
and Q(k) = Q, i.e. they are constant. If we impose
that x̂i is an unbiased estimator for each i and for
each update index, we have that Q must satisfy
the following condition

Q1 = 1. (5)

In fact by imposing that E [x̂ (k + hδ|k)] =
x01, ∀ 0 ≤ h ≤ m, it results from the update rule
that

E [x̂ (k + (h + 1)δ|k)]=E [Qx̂ (k + hδ|k)]=x0Q1

In order to have that x0Q1 = x01, for any possible
value x0, we obtain that (5) must hold. Further-
more if we restrict to nonnegative Q, namely a
matrix with nonnegative entries, condition (5) im-
poses that Q is a stochastic matrix. From now on,
we assume that Q is stochastic. Moreover the local
estimators are initialized by setting x̂(0|0) = y(0).
Now we define the new variable x̃ (k + hδ|k) =
x (k + hδ)1−x̂ (k + hδ|k) which represents the es-
timation error. In order to analyze the structure of
the recursive equations that x̃ (k + hδ|k) satisfies,
it is convenient to rewrite (1) in the following way

x (k + (h + 1)δ) = x (k + hδ) + w (k + hδ) (6)

where

w (k + hδ) =
∫ k+hδ

k+hδ

v(τ)dτ. (7)

Note that E[w (k+hδ)]=0 and that E
[
w2(k+hδ)

]
=

q
m . By straightforward calculations, we get that,
for h = 0,

x̃(k|k) = (1− l) x̃(k|k − 1)− ln(k)

and, for 1 ≤ h ≤ m,

x̃ (k + hδ|k) = Qhx̃ (k|k) +

(
h−1∑

i=0

w (k + iδ)

)
1

In order to analyze the asymptotic properties of
the above estimates it is convenient to introduce
the following matrices

P (k + hδ|k) = E
[
x̃ (k + hδ|k) x̃ (k + hδ|k)∗

]
,

defined for 0 ≤ h ≤ m. One can show that
P (k + hδ|k) satisfies, for h = 0,

P (k|k) = (1− l)2 P (k|k − 1) + l2rI (8)

and, for h = m,

P (k + 1|k) = QmP (k|k)(Qm)∗ + q11∗. (9)

Plugging (8) into (9) and plugging (9) into (8)
evaluated at the index k +1 we obtain the follow-
ing recursive equations

P (k + 1|k) =(1− l)2QmP (k|k − 1) (Q∗)m +
+ l2rQm (Q∗)m + q11∗

and

P (k + 1|k + 1) = (1− l)2 QmP (k|k) (Q∗)m +

+ (1− l)2 q11∗ + l2rI

Since x̂(0|0) = y(0) we have that P (0|0) = rI and
P (1|0) = rQm (Qm)∗+q11∗. By rewriting the last
two recursive equations as expressions depending
respectively on P (1|0) and P (0|0) we obtain

P (k + 1|k) = (1− l)2kQkmP (1|0) (Q∗)km +

+ rl2
k−1∑

i=0

(1− l)2iQ(i+1)m (Q∗)(i+1)m +

+ q

(
k−1∑

i=0

(1− l)2i

)
11∗

and

P (k|k) =q

k−1∑
i=0

(1−l)2i+211∗+l2r

k−1∑
i=0

(1−l)2iQim (Q∗)im

By taking the limit for k →∞, we get

lim
k→∞

P (k + 1|k)=rl2
∞∑

i=0

(1− l)2iQ(i+1)m(Q∗)(i+1)m+

+ q
1

1− (1− l)2
11∗

and

lim
k→∞

P (k|k)=q
(1− l)2

1− (1− l)2
11∗+rl2

∞∑
i=0

(1− l)2iQim (Q∗)im



Now let us define the following functionals cost 3

J1(l, Q;m, r, q) = tr
{

lim
k→∞

P (k + 1|k)
}

and

J2(l, Q; m, r, q) = tr
{

lim
k→∞

P (k|k)
}

We can formulate the following minimization
problem.
Problem Given a graph G and a nonnegative
integer m, find a real l such that 0 < l < 1,
and a matrix Q ∈ Q, minimizing J1 or J2.

Remark 2.1. In the sequel of the paper we will
consider only J1. The reason will be clear in
the next sections where the minimization on J1
will permit us to retrieve, for some particular
cases, the results already known in the literature
regarding the Kalman filtering. For the sake of
the simplicity, we will denote this functional cost
simply by J in place of J1. Hence

J =rl2tr

{ ∞∑
i=0

(1−l)2iQ(i+1)m (Q∗)(i+1)m

}
+q

1

1−(1−l)2
N

Remark 2.2. Let us denote with σ(Q)={1, λ1, λ2,
λ3, . . . , λN−1} the spectrum of Q. Note that, if
Q is a normal matrix, namely QQ∗ = Q∗Q then
formula in the previous remark can be rewritten
as

J =
rl2 + qN

1− (1− l)2
+ rl2

N−1∑

j=1

|λj |2m

1− (1− l)2|λj |2m

Also note that if Q is normal and stochastic, then
it is also doubly stochastic.

From now on, we will assume that Q is a normal
matrix and we will denote by Q the set of the
normal matrices compatible with the graph G.
Relevant subclasses of normal matrices are, for
instance, Abelian Cayley matrices (Carli et al.,
2005), circulant matrices and symmetric matrices.

3. OPTIMAL CONSENSUS MATRIX Q FOR
FIXED GAIN L

In this section we assume that the estimation gain
l is fixed, and thus the problem we want to solve
becomes the following

Q(l;m) = arg min
Q∈Q

J(Q, l; m). (10)

Although the study of the above problem is quite
hard in general, a detailed analysis can be carried
out in some interesting situations. In particular in
the following we will restrict to the following three
cases:

3 In the remainder of the paper, when there is no risk of
confusion, we might drop some arguments of the cost (e.g.
denote J1(l, Q) rather than J1(l, Q; m, r, q)).

• the communication graph G is undirected
• the sensors can communicate arbitrarily fast

within two subsequent measurements, i.e.,
m →∞

• the estimation gain l is sufficiently large,
i.e. l → 1, which intuitively corresponds to
the situation in which the variance of the
measurement noise is negligible with respect
to the variance of the process, i.e r

q ≈ 0.

Before proceeding to treat these cases separately,
we observe that

min
Q∈Q

J =
rl2 + qN

1− (1− l)2
+ min

Q∈Q
rl2

N−1∑
j=1

|λj |2m

1− (1− l)2|λj |2m

and hence we can restrict only to the evaluation
of last term of the previous equation. Since this
quantity will appear often along the section, we
denote it as

S(Q, l; m) =
N−1∑

j=1

|λj |2m

1− (1− l)2|λj |2m
(11)

3.1 Undirected communication graph G

We start by noticing that the assumption that
the communication graph G is undirected implies
that, given any Q ∈ Q, also Q∗ belongs to Q.
Consider now the symmetric matrix (Q + Q∗)/2,
that we denote as Qsym. Clearly, Qsym is normal
and it is compatible with G, therefore Qsym ∈
Q. The following lemma provides an interesting
comparison between J(Q, l; m) and J(Qsym, l; m)
showing that the former is always greater or at
most equal to the latter.

Lemma 3.1. Let Q be any matrix in Q and let
Qsym be defined as above. Then

J(Q, l; m) ≥ J(Qsym, l; m).

Remark 3.2. It is important to note that the
previous lemma cannot be generalized to general
stochastic matrices Q. In fact, it is easy to find a
non-normal Q for which the symmetrized matrix
Qsym defined above gives a larger cost index.

An immediate consequence of the above Lemma
is that, when the communication graph is undi-
rected, the minimum of the functional cost J is
reached by symmetric matrices. Thus, if Qsym is
the subset of Q containing the symmetric matri-
ces, that is Qsym = {Q ∈ Q : Q = Q∗}, solving
(12) is equivalent to solve

arg min
Q∈Qsym

J(Q, l; m). (12)

The following result provides a powerful charac-
terization of (12).



Theorem 3.3. Let Qsym be as above. Then the
functional cost J(Q, l; m) defined on Qsym is a
convex function.

Theorem 3.3 states that (12) is a convex problem
implying thus that the solution of (12) is unique
and that it can be performed efficiently by suitable
numeric algorithms. In fact, Xiao et al. (Xiao et
al., 2007) adopted this strategy to optimize sim-
ilar performance costs over symmetric stochastic
matrices.

3.2 Fast communication (m →∞)

Before stating the main result of this subsection
we recall the following definition. Let Q be any
matrix such that Q1 = 1 and assume that its
spectrum σ(Q) is contained in the closed unit disk.
Define

ρ(Q) =

{
1 if dim ker(Q− I) > 1

max
λ∈σ(Q)\{1}

|λ| if dimker(Q− I) = 1 ,

It is called the essential spectral radius of Q.
The following result holds.

Theorem 3.4. Let Q1 and Q2 be two matrices
such that ρ(Q1) > ρ(Q2). Then there exists m̄
(depending only on ρ(Q1)− ρ(Q2)) such that

J(Q1, l; m) ≥ J(Q2, l; m), ∀m > m̄.

3.3 Large gain (l → 1)

We start by providing the following notational
definition. Given a matrix A we denote with
‖A‖F the Frobenius norm of A, namely ‖A‖F =√

tr {AA∗}. Given any two matrices Q1 and Q2

belonging to Q, the following result provides an
interesting comparison between J(Q1, l; m) and
J(Q2, l, m) when the gain l is sufficiently close to
1.

Theorem 3.5. Let Q1, Q2 be two matrices such
that ‖Qm

1 ‖F > ‖Qm
2 ‖F . Then there exists l̄ (de-

pending only on ‖Qm
1 ‖F − ‖Qm

2 ‖F ) such that

J(Q1, l; m)− J(Q2, l; m) > 0, ∀l > l̄. (13)

Remark 3.6. At first sight, Theorem 3.4 and The-
orem 3.5 seem in contradiction. However, this can
be explained by observing that ‖Qm‖2F = 1 +
ρ2m(Q)+ o(ρ2m(Q)), therefore, for large m, mini-
mizing the Frobenius norm of Qm or the spectral
radius of Q is almost equivalent.

4. OPTIMAL GAIN L FOR FIXED
CONSENSUS MATRIX Q

In this section we assume that the consensus
matrix Q is fixed. Hence the problem we want
to solve is the following

arg min
l∈(0,1)

J(Q, l;m, r, q) (14)

The previous optimization problem is convex in l.
This fact can be easily checked by observing that
the functional cost J can be written as sum of
functions of the form:

g(l) =
xl2

1− x(1− l)2
, h(l) =

x

1− x(1− l)2
, x ∈ [0, 1]

which are convex in l ∈ (0, 1). Consider now a
generic matrix Q ∈ Q and let

lopt(Q, m) = arg min
l∈ (0,1)

J(Q, l; m).

Convexity of J allows easy computation oflopt(Q,m).
In the remaining of this section we shall see that
the sequence {lopt(Q,m)}∞m=0 is monotonically
non-decreasing in m. Moreover, it is bounded be-
low and above by lopt

d and lopt
c , which are the opti-

mal gains minimizing J respectively when Q = I
and when Q = 1

N 11
∗, i.e.

lopt
d

= arg min
l∈(0,1)

J(I, l; m), lopt
c = arg min

l∈(0,1)

J

(
1

N
11∗, l; m

)

Note that Q = I and Q = 1
N 11

∗ represent
the two extreme cases in modeling the flow of
information between the sensors. Indeed, Q = I
corresponds to the situation in which the sensors
do not communicate; in such a case there are N
Kalman filters running separately (the subscript
”d” in lopt

d means decentralized, i.e. no communi-
cation). In the other case, instead, we have that
the underlying communication graph is complete
and this means that each sensor has full knowledge
about the estimates of all the other sensors (the
subscript ”c” in lopt

c means centralized, i.e. full
communication). The following proposition char-
acterizes precisely lopt

d and lopt
c .

Proposition 4.1. Let lopt
d and lopt

c be as above.
Then

lopt
d

=
−q +

√
q2 + 4qr

2r
, lopt

c =
−q +

√
q2 + 4qr̄

2r̄

where r̄ = r
N .

The role played by lopt
d and lopt

c is clarified in next
proposition where it is shown that they are respec-
tively a lower bound and an upper bound for any
lopt(Q, m). Precisely, it is stated a stronger result
characterizing the sequence {lopt(Q,m)}∞m=0.

Theorem 4.2. Let Q ∈ Q. Let lopt(Q,m) be
defined as above. Then the following chains of
inequalities hold true

lopt
d = lopt(Q, 0) ≤ lopt(Q, 1) ≤ . . . ≤ lopt(Q, m) ≤
≤ lopt(Q, m + 1) ≤ . . . ≤ lopt(Q,∞) ≤ lopt

c



and

J
(
Q, lopt

d
; 0

)
≥ J

(
Q, lopt(Q, 1); 1

)
≥

≥ J
(
Q, lopt(Q, 2); 2

)
≥ . . . ≥ J

(
Q, lopt

c ;∞
)

Moreover lopt(Q,∞) = lopt
c if and only if Q is

irreducible and aperiodic.

Due to limitation of space the proof of this the-
orem and some other theorems in the following
sections are omitted.

5. JOINT OPTIMIZATION OF Q AND L:
SPECIAL CASES

We have shown in the previous two sections that
the functional cost J is a convex function, both if
we fix the gain and we assume J defined on the
set of the symmetric matrices and if we fix the
consensus matrix and we assume that the gain is
the independent variable. We ask now whether J
is a convex function jointly in l and Q ∈ Qsym.
One can see numerically that this is not true
for any value of q and r. Therefore, the joint
minimization of J

Qopt(m, r, q) lopt(m, r, q) ∈ arg min
l∈ (0,1); Q∈Q

J(Q, l; m, r, q)

(15)

results to be quite hard in general. Nevertheless,
restricting to some asymptotic case on the values
of m, r and q, it is possible to provide an analyti-
cal characterization of the above problem. In par-
ticular we will consider the following situations:

• the sensors can communicate arbitrarily fast
within two subsequent measurements, i.e.,
m →∞

• r
q ≈ 0, i.e. the variance of the measurement
noise is negligible with respect to the variance
of the process

• q
r ≈ 0, i.e. the variance of the process is
negligible with respect to the variance of the
measurement noise

First note that Qopt(m, r, q) lopt(m, r, q) are in-
deed only functions of m and r/q. In the sequel,
without risk of confusion, we shall omit arguments
which are kept fixed.

5.1 Fast communication (m →∞)

Let Qopt(m), lopt(m) be a solution of (15). In
this subsection we provide a characterization of
Qopt(m) and lopt(m) when m → ∞. Then the
following result holds.

Theorem 5.1. Let Qopt(m), lopt(m) be as defined
above. Then

lim
m→∞

ρ(Qopt(m)) = min
Q∈Q

ρ(Q).

and
lim

m→∞
lopt(m) = lopt

c .

Moreover, if arg minQ∈Q ρ(Q) is a singleton, then
also

lim
m→∞

Qopt(m) = arg min
Q∈Q

ρ(Q).

5.2 Small measurement noise (r/q → 0)

In this subsection we treat the case in which the
variance of the measurement noise is negligible
with respect of the variance of the process, that is
r/q → 0. Let Qopt(r/q), lopt(r/q) be a solution of
(15), then the following result holds.

Theorem 5.2. Let Qopt(r/q), lopt(r/q) be defined
above and let

Q̄ ∈ arg min
Q∈Q

‖Qm‖F .

Then

lim
r/q→0

‖(Qopt(r/q))m‖F = ‖Q̄m‖F .

Moreover

lopt(r/q) = 1− ‖Q̄m‖2F
N

r

q
+ o (r/q) .

In addition if arg minQ∈Q ‖Qm‖F is a singleton
also

lim
r/q→0

Qopt(r/q) = Q̄

holds.

Note that lopt
c = 1 − 1

N
r
q + o( r

q ) and lopt
d = 1 −

r
q + o( r

q ), showing that the communication graph
G determines the coefficient of the first order
expansion in r/q.

5.3 High measurement noise q/r → 0

Similarly to the previous section, we now consider
the other limiting case for q/r ≈ 0.

Theorem 5.3. Let Qopt(q/r), lopt(q/r) be defined
as above and denote with p(Q) the number of
eigenvalues of Q on the unit circle. Then

lim
q/r→0

p(Qopt(q/r)) = min
Q∈Q

p(Q) =: popt.

Moreover

lopt(q/r) =

√
N

popt

√
q

r
+ o

(√
q/r

)
.

Note that lopt
c (q/r) =

√
N

√
q/r + o(

√
q/r) and

lopt
d (q/r) =

√
q/r + o(

√
q/r), therefore, the opti-

mal gain depends on the communication structure
of the underlying communication graph. In fact,



if sensors cannot communicate, then necessarily
Qopt = I, therefore lopt(q/r) = lopt

d (q/r), while if
the communication graph is fully connected, then
Qopt = 1

N 11
∗, therefore lopt(q/r) = lopt

c (q/r).

The previous theorem states also that for q <<
r then it is necessary to choose a matrix Q
consistent with the communication graph that
minimizes the number of unitary eigenvalues.

6. AN ILLUSTRATIVE EXAMPLE

In this section we provide a numerical comparison
between the approach presented in this paper and
the method proposed in (Alriksson et al., 2006).
The authors in (Alriksson et al., 2006), analyze a
general MIMO scenario where the gain l = l(t) (K
in their terminology) and the consensus matrix
Q = Q(t) are time varying matrices which are
chosen recursively at each time step. In order to
compare the results in (Alriksson et al., 2006) with
our approach we assume the averaging matrix W
in (Alriksson et al., 2006) corresponds to perform-
ing m consensus iterations using the matrix Q,
i.e. W = Qm. The matrix gain l is chosen to
minimize the estimation error covariance of the
local estimators (i.e. in a decentralized fashion). In
(Alriksson et al., 2006) l is different for each sensor
and the consensus matrix Q is chosen so that the
estimation error covariance of the local estimators
is minimized after consensus (weighted averaging
in (Alriksson et al., 2006)). In our simulation,
we used a strongly connected random geometric
graph generated by choosing N points at random
in the unit square, and then placing an edge be-
tween each pair of points at distance less than
0.3. We assume that N = 30, q = 1 and r = 1. We
consider both the minimization of J1 and J2, with
J1, J2 defined as in the Section II. We use the fol-
lowing notational conventions. Qopt

1 (m), lopt
1 (m)

and Qopt
2 (m), lopt

2 (m) are the optimal consensus
matrices and the optimal gains respectively for
J1 and J2 obtained by solving numerically the
problem formulated at the end of Section II, given
by:

Qopt
1 (m), lopt

1 (m) ∈ arg min
l∈(0,1), Q∈Q

J1(Q, l; m, r, q)

Qopt
2 (m), lopt

2 (m) ∈ arg min
l∈(0,1), Q∈Q

J2(Q, l; m, r, q)

As said before, in (Alriksson et al., 2006) the opti-
mal matrix gains and the optimal consensus ma-
trix are found recursively at each time step t. We
denote by Jr

1 (m) and Jr
2 (m) (the superscript ”r”

means recursively) the asymptotic cost values 4 to
which tends J1 and J2 by the method proposed in
(Alriksson et al., 2006). We run simulations for m

4 There is no proof of convergence in (Alriksson et al.,
2006); however this is observed experimentally.

ranging in the interval [1, 10]. A few remarks are
now in order.
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Fig. 1. Comparison between
J1(Q

opt
1 (m), lopt

1 (m),m), and Jr
1 (m) (top).

Comparison between J2(Q
opt
2 (m), lopt

2 (m),m)
and Jr

2 (m) (bottom).
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Fig. 2. Optimal gain l.

In top panel of Figure 1 we report the value
of J1 corresponding to the “optimal” parame-
ter pair lopt

1 (m), Qopt
1 (m) and of Jr

1 (m). Clearly 5

5 lopt
1 (m), Qopt

1 (m) are found minimizing J1.



Section III undirected graph m → ∞ l → 1

Fixed l
Qopt symmetric
Section III − A

Qopt ∈ arg min
Q∈Q

ρ(Q)

Section III − B

Qopt ∈ arg min
Q∈Q

‖Qm‖F

Section III − C

Section IV m = 0 0 < m < ∞
m → ∞

+Q aperiodic irreducible

Fixed Q lopt(Q, 0) = lopt

d
Theorem 4.1

lopt

d
< lopt(Q, m) ≤ lopt(Q, m + 1) < lopt

c

Theorem 4.1
lopt(Q,∞) = lopt

c

Theorem 4.1

Section V m → ∞ r/q → 0 r/q → ∞

Optimal
l and Q

Qopt ∈ arg min
Q∈Q

ρ(Q),

lopt → lopt
c

Section V − A

Qopt ∈ arg min
Q∈Q

‖Qm‖F ,

lopt ' 1 −
||Q̄m||2F

N
r
q

Section V − B

Qopt ∈ arg min
Q∈Q

p(Q)

lopt
c '

√

N
popt

√

q

r

Section V − C

Fig. 3. Summarizing table of results

lopt
1 (m), Qopt

1 (m) yields a value of J1 which is
better than Jr

1 . A similar consideration holds
for J2 (bottom panel of Figure 1. In this case
lopt
2 (m), Qopt

2 (m) gives the best performance, again
Jr

2 (m) yields the worst value. It is remarkable
that, even though the optimal matrix gain and
the optimal consensus matrix in (Alriksson et
al., 2006) are chosen minimizing step by step an
estimation error (and hence a cost which resem-
bles J2) its asymptotic value does not provide the
minimum of J2. In figure 2 we depict the behavior
of lopt

1 (m) and lopt
2 (m). Notice that lopt

1 (m) grows
with m whereas lopt

2 (m) remains almost constant.

7. CONCLUSIONS

In this paper we have studied a prototypical prob-
lem of distributed estimation for Sensor Networks;
the state of a scalar linear system is estimated
via a two stage procedure which consists in (i) a
standard (and decentralized) Kalman-like update
and (ii) information propagation using consensus
strategies. To this purpose two design parameters,
i.e. the Kalman gain l and the consensus matrix Q
have to be designed. This choice is made by opti-
mizing the steady state prediction (or estimation)
error. We have discussed, under specific circum-
stances, the behavior of the “optimal” parameters.
This is summarized in table of Figure 3.

Although these results have been obtained for a
rather simple scenario where the state is scalar
and all sensors are equal, they provide useful
guidelines for choosing the local filter gain l and
the consensus matrix Q also for more general
scenarios. In fact, as discussed in Section V the
joint optimization of Q and l is not convex even
in our simple setup.

Finally, we compared our approach with the re-
cursive optimization proposed by Alriksson et al.
(Alriksson et al., 2006), showing also that their
strategy fails to minimize the steady state cost
(see Figures 1).
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