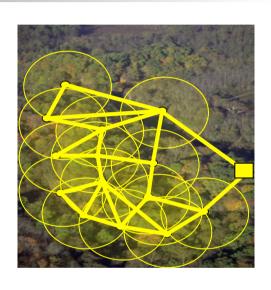
Analysis and Control of Flapping Flight: from Biological to Robotic Insects



Luca Schenato

Robotics and Intelligent Machines Laboratory Department of EECS University of California at Berkeley

Biomimetic Flying Insects

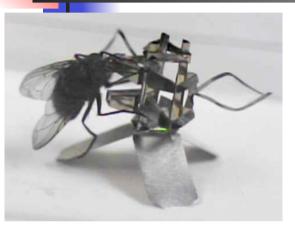
Overview and motivations

True insect flight (Biomimetics)

Averaging theory

Flapping flight control

Micromechanical Flight Insect Project* (MFI)



- **Objective**: 10-25mm (wingtip-to-wingtip), autonomous flapping flight, solar-cell powered, piezoelectric actuation, biomimetic sensors
- Applications: surveillance, search & rescue in hazardous and impenetrable environments
- Advantages: highly manoeuvrable, small, inexpensive
- Interdisciplinary: 4Dept (Bio,EE,ME,CS,Material S.), 6 profs., 10 students

Motivating Questions:

Biological perspective:

- How do insects control flight ?
- Why are they so maneuverable ?

Engineering perspective:

- How can we replicate insect flight performance on MFIs given the limited computational resources?
- How is flapping flight different from helicopter flight ?

Control Theoretic perspective:

What's really novel in flapping flight from a control point of view ?

Contribution:

Biological perspective:

 Constructive evidence that flapping flight allows independent control of 5 degrees of freedom

Engineering perspective:

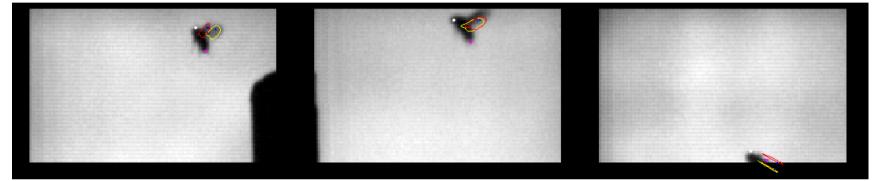
- Averaging theory and biomimetics simplify control design
- Periodic proportional feedback sufficient to stabilize several flight modes

Control Theoretic perspective:

 Flapping flight as biological example of high-frequency control of an underactuated system

Previous work: biological perspective

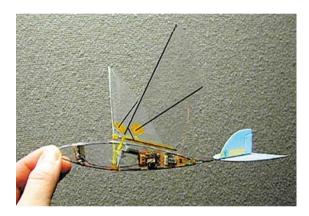
Courtesy of S. Fry



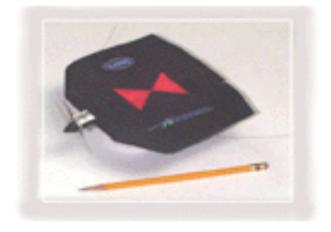
- Seminal work by C. Ellington and M. Dickinson for insect aerodynamics (80-90s)
- Correlation available between flight maneuvers and wing motions
- Partial evidence that insect can control <u>directly</u> 5 degrees of freedom out of the total 6

Previous work: Micro Aerial Vehicles (MAVs)

Microbat at Caltech



Black Widow by Aerovinment Inc.



Entomopter at GeorgiaTech

Mesicopter at Stanford

Previous work: control theory

Fish locomotion:

- [Mason, Morgansen, Vela, Murray, Burdick 99-03]
 - Underactuated systems
 - Averaging theory

Anguilliform locomotion (eels):

- [McIsaacs 03, Ostrowski 98]
 - Symmetry
 - Averaging theory

Flapping flight

....?

Periodic motion of appendages is rectified into locomotion

Biomimetic Flying Insects

Overview and motivations

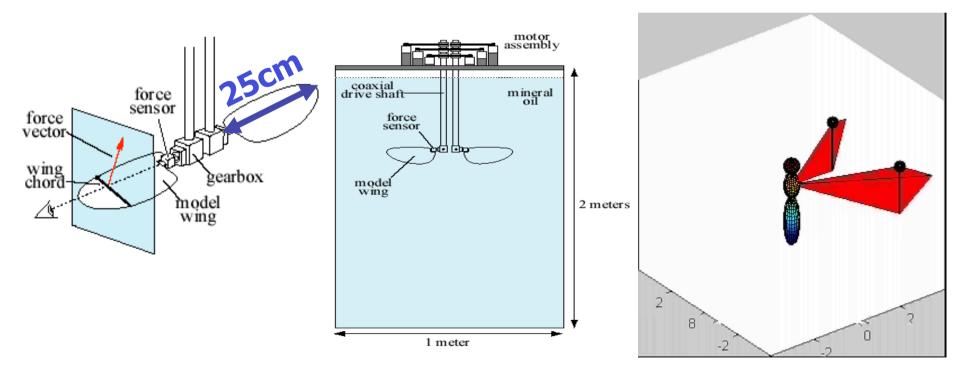
True insect flight (Biomimetics)

Averaging theory

Flapping Flight Control

....The Bumblebee Flies Anyway

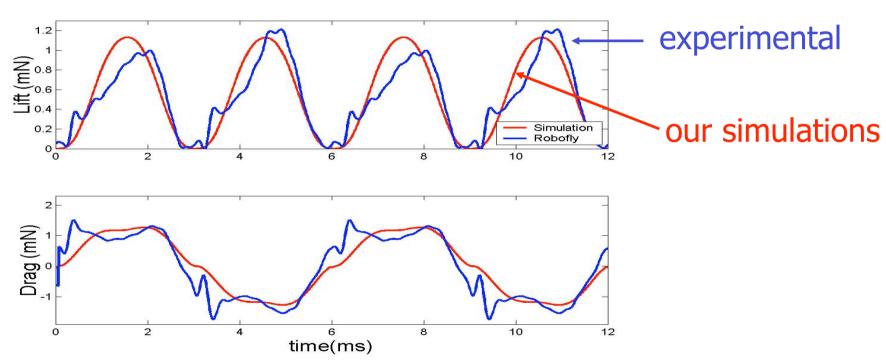
Unsteady state aerodynamics at low Reynolds Number Re≈ 100-1000



Courtesy of M.H. Dickinson and S. Sane

Aerodynamic Mechanisms:

Experimental data are courtesy of M.H. Dickinson and S. Sane



Delayed Stall

$$F_N = a V^2 \sin \alpha$$

Rotational lift

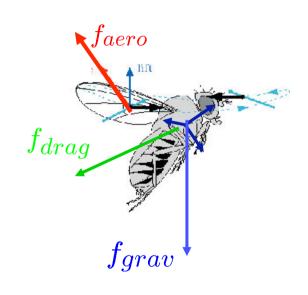
$$F_N = c V \dot{\alpha}$$

Wake Capture

Insect Body Dynamics

Rigid body motion equations

$$\dot{p} = v^f
\dot{v}^f = \frac{1}{m} R f^b_{aero} - g - \frac{c}{m} v^f
\dot{R} = R \hat{\omega}^b
\dot{\omega}^b = I_b^{-1} (\tau^b_{aero} - \omega^b \times I_b \omega^b)$$



```
p \in \mathbb{R}^3 — position v^f \in \mathbb{R}^3 — lin. velocity w.r.t fixed frame
```

 $R \in SO(3)$ – rotation matrix

 $\omega^b \in \mathbb{R}^3$ — ang. velocity w.r.t. body frame

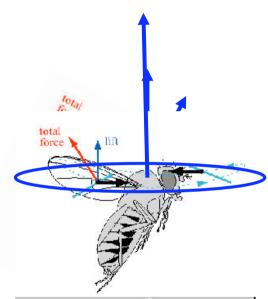
Insects and helicopters

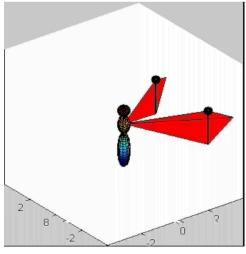
Analogies:

- Control of position by changing the orientation
- Control of altitude by changing lift

Differences:

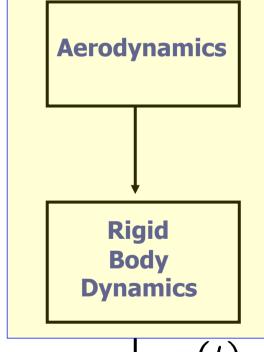
 Cannot control forces and torques directly since they are coupled time-varying complex functions of wings position and velocity





Dynamics of insect

$$egin{array}{cccc} \phi_l(t),\phi_r(t) & ext{Input} & ext{u} \ arphi_l(t),arphi_l(t) & ext{} \end{array}$$



$$\dot{p} = v^f
\dot{v}^f = \frac{1}{m} R \mathbf{f}_a(u) - g - \frac{c}{m} v^f
\dot{R} = R \hat{\omega}^b
\dot{\omega}^b = I_b^{-1} (\boldsymbol{\tau}_a(u) - \omega^b \times I_b \omega^b)$$

Insect motion

$$p(t)$$
 $R(t)$

Output x

Biomimetic Flying Insects

Overview and motivations

True insect flight (Biomimetics)

Averaging theory

Flapping Flight Control

Averaging Theory:

Mean forces/torques Zero-mean forces\torques

If forces change very rapidly relative to body dynamics, only **mean** forces and torques are important

$$f_a^b(t) = \begin{bmatrix} \bar{f}_x \\ \bar{f}_y \\ \bar{f}_z \end{bmatrix} + \begin{bmatrix} \tilde{f}_x(t) \\ \tilde{f}_y(t) \\ \hat{f}_z(t) \end{bmatrix}$$

$$\tau_a^b(t) = \begin{bmatrix} \bar{\tau}_x \\ \bar{\tau}_y \\ \bar{\tau}_z \end{bmatrix} + \begin{bmatrix} \tilde{\tau}_x(t) \\ \tilde{\tau}_y(t) \\ \tilde{\tau}_z(t) \end{bmatrix}$$

Averaging Theory (Russian School '60s):

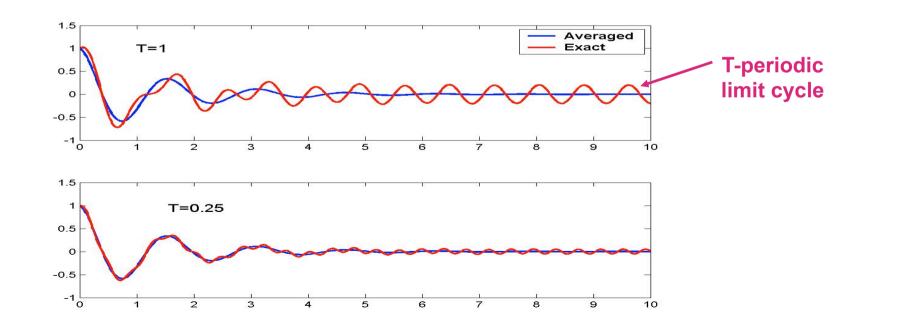
x: Periodic system

$$\dot{x} = f(x,t)$$

$$f(x,t) = f(x,t+T)$$

x_{av}: Averaged system

$$\dot{x} = f(x,t)$$
 $\dot{x}_{av} = \bar{f}_{av}(x_{av}) \leftarrow \frac{\mathsf{Exponentially}}{\mathsf{stable}}$ $f(x,t) = f(x,t+T)$ $\bar{f}_{av}(x) \stackrel{\triangle}{=} \frac{1}{T} \int_0^T f(x,\tau) d\tau$



Averaging: systems with inputs

Original problem . Find a feedback law g(x) such that the system

$$\begin{array}{rcl}
\dot{x} & = & f(x, u) \\
u & = & g(x)
\end{array}$$

is asympotically stable.

virtual inputs

New Problem . Find periodic input u=w(v,t) and a feedback law h(x) such that the averaged system

$$\dot{x} = \bar{f}_{av}(x,v)
\bar{f}_{av}(x,v) = \frac{1}{T} \int_0^T f(x,w(v,\tau)) d\tau
v = h(x)$$

is asymptotically stable.

Why? 3 Issues

New Problem 1. Find periodic input u = w(v, t) and a feedback law h(x) such that the system

$$\dot{x} = \bar{f}_{av}(x,v)
\bar{f}_{av}(x,v) = \frac{1}{T} \int_0^T f(x,w(v,\tau)) d\tau
v = h(x)$$
(1)

is asymptotically stable.

Virtual inputs

- How do we choose the T-periodic function w(v,t)?
- How can we compute $\bar{f}_{av}(x,v) = \frac{1}{T} \int_0^T f(x,w(v,\tau)) d\tau$?
- How small should the period T be?

Advantages of high frequency: a motivating example

$$\begin{cases} \dot{x} &= u^2 - 1 & \text{1 Input: u} \\ \dot{y} &= u & \text{2 Degrees of freedom: (x,y)} \\ \text{Want (x,y)} \rightarrow \text{0 for all initial conditions} \end{cases}$$

- Origin (x,y)=(0,0) is NOT an equilibrium point
- # degs of freedom > # input available (independently controlled)

Advantages of high frequency: a motivating example

Input is distributed differently

$$\begin{cases} \dot{x} = u^2 - 1 & \text{1 Input: u} \\ \dot{y} = u & \text{2 Degrees of freedom: (x,y)} \\ & \text{Want (x,y)} \rightarrow 0 \text{ for all initial conditions} \end{cases}$$

$$u = w(v, t) = v_1 + v_2 \sin \frac{t}{T}$$

$$\begin{cases} \dot{\bar{x}} \approx v_2 - \sqrt{25}v_2^2 - 1^2 - 1 \\ \dot{\bar{y}} \approx v_1 \end{cases} \approx v_2 = \sqrt{2} - \bar{x}$$

Two linear independent virtual input: v_1, v_2 !!!!

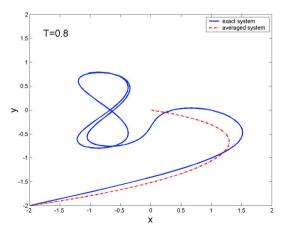
Advantages of high frequency: a motivating example

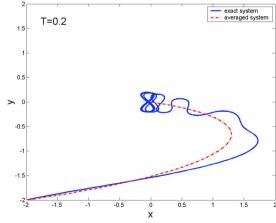
Closed loop system

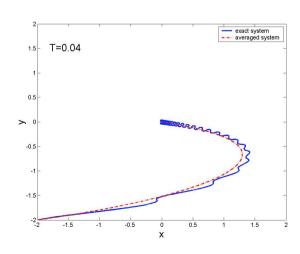
$$\begin{cases} \dot{x} = u^2 - 1 \\ \dot{y} = u \\ u = -y + (\sqrt{2} - x) \sin \frac{t}{T} \end{cases}$$

Averaged Closed loop system

$$\begin{cases} \dot{\bar{x}} = \bar{y}^2 + 0.5(\sqrt{2} - \bar{x})^2 - 1\\ \dot{\bar{y}} = -\bar{y} \end{cases}$$

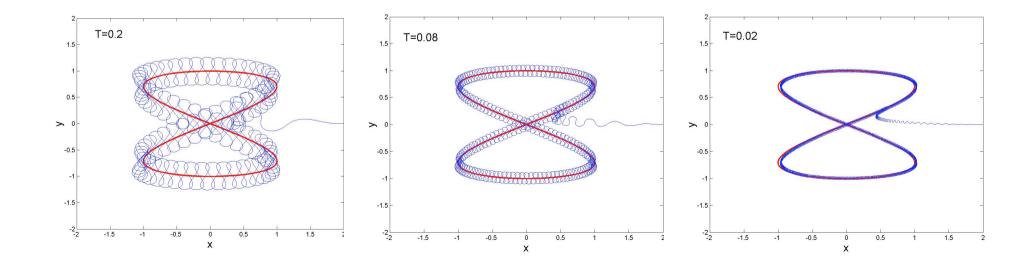






Tracking "infeasible" trajectories

$$\begin{cases} \dot{x} = u^2 - 1 \\ \dot{y} = u \\ u = -(y - \sin(2t)) + (\sqrt{2} - (x - \sin(t)) \sin \frac{t}{T} \end{cases}$$



Advantages of averaging

Increases # of (virtual) inputs

2. Decouples inputs

3. Approximates infeasible trajectories

Back to the 3 Issues

- How do we choose the T-periodic function w(v,t)?
 - Geometric control [Bullo00] [Vela 03] [Martinez 03] ...
 - BIOMIMETICS : mimic insect wing trajectory
- How can we compute $\bar{f}(x,v) = \frac{1}{T} \int_0^T f(x,w(v,t))dt$?
 - For insect flight this boils down to computing mean forces and torques over a wingbeat period:

- How small must the period T of the periodic input be?
 - Practically in all insect species wingbeat period T is small enuogh w.r.t insect dynamics

Biomimetic Flying Insects

Overview and motivations

True insect flight (Biomimetics)

Averaging theory

Flapping Flight Control

The 3 Issues

How do we choose the T-periodic function u=w(v,t)?

How can we compute $\bar{f}(x,v) = \frac{1}{T} \int_0^T f(x,w(v,t)) dt$?

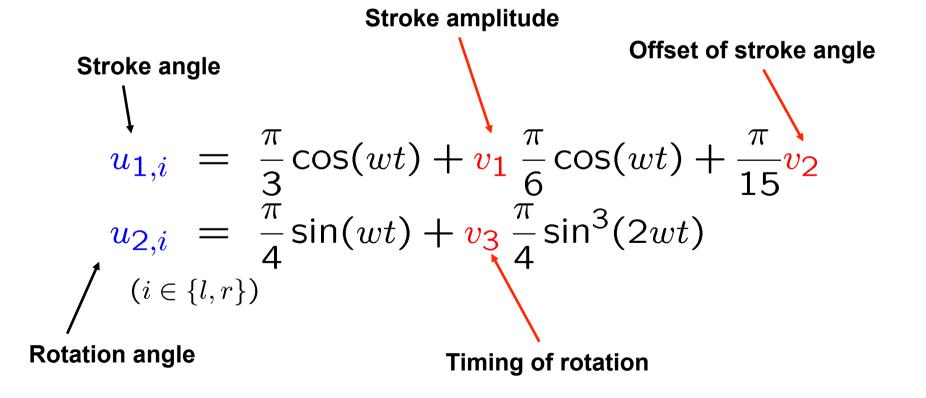
How small must the period T of the periodic input be?

Flight Control mechanisms in real insects

- Kinematic parameters of wing motion have been correlated to observed maneuvers [G. Taylor, Biol. Rev. 99]
 - Stroke amplitude:
 - Symmetric change → climb/dive
 - Asymmetric change → roll rotation
 - Stroke offset:
 - Symmetric change → pitch rotation
 - Timing of rotation
 - Asymmetric → yaw/roll rotation
 - Symmetric → pitch rotation
 - Angle of attack
 - Asymmetric → forward thrust

Parameterization of wing motion

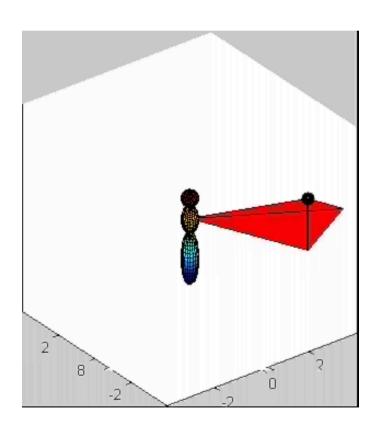
$$u = w(v, t) = g_0(t) + G(t)v$$

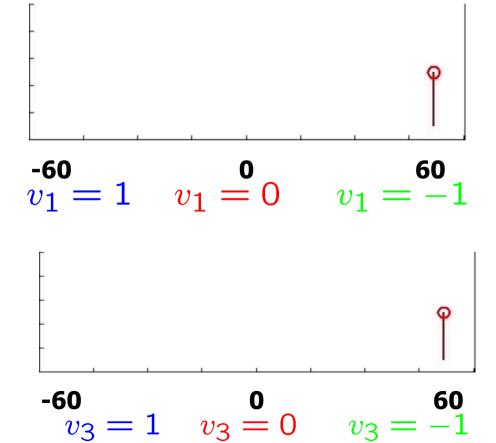


Parameterization of wing motion

$$u_{1,i} = \frac{\pi}{3}\cos(wt) + v_1 \frac{\pi}{6}\cos(wt) + \frac{\pi}{15}v_2$$

$$u_{2,i} = \frac{\pi}{4}\sin(wt) + v_3 \frac{\pi}{4}\sin^3(2wt)$$





Back to the 3 issues

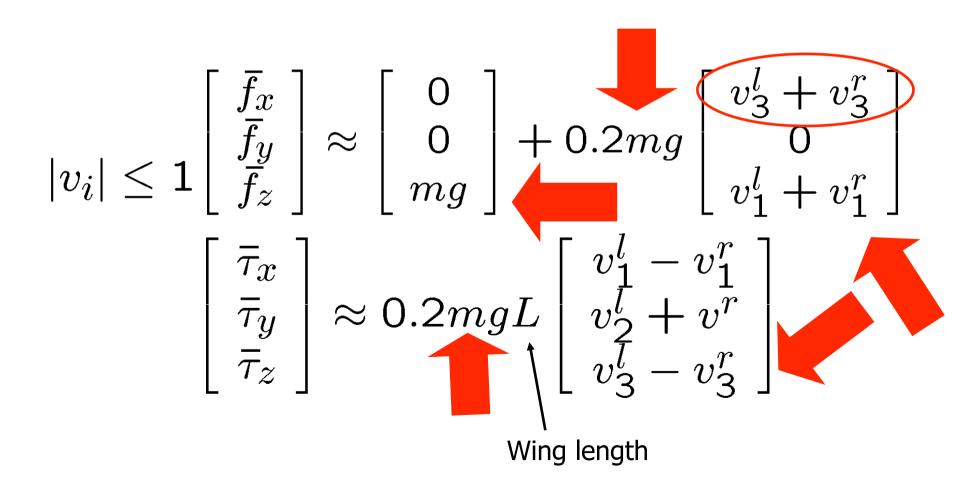
How do we choose the T-periodic function w(v,t)?

• How can we compute $\bar{f}(x,v) = \frac{1}{T} \int_0^T f(x,w(v,t))dt$?

How small must the period T of the periodic input be?

Mean forces/torques map

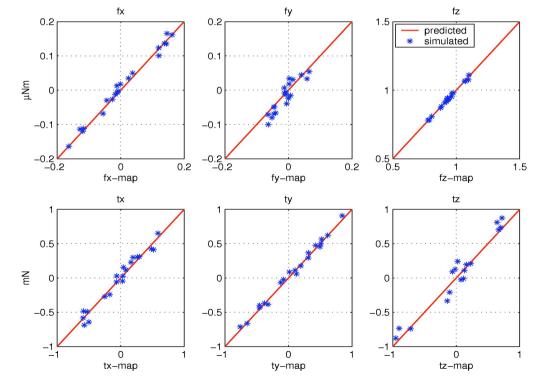
Independent control of 5 degrees of freedom



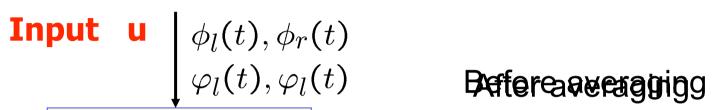
Mean forces/torques map

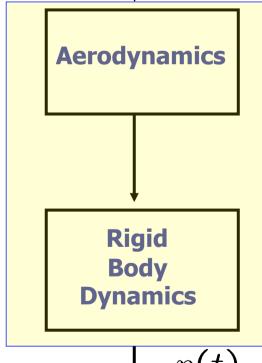
$$\begin{bmatrix} \bar{f}_x \\ \bar{f}_y \\ \bar{f}_z \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix} + 0.2mg \begin{bmatrix} v_3^l + v_3^r \\ 0 \\ v_1^l + v_1^r \end{bmatrix} \xrightarrow[-0.1]{0.1}$$

$$\left[egin{array}{l} ar{ au}_x \ ar{ au}_y \ ar{ au}_z \end{array}
ight] pprox 0.2mgL \left[egin{array}{l} v_1^l - v_1^r \ v_2^l + v^r \ v_3^l - v_3^r \end{array}
ight]$$



Dynamics of insect revised





Aerodynamics
$$\dot{p}_{m} = v^{f}$$

$$\dot{v}_{m}^{f} = \frac{1}{m} R \begin{bmatrix} \tilde{v}_{1} \\ 0 \\ \tilde{v}_{2} \end{bmatrix} - g - \frac{c}{m} v^{f} \quad f$$

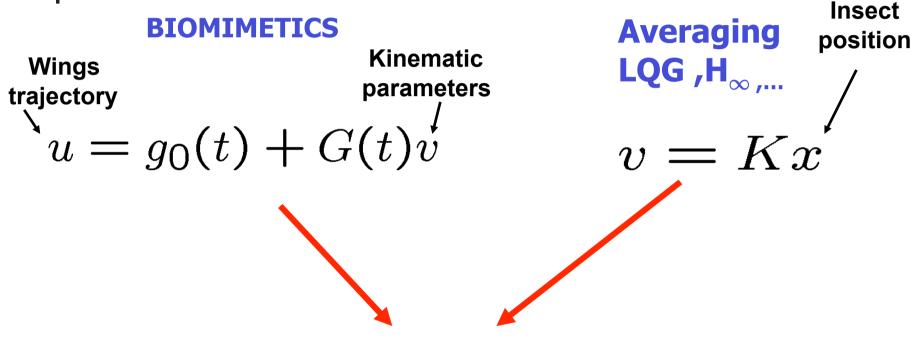
$$\dot{R}_{m} = R \hat{\omega}^{b}$$

$$\dot{\omega}_{m}^{b} = I_{b}^{-1} (\begin{bmatrix} \tilde{v}_{3} \\ \tilde{v}_{4} \\ \tilde{v}_{5} \end{bmatrix} - \omega^{b} \times I_{b} \omega^{b})$$
Dynamics

Output x
$$\int_{R(t)}^{p(t)} v = Kx$$
 •Cruising •Steering

- Hovering
- Steering

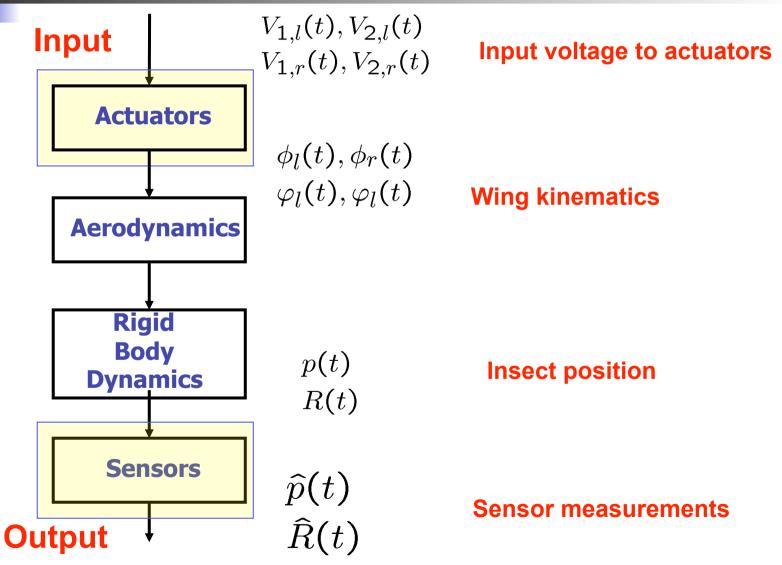
Proportional periodic feedback



$$u = g_0(t) + \tilde{G}(t)xx$$

Periodic proportional feedback

Insect Dynamics: realistic model



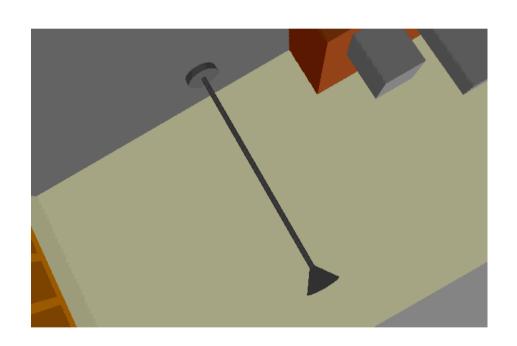
Proportional periodic feedback

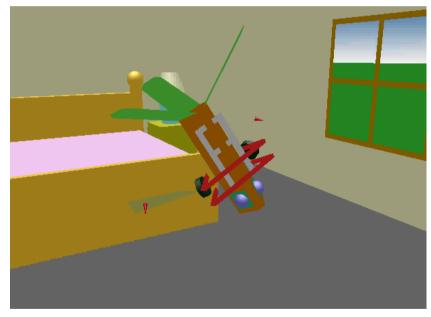
Output from sensors

Input voltages to actuators

$$\begin{bmatrix} V_{1,l}(t) \\ V_{2,l}(t) \\ V_{1,r}(t) \\ V_{2,r}(t) \end{bmatrix} = h(t) + \tilde{H}(t) \begin{bmatrix} y_c \\ y_1^o \\ y_2^o \\ y_h^h \\ y_y^h \\ y_z^h \end{bmatrix}$$

Simulations w/ sensors and actuators: Recovering





Summarizing ...

Biological perspective:

 Flapping flight allows independent control of 5 degrees of freedom

Engineering perspective:

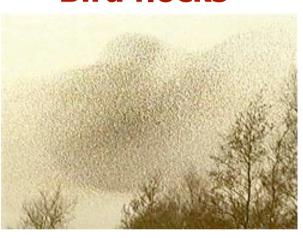
- Averaging theory and biomimetics simplify control design
- Periodic proportional feedback sufficient to stabilize several flight modes

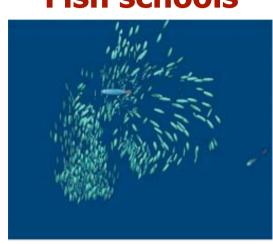
Control Theoretic perspective:

 Flapping flight as biological example of highfrequency control of an underactuated system

What's next?

Fish schools

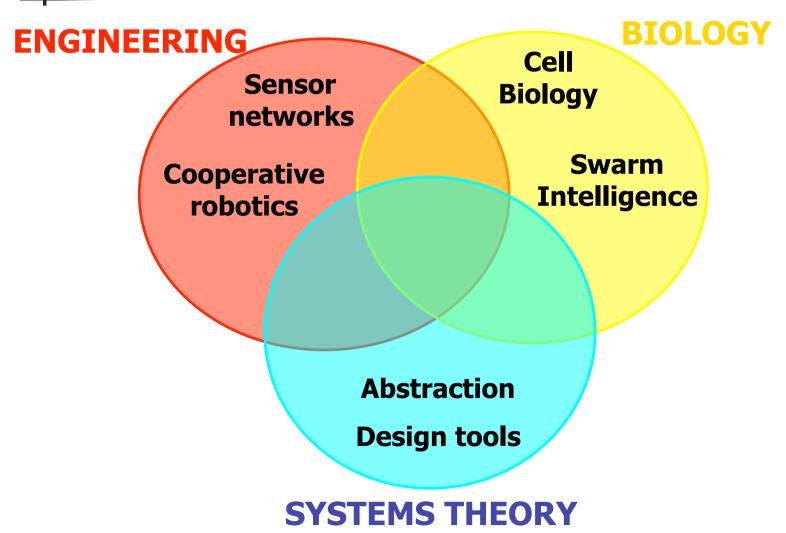




Fundamental questions:

- How local feedback and communication give rise to global behavior?
- How is information extracted and propagated over the network?
- How spatial and temporal correlation is exploited?

Research agenda: networks of systems



Publications:

- Analysis and Control of flapping flight: from biological to robotic insect, Ph.D. dissertation, 2003
- Attitude Control for a Micromechanical Flying Insect via Sensor Output Feedback with W.C Wu, S. Sastry, IEEE Trans Rob.&Aut., Feb 2004
- Flapping flight for biomimetic robotic insects: Part I -System modeling with W.C Wu, X. Deng S. Sastry, submitted to IEEE Trans. Robotics
- Flapping flight for biomimetic robotic insects: Part II –
 Flight Control Design with X. Deng, S. Sastry, submitted to IEEE Trans. Robotics