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Why Multirobot?

1 Better localization (error σ√
N

),

2 Map building can be N time faster.

But there are some difficulties:

1 Coordination

2 Integration of the information

3 Limited communication

Andrew Howard. “Multi-robot Simultaneous Localization and Mapping using
Particle Filters”. In: RSS 15
S. Shen, N. Michael, and V. Kumar. “Autonomous multi-floor indoor navigation
with a computationally constrained MAV”. . In: ICRA 11
P. Newman, D. Cole, and K. Ho. “Outdoor SLAM using visual appearance and
laser ranging”. In: ICRA 06
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How to localize the robots?

1 Sensors

2 Sensor fusion

A. Carron et al. “Multi-Robot Localization via GPS and Relative Measurements in
the Presence of Asynchronous and Lossy Communication”. In: ECC 16
M. Todescato et al. “Distributed Localization from Relative Noisy Measurements:
a Robust Gradient Based Approach”. In: ECC 15
A. Carron et al. “An asynchronous consensus-based algorithm for estimation from
noisy relative measurements”. In: IEEE TCNS (2014)
A. Carron et al. “Adaptive consensus-based algorithms for fast estimation from
relative measurements”. In: IFAC NecSys 13
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Thesis Contributions

Localization:

1 efficient

2 distributed

3 heterogeneous measurements

Mapping:

1 efficient

2 applied to coverage control

3 time-varying functions
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Estimation and Coverage

Multi-robots Client-Server Gaussian Estimation
and Coverage Control with Lossy Communications
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Contributions

1 Estimation from noisy measurements

2 Bounds on the estimation error

3 Robustness
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Voronoi Partitions and Coverage
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Coverage Goal and the Lloyd Algorithm

Goal

Dispatch the N robots to optimally cover the environment X , namely we
want to have many robots where µ(x) is large and few where it is small.

min
P

H(P, µ) = min
P

N∑
i=1

∫
Pi

||q − ci (Pi )||2µ(q)dq

Solution: Classical Lloyd algorithm

1 compute the centroids of the current partition, e.g. c(P)

2 update P to the partition W (c(P))

Or more briefly PL(k + 1) =W
(
c(PL(k))

)
.
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Sensory Function

Unknown function µ : X ⊂ R2 7→ R+

µ is a zero-mean Gaussian random field with covariance
K : X × X 7→ R+

Radial Mercer Kernels

K (x , x) = λ

Figure : Gaussian Process Figure : Gaussian Kernel
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Minimum Variance Estimate

The set Ik = {xi , yi}mk
i=0 represents the complete information set available

at the BS at iteration k and mk = |Ik | is its cardinality.

The minimum variance estimate is

µ̂k(x) = E [µ(x)|Ik ] =

mk∑
i=1

ciK (xi , x), x ∈ X

An index of the accuracy of the estimate is given by the posterior variance

Vk(x) = Var [µ(x)|Ik ]
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Problem Formulation
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Exploration and Exploitation Dilemma

Goal

The ultimate goal is to position the N robots in the centroids of a good
partition that minimizes H(P, µ). To do so we need to:

1 have a good estimate µ̂ of the sensory function → exploration

2 minimize the cost function H(P, µ) → exploitation

Strategy

1 initially promote exploration

2 when the estimate is more accurate transit to exploitation

3 random approach based on the maximum of the posterior variance
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rEC - Robots

Robot
Collects

Measurements

Measurement
transmission

Waits new
target

Moves to
new target
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rEC - Base Station

Base Station
Collects

Measurements

Computes
µ and V

Computes
Pi , ci and Mi

Explore or
Exploit?
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rEC - Base Station
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Convergence Analysis - Sensory Function

Proposition 1 - Sensory Function Convergence

If:

1 F (M) : [0, 1]→ [0, 1] continuous and monotonically increasing,

2 F (M) > 0 for M > 0,

3 P[βi ,k = 1] = β > 0,

4 P[γi ,k = 1] = γ > 0.

Then
µ̂k

P−→ µ.
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Online Gaussian Estimation

What is the most expensive operation?

(K̄k+1 + σ2I )−1 =

([
K̄k K̄k+1,12

K̄T
k+1,12 K̄k+1,22

]
+ σ2I

)−1

How much is its computational complexity?

Naive:
(
K̄k + σ2I

)−1 → O(k3)

Schur:
(
K̄k+1,22 − K̄T

k+1,12 ∗ (K̄k + σ2I )−1 ∗ K̄k+1,12

)−1
→ O(k2)
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Grid Based Approximation

Consider
Xgrid := {xgrid,1, . . . , xgrid,m} ⊂ X .

Given the scalar ∆ > 0, Xgrid forms a sampled space of resolution ∆ if

min
i=1,...,m

‖xgrid,i − x‖ ≤ ∆, ∀x ∈ X .

We define the projector operator

X 7−→ Xgrid : x 7−→ proj(x) = arg min
a∈Xgrid

‖x − a‖ .
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rEC-grid - Base Station

Base Station
Collect

Measurements

Compute
µ and V

Compute
Pi , ci and Mi

Explore or
Exploit?
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Convergence Analysis - Sensory Function

Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

lim
k→∞

Vk(x) = λ− kgrid(x)K−1
gridkgrid(x)>.

The following simple ∆ dependent bound holds

lim
k→∞

Vk(x) ≤ λ− K 2 (∆)

λ
.

If K is the Gaussian kernel with K (a, b) = λe
− ‖a−b‖2

ζ2 , for small ∆ we have

lim
k→∞

Vk(x) ≤ λ− K 2 (∆)

λ
≈ λ∆2

ζ2
.

Andrea Carron (UniPD) Mapping and Coverage April 1, 2016 23 / 34



Convergence Analysis - Sensory Function

Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

lim
k→∞

Vk(x) = λ− kgrid(x)K−1
gridkgrid(x)>.

The following simple ∆ dependent bound holds

lim
k→∞

Vk(x) ≤ λ− K 2 (∆)

λ
.

If K is the Gaussian kernel with K (a, b) = λe
− ‖a−b‖2

ζ2 , for small ∆ we have

lim
k→∞

Vk(x) ≤ λ− K 2 (∆)

λ
≈ λ∆2

ζ2
.

Andrea Carron (UniPD) Mapping and Coverage April 1, 2016 23 / 34



Convergence Analysis - Sensory Function

Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

lim
k→∞

Vk(x) = λ− kgrid(x)K−1
gridkgrid(x)>.

The following simple ∆ dependent bound holds

lim
k→∞

Vk(x) ≤ λ− K 2 (∆)

λ
.

If K is the Gaussian kernel with K (a, b) = λe
− ‖a−b‖2

ζ2 , for small ∆ we have

lim
k→∞

Vk(x) ≤ λ− K 2 (∆)

λ
≈ λ∆2

ζ2
.

Andrea Carron (UniPD) Mapping and Coverage April 1, 2016 23 / 34



Simulations Setup

Team of N = 8 robots

Domain X = [0, 1]× [0, 1]

Gaussian kernel K (x , x ′) = e−
‖x−x′‖2

0.002

Exploration-Exploitation trade-off: Fα(M) = Mα

Sensory function

µ(x) = 5

(
e
−‖x−µ1‖

2

0.04 + e
‖x−µ2‖

2

0.04

)
where

µ1 =

[
0.8
0.2

]
µ2 =

[
0.5
0.7

]
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Coverage

5

(
e
−‖x−µ1‖

2

0.04 + e
‖x−µ2‖

2

0.04

)
10 cos (πx1) cos (πx2)+10 10 sin

(
x1x

2
2

)
Voronoi partitions computed using the r-EC Algorithm (black lines) for different
sensory function µ(x). Blue dots indicate the locations of the centroids obtained
with the r-EC algorithm.
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Cost Function
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Average Energy
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rEC vs rEC-grid

p2 ∆
ζ Max. Posterior

(after 400
iterations)

Min. Max.
Posterior

Achievable

Exe. Time [sec.]

9 1.65 0.9836 0.9836 2.3

16 1.25 0.8418 0.8418 2.4

25 1 0.5769 0.5766 3.9

36 0.83 0.3489 0.3481 4.7

r-EC – 0.1988 0 865.4

Comparison between the original r-EC algorithm and the grid based
approximation for different total number of points p2. The table reports the
steady state value after 400 iterations and the execution times obtained using the
grid based approximation and classic algorithms.

Andrea Carron (UniPD) Mapping and Coverage April 1, 2016 28 / 34



rEC in action!
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Conclusions and on-going works

The r-EC/r-EC-grid are shown to be:

1 capable to converge to the optimal estimate of µ,

2 robust to packet losses,

3 efficient.

What else can be done?

1 consider time varying µ,

2 consider localization errors.
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Competitive - Cooperative RHC game

1

2

Bluetooth 
Communication

Control Input 
Computation

Vision Software 
and 

Trajectory Estimation GOAL: minimize a cost
function which depends on
your state, your input and the
opponent input.

RESULTS: closed form
solution given the control
parameters and stability
analysis.

A. Carron and E. Franco. “Receding Horizon Control of a two-agent
system with competitive objectives”. In: ACC 13
A. Carron and E. Franco. “Analytical Solution of a Two Agent Receding
Horizon Control Problem with Auto Regressive State Predictions”. In:
Automatica [submitted]
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Hitting Time of Multiple Random Walker

R. Patel, A. Carron, and F. Bullo.
“The Hitting Time of Multiple
Random Walks”. In: SIAM Journal
on Matrix Analysis and Applications
[submitted]

A. Carron, R. Patel, and F. Bullo.
“Hitting time for doubly-weighted
graphs with application to robotic
surveillance”. In: ECC 16
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Robotics for Space Applications

A. Antonello et al. “A Novel Approach to the Simulation of On-Orbit
Rendezvous and Docking Maneuvers in a Laboratory Environment Through
the Aid of an Anthropomorphic Robotic Arm”. In: MetroAeroSpace 14
F. Branz et al. “Kinematics and control of redundant robotic arm based
on Dielectric Elastomer Actuators”. In: SPIE Smart Structure
F. Branz et al. “Dielectric Elastomer space manipulator: design and
testing”. In: IAC 15
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Thank you

Thank you for your attention!
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