A Partition-Based Relaxed ADMM for Distributed Convex Optimization over Lossy Networks: Technical Proofs

N. Bastianello, R. Carli, L. Schenato, M. Todescato

APPENDIX

In this paper we describe the technical proofs for the results presented in [1].

A. Proof of Proposition 1

w

As we showed in Section III-A of the main paper, it is possible to reformulate the partition-based problem (8) so that it conforms to problem

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + \iota_{(I-P)}(\mathbf{y}) \right\}$$
s.t. $A\mathbf{x} + \mathbf{y} = 0$
(A1)

to which the R-ADMM can be applied. The three update equations (4), (5) and (6) that characterize the R-ADMM applied to problem (A1) yield

$$\mathbf{y}(k+1) = \underset{\mathbf{y}}{\arg\min} \{ \mathcal{L}_{\rho}(\mathbf{x}(k), \mathbf{y}; \mathbf{w}(k)) + \rho(2\alpha - 1) \langle \mathbf{y}, (A\mathbf{x}(k) + \mathbf{y}(k)) \rangle \}$$
(A2)

$$(k+1) = \mathbf{w}(k) - \rho(A\mathbf{x}(k) + \mathbf{y}(k+1)) - \rho(2\alpha - 1)(A\mathbf{x}(k) + \mathbf{y}(k))$$
(A3)

$$\mathbf{x}(k+1) = \operatorname*{arg\,min}_{\mathbf{x}} \mathcal{L}_{\rho}(\mathbf{x}, \mathbf{y}(k+1); \mathbf{w}(k+1)) \qquad (A4)$$

where \mathbf{w} is the vector of Lagrange multipliers and the augmented Lagrangian is

$$\begin{aligned} \mathcal{L}_{\rho}(\mathbf{x},\mathbf{y};\mathbf{w}) &= f(\mathbf{x}) + \iota_{(I-P)}(\mathbf{y}) - \mathbf{w}^{\top}(A\mathbf{x} + \mathbf{y}) \\ &+ \frac{\rho}{2} \left\| A\mathbf{x} + \mathbf{y} \right\|^2. \end{aligned}$$

However, as shown in [2], the R-ADMM for problem (A1) can be equivalently characterized with the set of four iterates

$$\mathbf{y}(k) = \operatorname*{arg\,min}_{\mathbf{y}=P\mathbf{y}} \left\{ -\mathbf{z}^{\top}(k)\mathbf{y} + \frac{\rho}{2} \|\mathbf{y}\|^2 \right\}$$
(A5)

$$\mathbf{w}(k) = \mathbf{z}(k) - \rho \mathbf{y}(k) \tag{A6}$$

$$\mathbf{x}(k) = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ f(\mathbf{x}) - (2\mathbf{w}(k) - \mathbf{z}(k))^{\top} A \mathbf{x} \right\}$$

$$\mathbf{z}(k+1) = (1-2\alpha)\mathbf{z}(k) + 2\alpha(\mathbf{w}(k) - \rho A\mathbf{x}(k)).$$
(A8)

Similarly to what has been done in [3], it is now possible to leverage the distributed nature of problem (A1) in order to simplify Equations (A5)–(A8).

The authors are with the Department of Information Engineering, University of Padova, via Gradenigo 6/b 35131, Padova, Italy. nicola.bastianello.3@studenti.unipd.it, [carlirug|schenato]@dei.unipd.it, mrc.todescato@gmail.com First of all, solving the system of KKT conditions for (A5) yields $\mathbf{y}(k) = (I + P)\mathbf{z}(k)/(2\rho)$, and therefore Equations (A5)–(A8) become

$$\mathbf{y}(k) = (I+P)\mathbf{z}(k)/(2\rho) \tag{A9}$$

$$\mathbf{w}(k) = (I - P)\mathbf{z}(k)/2 \tag{A10}$$

$$\mathbf{x}(k) = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ f(\mathbf{x}) + (P\mathbf{z}(k))^{\top} A\mathbf{x} + \frac{\rho}{2} \|A\mathbf{x}\|^2 \right\}$$
(A11)

$$\mathbf{z}(k+1) = (1-\alpha)\mathbf{z}(k) - \alpha P\mathbf{z}(k) - 2\alpha\rho A\mathbf{x}(k).$$
 (A12)

Since we are interested in the trajectory $k \to \mathbf{x}(k)$ and by the fact that the update (A11) depends only on the vector $\mathbf{z}(k)$, then the R-ADMM for problem (A1) can be described by Equations (A11) and (A12) only.

Notice now that the trajectory $k \to \mathbf{x}(k)$ generated by (A11) is equivalent to that generated by (A4) if the initial condition for \mathbf{x} is the same and if $\mathbf{z}(0) = \mathbf{w}(0) + \rho \mathbf{y}(0)$ since Equation (A6) has to hold at time k = 0. Therefore Propositon 1 is proved if we can show that (A11) and (A12) can be rewritten as (11) and (12).

Recall that the permutation matrix P swaps the element $z_i^{(i,j)}$ with the element $z_i^{(j,i)}$ of vector \mathbf{z} , and that the row of $A\mathbf{x}$ relative to the auxiliary variable $z_i^{(j,i)}$ is $-x_i^{(i)}$. Therefore it follows that

$$(P\mathbf{z})^{\top} A\mathbf{x} = \begin{bmatrix} \cdots & z_i^{(j,i)^{\top}} & \cdots & z_i^{(i,j)^{\top}} & \cdots \end{bmatrix} \begin{bmatrix} \vdots \\ -x_i^{(i)} \\ \vdots \\ -x_i^{(j)} \\ \vdots \end{bmatrix}$$
$$= -\sum_{i=1}^N \left\{ \sum_{j \in \mathcal{N}_i} z_i^{(i,j)^{\top}} x_i^{(i)} + \sum_{j \in \mathcal{N}_i} z_j^{(i,j)^{\top}} x_j^{(i)} \right\}.$$

Moreover, for each node $i x_i^{(i)}$ appears in $|\mathcal{N}_i|$ constraints and $\{x_i^{(i)}\}_{j \in \mathcal{N}_i}$, in one constraint each. Hence we have

$$|A\mathbf{x}||^{2} = |\mathcal{N}_{i}| \left\| x_{i}^{(i)} \right\|^{2} + \sum_{j \in \mathcal{N}_{i}} \left\| x_{j}^{(i)} \right\|^{2}$$

Therefore Equations (11) and (12) can be derived from (A11) and (A12) using the particular structure of the problem, proving Proposition 1. \Box

B. Proof of Propositions 2 and 3

As was mentioned above, the partition-based problem can be reformulated as (A1) which can be solved by the application of the R-ADMM. Therefore both the convergence results of Propositions 2 and 3 follow from those of Propositions 2 and 3 of [3].

Indeed the R-ADMM is guaranteed to converge in both the loss-less and lossy scenarios as long as the step-size and penalty parameters are such that $0 < \alpha < 1$ and $\rho > 0$. Moreover, the components of the primal variables vector, which in the partition-based case are the subvectors $\mathbf{x}^{(i)}$, are guaranteed to converge to the optimum value, that is, each variable $x_i^{(i)}$ converges to the optimum x_i^* .

REFERENCES

- N. Bastianello, R. Carli, L. Schenato, and M. Todescato, "A partitionbased implementation of the relaxed admm for distributed convex optimization over lossy networks," in *IEEE 57th Annual Conference* on Decision and Control (CDC), 2018 [submitted]. IEEE, 2018.
- [2] D. Davis and W. Yin, "Convergence rate analysis of several splitting schemes," in *Splitting Methods in Communication, Imaging, Science, and Engineering.* Springer, 2016, pp. 115–163.
 [3] N. Bastianello, M. Todescato, R. Carli, and L. Schenato, "Distributed
- [3] N. Bastianello, M. Todescato, R. Carli, and L. Schenato, "Distributed optimization over lossy networks via relaxed peaceman-rachford splitting: a robust admm approach," in *European Control Conference (ECC)*, 2018. IEEE, 2018.