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Abstract— A general trend in the development of distributed1

convex optimization procedures is to robustify existing algo-2

rithms so that they can tolerate the characteristics and condi-3

tions of communications among real devices. This manuscript4

follows this tendency by robustifying a promising distributed5

convex optimization procedure known as Newton-Raphson6

consensus. More specifically, we modify this algorithm so7

that it can cope with asynchronous, broadcast and unreliable8

communications. We prove the convergence properties of the9

modified algorithm under the assumption that the local costs are10

quadratic, and support with numerical simulations the intuition11

that this robustified algorithm converges to the true optimum as12

soon as the local costs satisfy some mild smoothness conditions.13

I. INTRODUCTION14

The research area of distributed optimization has recently15

received significant attentions in the distributed control and16

estimation literature. In fact, distributed optimization algo-17

rithms are important building blocks in several estimation18

and control problems, specially in peer-to-peer networks.19

But, despite being the literature on distributed optimization20

quite rich, most of the existing contributions have been21

proved to work in networks whose communication schemes22

follow synchronous, undirected, and often time-invariant23

information exchange mechanisms.24

The first class of completely distributed optimization al-25

gorithms appearing in the literature relied on primal sub-26

gradient iterations [1], [2]. Following the dual decomposition27

approach proposed in the large-scale optimization literature28

[3], purely distributed dual decomposition methods have29

been proposed in peer-to-peer networks. In [4] a tutorial30

on network optimization via dual decomposition can be31

found. A recent reference handling equality and inequality32

constraints is [5]. To induce robustness in the computation33

and improve convergence in the case of non-strictly convex34

functions it has been proposed to use Alternating Direction35

Methods of Multipliers (ADMM) schemes. A first distributed36

ADMM algorithm was proposed in [6], while a survey on this37

technique is [7]. Notice that recently some efforts have been38

posed to increase the convergence speed of this technique by39
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means of accelerated consensus schemes [8]. All these algo- 40

rithms have been proved to converge to the global optimum 41

under fixed and undirected topologies assumptions. Recently 42

sub-gradient based algorithms for switching topologies have 43

been proposed in [9] and [10]. 44

Another class of algorithms exploits the exchange of 45

active constraints among the network nodes. A constraints 46

consensus has been proposed in [11] to solve linear, convex 47

and general abstract programs, see also [12]. These were the 48

first distributed optimization algorithms working under asyn- 49

chronous and direct communication. Recently the constraint 50

exchange idea has been combined with dual decomposition 51

and cutting-plane methods to solve distributed robust con- 52

vex optimization problems via polyhedral approximations 53

[13]. Although well-suited for asynchronous and directed 54

communications, these algorithms mainly solve constrained 55

optimization problems in which the number of constraints is 56

much smaller than the number of decision variables (or vice- 57

versa). An other technique that exploits contraction maps is 58

the one proposed in [14], but we notice that it requires strong 59

assumptions on the structure of the cost functions. 60

An alternative approach for unconstrained optimization 61

is to exploit the Newton-Raphson consensus approach that 62

has been recently proposed in [15]. These algorithms show 63

very interesting convergence properties and are proved to 64

work under synchronous communication. However, in the 65

algorithm proposed in [15] the communication is required 66

to be undirected and reliable, in the sense that there are no 67

mechanisms to handle packet losses. 68

Inspired by this algorithmic idea, in this paper we propose 69

a novel methodology working under asynchronous broad- 70

cast communications over a directed graph. Specifically, the 71

contributions of the paper are as follows. First, we combine 72

the Newton-Raphson consensus idea introduced in [15] with 73

a push-sum consensus method proposed in [16] to achieve 74

average consensus in directed networks. The intuition be- 75

hind the proposed algorithm is the following: the Newton- 76

Raphson consensus solves the distributed optimization prob- 77

lem by estimating a Newton-Raphson descent update. The 78

convergence is guaranteed through a time-scale separation 79

between the iteration computing the Newton-Raphson update 80

and the average consensus that forces the nodes to share 81

the common Newton direction. Here we introduce the push- 82

sum idea to replace the aforementioned consensus protocol, 83

so to regain convergence to the average even under direct 84

topologies assumptions, and moreover add a technique that 85

allows to handle packets losses. Second, we show that for dis- 86

tributed quadratic programs the push-sum update guarantees 87



the convergence of all the agents to the global optimum. The1

result is proved by showing that the proposed update rule is a2

forward product of column stochastic matrices which, under3

the broadcast communication, is shown to be a stationary4

and ergodic process.5

The manuscript is organized as follows: Section II formu-6

lates the problem and our working assumptions. Section III7

then introduces the proposed algorithm and its proof of8

convergence. Section IV adds to it the robustness to packet9

losses. Section V collects some numerical experiments cor-10

roborating our results, and eventually Section VI concludes11

the manuscript with some remarks and indications of future12

research directions.13

II. PROBLEM FORMULATION14

We consider a network with set of nodes V = {1, . . . , N}15

and a fixed directed communication graph G = (V, E). In16

our definitions E is the set of edges, i.e., E ⊆ V × V and17

(i, j) ∈ E if there is an edge going from node i to node j.18

In our context, the edge (i, j) models the fact that node j19

can receive directly information from node i. By N out
i we20

denote the set of out-neighbors of node i, i.e., N out
i :=21

{j ∈ V|(i, j) ∈ E} is the set of agents receiving messages22

from i. Similarly, N in
i denotes the set of in-neighbors of node23

i, i.e., N in
i := {j ∈ V|(j, i) ∈ E}. The graph G is assumed24

to be strongly connected.25

We start dealing with the scalar case, and consider the26

solution of the separable optimization problem27

x∗ := min
x

N∑
i=1

fi(x) (1)28

under the assumptions that each fi is known only to agent i29

and is C2, coercive over R and strictly convex with second30

derivative bounded from below, i.e., f ′′
i (x) > c for all x.31

We are interested into algorithms solving (1) with the32

following two features:33

(i) being distributed, as opposed to centralized: namely,34

we assume that there is no central unit that, by knowing35

all the fi’s and by having global knowledge of the36

graph G, may compute x∗ directly. Instead we assume37

that each node has limited computational and mem-38

ory resources and that it is allowed to communicate39

directly only with its out-neighbors;40

(ii) being asynchronous, as opposed to synchronous:41

namely, agents do not share a common reference time42

with which it is possible to synchronize all the updating43

and transmitting actions.44

In what follows we introduce a distributed algorithm which45

is based on a Newton-Raphson consensus strategy and which46

employs an asynchronous broadcast communication proto-47

col. Specifically, during each iteration of the algorithm there48

is just one node transmitting information to all its neighbors49

in the graph G, while the others either merely receive the50

information or do nothing.51

In the following we will refer to this procedure as the52

asynchronous Newton-Raphson Consensus algorithm (de-53

noted hereafter as a-NRC algorithm). Our a-NRC scheme54

is reminiscent of the Newton-Raphson procedure introduced 55

in [15] in a completely synchronous scenario. 56

We thus assume that, to solve (1), each agent i stores in 57

its memory a copy of x, say xi. We thus can reformulate 58

problem in (1) as 59

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to xi = xj for all (i, j) ∈ E
(2) 60

The strongly connectedness of graph G ensures then that the 61

optimal solution of (2) is given by x1 = . . . = xN = x∗, 62

i.e., that problems (1) and (2) are equivalent. 63

Instrumental to our aims, we assume that each node has 64

its local concept of time. Each node has thus its individual 65

timer that randomly triggers the associated nodes to transmit, 66

eventually triggering an iteration of the algorithm. How 67

often these local timers ticks is described by the following 68

assumption: 69

Assumption II.1 Let {T (i)(h)}, h ∈ N, be the time instants 70

in which the node i is triggered by its own timer. We assume 71

that the timer ticks with exponentially distributed waiting 72

times, identically distributed for all the nodes in {1, . . . , N}. 73

74

With this machinery we thus introduce an artificial concept 75

of time driving the sequence of iterations t of the algorithm. 76

Notice then that, if the random sequence σ(t) ∈ 77

{1, . . . , N} defines which node has been triggered at itera- 78

tion t, Assumption II.1 implies that σ(t) is an i.i.d. uniform 79

process on the alphabet {1, . . . , N}. 80

We also define the following operator: assuming the scalar
c > 0 bounding the second derivatives of the local costs to
be known, we let

[z]c :=

{
z if z ≥ c
c otherwise.

III. THE ASYNCHRONOUS NEWTON-RAPHSON 81

CONSENSUS ALGORITHM 82

We assume that each node i stores in its memory the
variables xi, gi, gold

i , hi, hold
i , zi and yi, initialized as

xi = zi = yi = gold
i = hold

i = 0

gi = −f ′
i(0)

hi = f ′′
i (0).

Let ε ∈ (0, 1] be a real parameter and let, w.l.o.g., σ(t) = i, 83

so that node i is the one broadcasting its information during 84

the t-th iteration of the algorithm. Then the following actions 85

are performed in order: 86



(i) node i starts by updating its local variables as

yi ←
1

|N out
i |+ 1

[
yi + gi − gold

i

]
zi ←

1

|N out
i |+ 1

[
zi + hi − hold

i

]
gold
i ← gi

hold
i ← hi

xi ← (1− ε)xi + ε
yi
[zi]c

gi ← f ′′
i (xi)xi − f ′

i(xi)

hi ← f ′′
i (xi)

(ii) node i then broadcasts yi and zi to its neighbors;1

(iii) each neighbor j ∈ N out
i updates its local variables as

yj ← yi + yj + g(xj)− g(xold
j )

zj ← zi + zj + h(xj)− h(xold
j )

gold
j ← gj

hold
j ← hj

xj ← (1− ε)xj + ε
yj
[zj ]c

gj ← f ′′
j (xj)xj − f ′

j(xj)

hj ← f ′′
j (xj)

To describe the a-NRC algorithm in a compact form let2

x := [x1, . . . , xN ]
T

3

gold :=
[
gold
1 , . . . , gold

N

]T
4

hold :=
[
hold
1 , . . . , hold

N

]T
5

g := [g1, . . . , gN ]
T

6

h := [h1, . . . , hN ]
T

7

y := [y1, . . . , yN ]
T

8

z := [z1, . . . , zN ]
T

9

f ′(x) := [f ′
1(x1), . . . , f

′
N (xN )]

T
10

f ′′(x) := [f ′′
1 (x1), . . . , f

′′
N (xN )]

T
11

and let also the notation f ′′(x(t))x(t) and
y(t− 1)

[z(t− 1)]c
indicate element-wise operations, i.e.,

f ′′(x(t))x(t) :=
[
f ′′
1 (xi(t))x1(t), . . . , f

′′
N (xi(t))xN (t)

]T
y(t− 1)

[z(t− 1)]c
:=

[
y1(t− 1)

[z1(t− 1)]c
, . . . ,

yN (t− 1)

[zN (t− 1)]c

]T
.

Let moreover every matrix Pi ∈ RN×N , i ∈ {1, . . . , N}, be

Pi := I − eie
T
i +

1

|N out
i |+ 1

∑
j∈Ni∪{i}

eje
T
i

where eh is the N -dimensional vector having all the com-12

ponents equal to zero except the h-th component which is13

equal to 1. Let 1 be the N -dimensional vector with all the14

components equal to one and observe that that, since every15

Pi has nonnegative elements and is s.t. 1TPi = 1T , every 16

Pi is column stochastic. 17

With this notation, and recalling that σ(t) ∈ {1, . . . , N}
denotes the node triggering iteration t, the generic t-th
iteration of the a-NRC can equivalently be described as

y(t) = Pσ(t)

(
y(t− 1) + g(t− 1)− gold(t− 1)

)
z(t) = Pσ(t)

(
z(t− 1) + h(t− 1)− hold(t− 1))

)
gold(t) = g(t− 1)

hold(t) = h(t− 1)

x(t) = (1− ε)x(t− 1) + ε
y(t− 1)

[z(t− 1)]c
g(t) = f ′′(x(t)) · x(t)− f ′(x(t))

h(t) = f ′′(x(t))

Observe that, since σ(t) is an i.i.d. process on the alphabet 18

{1, . . . , N}, it follows that also the sequence
{
Pσ(t)

}
t≥1

is 19

i.i.d. on the alphabet {P1, . . . , PN}. 20

Remark III.1 As already highlighted, the distributed 21

Newton-Raphson algorithm proposed in [15] works only for 22

undirected graphs and in a completely synchronous scenario, 23

in the sense that all the nodes are assumed to perform the 24

transmissions and the updates at the same time. The currently 25

proposed scheme instead generalizes the previous ones, that 26

can be retrieved from the currently proposed formalism 27

simply employing a time-invariant and doubly stochastic 28

matrix P . 29

Remark III.2 The design parameter ε dictates how much 30

each node i trusts
yi(t− 1)

[zi(t− 1)]c
as a valid descent direction. 31

As mentioned in [15], the synchronous NRC algorithm 32

follows a separation of time scales, i.e., it is possible to 33

recognize, in the dynamics of the system, two different 34

time scales: one is related to how fast the network reaches 35

consensus over the variables yi and [zi]c. The other one is 36

instead related to how fast the local guesses xi evolve. ε then 37

dictates the relative speed of these two dynamics. Moreover, 38

if the consensus process is much faster than the evolution 39

of the guesses, then the latter process approximately follows 40

the dynamics of continuous Newton-Raphson algorithms. 41

As in all ordinary singularly perturbed systems, the stabil- 42

ity of the overall system is not guaranteed for every ε. Indeed 43

it can be numerically shown that there may exist ε∗ ∈ (0, 1] 44

(dependent on the structure of the local costs fi and on the 45

topology of the communication network) s.t. if ε > ε∗ then 46

the overall system diverges. Unfortunately this conflicts with 47

the practical necessity of having high ε’s, since the higher 48

its value, the faster the algorithm converges (if converging) 49

to the optimum. 50

We notice that how to choose ε distributedly and dynam- 51

ically is still an open question. 52

A. The quadratic case 53

We now give insights on the convergence properties of the 54

a-NRC algorithm by restricting our attention to the quadratic 55



case. More specifically we assume the local costs to be1

fi(x) =
1

2
(aix− bi)

2, ai 6= 0. (3)2

so that the optimal solution of (1) becomes

x∗ =

∑N
i=1 aibi∑N
i=1 a

2
i

.

Proposition III.3 Let the local costs fi be as in (3), As-
sumption II.1 hold true, and ε ∈ (0, 1]. Then the trajectory
t → x(t) reaches almost surely and asymptotically consen-
sus on the optimal solution x∗, i.e.,

P
[
lim
t→∞

x(t) = x∗1
]
= 1.

Proof: In the quadratic case, for any t ≥ 1

gi(t) = gold
i (t) = aibi and hi(t) = hold

i (t) = a2i .

while, for t = 0,

gi(0) = aibi, gold
i (0) = 0, hi(0) = a2i , hold

i (t) = 0.

For t ≥ 1, thus, the evolution of y coincides with the
evolution of that ỹ whose dynamic is described by the
column-stochastic consensus algorithm

ỹ(t+ 1) = Pσ(t)ỹ(t), ỹ(0) = aibi.

Moreover, since the [·]c operator is never active in this
quadratic case, in a similar way we have that z(t) = z̃(t)
for t ≥ 1, with z̃(t) evolving as

z̃(t+ 1) = Pσ(t)z̃(t), z̃(0) = a2i .

Write then
y(t)

z(t)
=

y(t)

v(t)

v(t)

z(t)

with the new variable v(t) evolving as

v(t+ 1) = Pσ(t)v(t), v(0) = 1,

and let
ωy(t) =

y(t)

v(t)
, ωz(t) =

z(t)

v(t)
.

Inspired by [16], manuscript in the context of computing
average consensus using non-doubly stochastic matrices, we
then consider the algorithm

ξ(t) =
s(t)

ω(t)

where ξ, s,ω ∈ RN and where the dynamics of s and ω are
ruled by

s(t+ 1) = D(t)s(t), s(0) = ξ(0)

and
ω(t+ 1) = D(t)ω(t), ω(0) = 1,

with D(t) a column-stochastic matrix. Under the assump-3

tions that4

• {D(t)}t≥0 is a stationary and ergodic sequence of5

column-stochastic matrices with positive diagonals;6

• E[D] is irreducible; 7

from [16, Thm IV.1] it follows that

P

[
lim
t→∞

ξ(t) =

(
1

N

N∑
i=1

ξi(0)

)
1

]
= 1.

Now notice that
{
Pσ(t)

}
is a stationary and ergodic

sequence defined on the alphabet {P1, . . . , PN}, that all the
matrices Pi have positive diagonals, and that the matrix

P := E
[
Pσ(t)

]
=

1

N

N∑
i=1

Pi

is s.t. P ij 6= 0 if (j, i) ∈ E . Since the graph G is strongly
connected and the matrix P has positive diagonal elements,
it follows that P is irreducible. Hence we can conclude that,
almost surely,

lim
t→∞

ωy(t) =

(
1

N

N∑
i=1

ỹ(0)

)
1 =

(
1

N

N∑
i=1

aibi

)
1

and

lim
t→∞

ωz(t) =

(
1

N

N∑
i=1

z̃(0)

)
1 =

(
1

N

N∑
i=1

a2i

)
1.

Therefore, again almost surely,

lim
t→∞

x(t) =
(1/N

∑N
i=1 aibi)1

(1/N
∑N

i=1 a
2
i )1

where the division is once again considered element-wise,
i.e.,

lim
t→∞

x(t) =

∑N
i=1 aibi∑N
i=1 a

2
i

1 = x∗1.

8

We remark that the previous proof ensures convergence 9

only for the quadratic case. Nonetheless in our numerical 10

simulations we never found a set of valid local costs leading 11

to diverging behaviors for every ε ∈ (0, 1]. This supports our 12

belief that, as for the original synchronous version in [15], 13

the algorithm exhibits global convergence properties. 14

B. The multidimensional case 15

Let now x ∈ Rm, m ≥ 1, so that the local costs are 16

defined on a multidimensional domain, i.e., fi : Rm → R. 17

The extension of the scalar algorithm to the multidimensional 18

scenario can now be immediately obtained by replacing 19

f ′
i(x) with the gradient ∇fi(x) ∈ Rm, f ′′

i (x) with the 20

full Hessian ∇2fi(x) ∈ Rm×m, by letting zi, yi, gi, gold
i 21

be m-dimensional vectors, and the variables hi, hold
i be 22

m×m-square matrices. 23

Let now the local costs fi be 24

fi(x) =
1

2
(AT

i x− bi)
TQi(Aix− bi) (4) 25

with Ai ∈ Rmi×m, Qi ∈ Rmi×mi , bi ∈ Rmi , and assume the
matrix

∑N
i=1 A

T
i QiAi to be invertible. In this case it is easy



to show that the optimal solution of the (multidimensional)
problem (1) is

x∗ =

(
N∑
i=1

AT
i QiAi

)−1( N∑
i=1

AT
i Qibi

)
.

Repeating the same steps performed in the proof of1

Proposition III.3 it is thus immediate to prove the following2

Proposition. With the symbol ⊗ we denote the Kronecker3

product and we observe that, in this multidimensional case,4

x =
[
xT
1 , . . . , x

T
N

]T ∈ RmN .5

Proposition III.4 Let the local costs fi be as in (4), As-
sumption II.1 hold true, and ε ∈ (0, 1]. Then the trajectory
t → x(t) reaches almost surely and asymptotically consen-
sus on the optimal solution x∗, i.e.,

P
[
lim
t→∞

x(t) = 1⊗ x∗
]
= 1.

It is worth remarking that there are significant examples6

for which the optimization problem can be cast as in (4),7

i.e., as the sum of quadratic functions. E.g., static state8

estimation in power networks [17], distributed localization9

in sensor networks [18], and network utility maximization10

and resource allocation [19].11

IV. ROBUSTIFICATION OF THE A-NRC ALGORITHM12

TO PACKET LOSSES13

We now consider the realistic situation where some com-14

munication links might fail, in the sense that when node i15

performs a broadcast communication, not every out-neighbor16

receives the transmitted information. This models situations17

where, e.g., wireless communications fail due to packets18

corruption phenomena.19

The aim is to suitably modify the previously presented20

a-NRC algorithm and make it robust against this type of21

communication failures. To this aim we inherit the technique22

proposed in [20], where authors obtain average consensus23

algorithms that converge to the right point over general24

directed graphs and in presence of stochastic packet losses.25

We thus assume that every node i stores in its memory,26

in addition to the variables xi, xold
i , zi, yi, also the variables27

bi,y , bi,z , r(j)i,y , and r
(j)
i,z for every j ∈ N in. The meanings of28

these variables are the following:29

• bi,y and bi,z are quantities owned by node i and keep30

track inside node i of the total mass of (respectively)31

states yi and zi. They are the quantities that (in this ro-32

bustified version of the algorithm) are actually broadcast33

by node i to its out-neighbors;34

• r
(i)
j,y and r

(i)
j,z are instead quantities owned by node j35

and keep track inside node j of the total mass of36

(respectively) states yi and zi. In other words, with r
(i)
j,y37

and r
(i)
j,z node j tracks the status of node i. When the38

communication link from i to j is available, node j39

updates r
(i)
j,y and r

(i)
j,z with the received bi,y and bi,z ,40

otherwise (in case of communication failure) r
(i)
j,y and41

r
(i)
j,z remain equal to the previous total masses received.42

Thus, letting again w.l.o.g. σ(t) = i (i.e., node i be the node 43

triggering iteration t), the robust a-NRC becomes: 44

(i) node i starts by updating its local variables as

yi ←
1

|N out
i |+ 1

[
yi + gi − gold

i

]
zi ←

1

|N out
i |+ 1

[
zi + hi − hold

i

]
gold
i ← gi

hold
i ← hi

xi ← (1− ε)xi + ε
yi
[zi]c

gi ← f ′′
i (xi)xi − f ′

i(xi)

hi ← f ′′
i (xi)

bi,y ← bi,y + yi

bi,z ← bi,z + zi

(ii) node i then broadcasts to its neighbors bi,y and bi,z; 45

(iii) each neighbor j ∈ N out
i updates (if receiving the

packet, otherwise it does nothing) its local variables
as

yj ← bi,y − r
(i)
j,y + yj + gj − gold

j

zj ← bi,z − r
(i)
j,z + zj + h(xj)− h(xold

j )

gold
j ← gj

hold
j ← hj

xj ← (1− ε)xj + ε
yj
[zj ]c

gj ← f ′′
i (xj)xi − f ′

i(xj)

hj ← f ′′
i (xj)

r
(i)
j,y ← bi,y

r
(i)
j,z ← bi,z

As shown in the following Section V, numerical evidence 46

show that this robustification makes the algorithm able to 47

converge to the optimal solution even in presence of a 48

significant number of communication failures. 49

V. SIMULATIONS 50

Aims: the principal aims are to describe qualitatively the 51

behavior of the single agents while running the procedure, 52

and comment the effects of choosing different ε’s on the 53

convergence speed / properties of the algorithm. 54

We do not compare our robust a-NRC with the two cur- 55

rently main distributed optimization techniques present in lit- 56

erature, namely ADMM [1], [2] and subgradient schemes [7], 57

since: i) as for the ADMM, at the best of our knowledge there 58

are no competing algorithms, i.e., there are no ADMM-based 59

schemes that can perform broadcast asynchronous optimiza- 60

tion tasks while being robust to packet losses issues. ii) as for 61

subgradient schemes, it has already been numerically shown 62

in [15] that these algorithms are outperformed by NR-based 63

procedures. This indeed mimics the situation of centralized 64

optimization procedures, where exploiting information on 65



higher derivatives generally improves the convergence prop-1

erties of the optimization routine.2

Numerical setup: to fulfill the previous aims we con-3

sider either quadratic, i.e.,4

fi(x) =
1

2
(α′

ix− α′′
i )

2 (5)5

or sums of exponentials, i.e.,6

fi(x) = α′
i exp (α

′′
i x) + α′′′

i exp (−α′′′′
i x) (6)7

local costs, with parameters randomly generated as either8

[α′
i, α

′′
i ] ∼ U [0, 1]

2 or [α′
i, . . . , α

′′′′
i ] ∼ U [0, 1]

4. The con-
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Fig. 1. Examples of the local costs considered for the numerical experi-
ments (dashed lines) and of the relative global costs (solid lines).

9

sidered network is instead the random geometric network10

shown in Figure 2.

Fig. 2. The random geometric network considered for the numerical
experiments of this section. It is composed by N = 15 nodes uniformly
deployed in [0, 1]2 and with communication radius 0.35.

11

Communications are broadcast, asynchronous and with12

packet losses that occur independently on each link time with13

probability 0.2. In other words, a packet sent simultaneously14

to agents i and j may reach i but not j.15

Results: Figure 3 describes the effect of the choice16

of the design parameter ε on the convergence speed of17

the algorithm by considering how fast the average guess18

1
N

∑
i xi(t) approaches the optimum x∗ both under quadratic19

and exponential local costs.20

As expected, increasing ε leads to faster convergence21

speeds. Nonetheless, too big ε’s may lead to instability and22

diverging phenomena (a common issue of schemes that are23

based on separation of time-scales concepts). We remark24

that dynamically finding the best ε (that depends on several25

factors, mainly the curvature of the local costs and the26

topology of the communication network) is still an open27

issue.28
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Fig. 3. Comparisons of the dependence of the convergence speed of the
algorithm on ε for different cost functions.

Regarding the behavior of the single agents, Figures 4 29

and 5 plot respectively the evolutions of the local guesses 30

and of the relative errors for ε = 0.1. We can notice 31

that the qualitative behavior of the various nodes is the 32

same, independently of the fact of being in the periphery 33

of the network or not. It is also possible to notice that the 34

algorithm has linear convergence time (fact that is driven 35

by the linearity of the consensus algorithm underlying the 36

information exchange process). 37
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Fig. 4. Evolution of the local states of the various agents for ε = 0.1.
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Fig. 5. Evolution of the local errors of the various agents for ε = 0.1.

VI. CONCLUSIONS 38

To be able to arrive to real-world implementations, dis- 39

tributed algorithms are required to seamlessly cope with 40



packet-losses, asynchronous communications, and directed1

links. At the same time, optimization algorithms are sup-2

posed to be fast, i.e., return accurate estimates of the opti-3

mum after a limited amount of exchanged information.4

These two considerations drove the development of this5

paper, presenting a robustification of the distributed Newton-6

Raphson algorithm proposed initially in [15]. More specif-7

ically, we added to the original procedure a set of features8

that enable this algorithm to work even with asynchronous,9

unreliable and broadcast communication protocols. This con-10

stitutes in our opinion an advantage with respect to ADMM11

schemes, that at the best of our knowledge do not tolerate12

these working conditions.13

We then notice that this paper opens more questions14

than how many it closes. More specifically, our proofs15

of convergence exploit asynchronous, broadcast, reliable16

communications and quadratic local costs. Thus proving its17

convergence properties under general costs and unreliable18

communications scenarios is still an open question.19

Moreover the algorithm, that in our vision may become the20

heart of a truly distributed interior point method, still lacks21

of important capabilities: i) tuning ε on line, that requires22

agents to be able to detect diverging behaviors; ii) updating23

the state x with partition-based approaches, meaning that24

(in the same spirit of [21]) each agent keeps and updates25

only some of the components; iii) accounting for equality26

constraints in the state of the form Ax = b.27
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imation framework for convex and robust distributed optimization,” 68

IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 384–395, 69

Feb 2014. 70

[14] C. Fischione, “F-Lipschitz Optimization with Wireless Sensor Net- 71

works Applications,” IEEE Transactions on Automatic Control, 72

vol. 56, no. 10, pp. 2319 – 2331, 2011. 73

[15] F. Zanella, D. Varagnolo, A. Cenedese, P. Gianluigi, and L. Scenato, 74

“Newton-raphson consensus for distributed convex optimization,” in 75

Proc. 50th IEEE Conf. on Decision and Control, Orlando, Florida, 76

December 2011, pp. 5917 – 5922. 77
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