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Abstract— In this paper we study the effect of communication
nonidealities on the control of unstable stochastic scalar linear
systems. The communication protocol links the sensors to
the actuators and should be studied by taking into account
several limitations such as quantization errors, limited channel
capacity, decoding/computational delays and packet loss. We
restrict our analysis in the context of LQG cheap control
subject to SNR limitations, packet loss, and delay and we derive
their impact on optimal design for the controller parameters.
In particular, we show that the stability of the closed loop
system depends on a tradeoff among quantization, packet loss
probability and delay. Through this analysis we are also able
to recover, as special cases, several results already available in
the literature that have treated packet loss, quantization error
and delay separately.

I. INTRODUCTION

Traditionally, control theory and communication theory
have been developed independently and have reached consid-
erable success in developing fundamental tools for designing
information technology systems. The major objective of
control theory has been to develop tools to stabilize unstable
plants and to optimize some performance metrics in closed
loop under the assumption that the communication channel
between sensors and controller and between the controller
and the plant were ideal, i.e. without distortion, packet loss
or delay. This assumption actually holds in many control
applications where the non idealities of the communication
channel have negligible impact, compared to the effects
of noise and uncertainty in the plants. With the advent of
wireless communication, the Internet and the need for high
performance control systems, however, the sharp separation
between control and communication has been questioned
and a growing body of literature has appeared from both
the communication and the control communities trying to
analyze the interaction between control and communication.

This recent branch of research is known as Networked
Control System (NCS) and considers control systems wherein
the control loops are closed through a real-time network, and
feedback signals are exchanged in the form of data packets.

Recent results in this area have revealed the existence of a
strict connection between the performance of the controlled
plant and the Shannon capacity of the feedback channel.
However, this is not sufficient to completely characterize the
communication channel from a control perspective [14], [10].
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For instance, it has been proved that in order to stabilize
an unstable plant through a control loop, the signal-to-
noise ratio (SNR) of the feedback channel must be larger
than some threshold depending on the unstable eigenvalues
of the plant [2], [17], [3]. Another line of research has
addressed the problem of stabilizing an unstable plant in
the presence of a feedback channel that is prone to random
packet losses [18], [7], [8], [16], or that is rate-limited
[11], [19], [5]. A subsequent step has been made to include
multiple channel limitations into the model, such as packet
loss and quantization [20], [9], which however results in
complex optimization problems.

In this work, we address the problem of performance
optimization in a NCS with a realistic feedback chan-
nel. More specifically, we consider the Linear-Quadratic-
Gaussian (LQG) control problem, which consists in finding
the control signal of a linear time-invariant (LTI) plant that
minimizes a quadratic cost function of the system state,
when both the system state and the output signal are affected
by Gaussian noise. While the optimal solution to the LQG
problem in LTI systems with ideal feedback channel is
known to be achieved by a controller formed by a Kalman
filter and a linear-quadratic regulator, the solution to the
problem in NCS systems with realistic feedback channels has
only been investigated for specific feedback channel models,
while the general solution still remains unknown.

Our feedback channel model takes into account packet
loss, code rate limitations, signal quantization and delay,
while still being mathematically amenable to analysis. By
using this model, we find a stability condition that depends
on the packet loss probability, the signal to quantization noise
ratio (SQNR) and the channel delay d. To the best of our
knowledge this is the first result which takes simultaneously
into account all these aspects. The LQG architecture pro-
posed in this paper actually generalizes those considered in
the previous literature; in fact we recapture several conditions
available in the literature for more specific channel models
as special cases of our model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we cast the LQG problem into the NCS
framework. First, we introduce the LQG problem. Then, we
model the feedback transmission channel that completes the
NCS structure considered in this work. Finally, we formally
define the LQG problem in the NCS architecture

A. LQG problem definition

We consider a plant, modeled as a discrete-time, scalar,
LTI system, subject to additive white Gaussian measurement



Fig. 1. Equivalent model of the feedback channel and state predictor,
accounting for the presence of quantization noise, packet loss and decoding
delays.

and process noise. More specifically, the state of the system
at step t, denoted as xt, evolves according to the following
linear model:

xt+1 = axt + but + wt (1)
yt = cxt + vt (2)

where ut and yt represent the input and output signals of the
plant, respectively, whereas wt and vt are two independent
discrete-time Gaussian white noise processes with variance
σ2
w and σ2

v , respectively. Finally, a, b and c are the state,
input and output coefficients, respectively. Note that c can
always made equal to 1 with a change of basis, which we
shall do from now on. In addition we shall also assume b = 1
because in the cheap control scenario the static gain does not
play a role.

We consider the steady state variance as performance
index1

J = lim sup
t→+∞

E[y2
t ] . (3)

The objective of the LQG problem is then to minimize J by
means of a suitable control signal ut, which only depends
(strictly) causally on the output signal {ym, m < t}, and
possibly on its own previous values {um, m ≤ t− 1}.

B. Feedback channel modeling

In the NCS framework, the plant output yt is not directly
accessible to the controller, but must be delivered by means
of a suitable transmission scheme. The feedback channel will
thus comprise analog to digital conversion of yt and source
coding of the corresponding bitstream into packets, channel
coding and transmission over the physical channel. At the
receiver, after forward error correction, typically a detection
of residual errors is performed and packets that have not been
correctly decoded are dropped (packet erasures). Instead,
accepted packets bear correct digital values with very high
probability.

We model the feedback channel as represented in Fig. 1,
where nt represents the quantization noise. It accounts for the
distortion due to the quantization of the real-valued signal yt
before transmission. If quantization is fine enough, nt can be
effectively modeled as a zero-mean additive random process,

1Strictly speaking the term “steady state” should only be used when the
limit is finite; this will actually hold under suitable conditions, see Theorem
2.

with identically distributed uncorrelated samples of power
σ2
n = E

[
n2
t

]
. The SQNR, α = E

[
y2
t

]
/σ2

n, is related to the
information rate Rq of the quantized signal, and increases
with it. Since the maximum information rate Rq is upper
limited by the channel code rate Rc, the SQNR cannot be
increased above a certain threshold α∗, which depends on
Rc.

Packet erasures are instead modeled by introducing a
Bernoulli process γt ∈ {0, 1}. Assuming that a packet is sent
at each t = 0, 1, . . ., we indicate a packet erasure by letting
the corresponding γt = 0. We assume that an erasure occurs
with probability ε at each packet transmission, independently
of previous events.

Finally, we assume a transmission/processing delay of d
steps between the plant output yt and the control signal ut.
One delay is embedded2 in the state predictor based on the
measurements ht received up to time t− 1 (see also Figure
1). As such, it must be d ≥ 1, and the delay block z−(d−1)

accounts for the additional encoding/decoding delay.
The feedback channel model considered in this paper has

the following input-output relationship

ht = γt−d+1(yt−d+1 + nt−d+1) (4)

an it is, hence, completely characterized by three parameters,
namely ε, d, and α∗, with

d ≥ 1, P[γt = 0] = ε, σ2
n = E

[
y2
t

]
/α . (5)

These parameters are clearly related, as, for instance, re-
ducing the erasure probability ε may require increasing the
delay d or reducing the information rate Rq, i.e., decreasing
the maximum achievable SQNR α. Therefore some trade-
offs are expected in the context of feedback control, since
all three terms impact the performance of the closed loop
system. Unfortunately, the exact form of the relation among
these parameters is not available, though some tight bounds
have recently been derived in [13].

For the ease of mathematical treatment, in our analysis we
will assume that these parameters can be set independently.
We can thus sort out the impact of each single parameter
on the system performance. Note that, the interdependencies
among the channel model parameters will only shrink the
design parameter space, without affecting the validity of
our analysis. An extension of our approach that keeps into
account this aspect is left for future work.

C. Problem statement

In order to handle the delay in a compact form, we use
the standard technique of state augmentation and define

ξt := [xt−d+1, ...., xt]>. (6)

The augmented state satisfies

ξt+1 = Aξt +But +Bwt
ht = γt−d+1 (Cξt + vt−d+1 + nt−d+1) (7)

2We followed this route for ease of exposition. The delay in prediction
should not be linked to the computational cost at the predictor but rather to
the fact that the predictor has only access to delayed measurements.
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Fig. 2. NCS scheme for scalar output plants, where the plant decoder is
given by the cascade of a linear state predictor and a state feedback.

where

A :=


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . a

 B :=


0
...
0
1


C = [1 0 . . . 0]

We restrict our attention to the classical LQG structure for
the plant decoder, which is given by the cascade of a linear
state estimator and a state feedback, as represented in Fig. 2.
The state estimator ξ̂t (which uses the data up to time t−d)
is governed by the following law

ξ̂t+1 = Aξ̂t+But+γt−d+1G
(
ht−Cξ̂t

)
(8)

where G is a constant estimator gain, and the estimator (8)
is time-varying since it depends on the sequence γt. In fact,
if a packet is not received correctly, i.e. γt = 0, then the
estimator updates its state using the model only, while when
γt = 1 the estimate is adjusted by a correction term, based
on the output innovation, similarly to a Kalman filter. The
state feedback module, in turn, will simply return a control
signal proportional to the predicted state3 through L, i.e.,

ut = Lξ̂t = [`1 `2 . . . `d]ξ̂t (9)

This scheme was first proposed in [15] and, although it does
not yield the optimal time-varying Kalman filter [18], it has
the advantage of being computationally simpler and allowing
for the explicit computation of the performance J , as will
be shown in the next section.

In this framework, the objective is to solve the following
optimization problem:

min
G,L

J (10)

s.t. lim
T→+∞

∑T
t=0 E[||yt||2]∑T
t=0 E[||nt||2]

≤ α∗ (11)

3Note that ut in (9) is a function of measurements ht up to time t− 1,
i.e. of the signal ys + ns up to time s = t− d.

The constraint (11) sets an upper bound on the SQNR, which
cannot exceed the maximum value α∗ allowed by the channel
code rate.

As a byproduct of our analysis we shall show that the
optimal G and L have the following special structure (see
Proposition 1):

G∗ = [g∗ ag∗ a2g∗ . . . ad−1g∗]
L∗ = [0 0 . . . −a]

Although in this study we limit our attention to the case
of scalar systems, the approach can be extended to the
multidimensional case. We leave this generalization to future
work.

III. ANALYSIS OF THE SCALAR CASE

As a first step, we derive the dynamical equations that
govern the state as well as the error evolution for the
estimator in equation (8). Inserting the control law (9) in
(7) and (8) we obtain:

ξt+1 = Aξt +BLξ̂t +Bwt
= ALξ̂t +Aξ̃t +Bwt

ξ̂t+1 = ALξ̂t + γt−d+1G
(
Cξ̃t + vt−d+1 + nt−d+1

)
(12)

where ξ̃t := ξt − ξ̂t and

AL := A+BL =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
`1 `2 . . . a+ `d

 (13)

Let us now define

Āγ :=
[
AL γGC
0 A− γGC

]
It follows that the equation of the feedback loop system

are:

[
ξ̂t+1

ξ̃t+1

]
= Āγt−d+1

[
ξ̂t
ξ̃t

]
+
[

0
B

]
wt+

+
[

γt−d+1G
−γt−d+1G

] [
vt−d+1 + nt−d+1

]
yt−d+1 =

[
C C

] [ ξ̂t
ξ̃t

]
+ vt−d+1

Let us now define

P := Var{[ξ̂>t , ξ̃>t ]>} =
[
P11 P12

P21 P22

]
After some algebra, we can show that the variance P satisfies
the Riccati-type equation

P = (1−ε)Ā1PĀ
>
1 +εĀ0PĀ

>
0 +
[

0
B

]
σ2
w

[
0 B>

]
+

+(1− ε)
[
G
−G

] [
σ2
v +N

] [ G
−G

]>
(14)



where

N = αPy Py =
[
C C

]
P

[
C>

C>

]
+ σ2

v

Substituting the above expression for N and Py in (14) we
obtain:

P = (1− ε)Ā1PĀ
>
1 + εĀ0PĀ

>
0 +

+
[

0
B

]
σ2
w

[
0 B>

]
+

+(1− ε)(1 + α)
[
G
−G

]
σ2
v

[
G
−G

]>
+

+α(1− ε)Φ̄P Φ̄>

(15)

where

Φ̄ :=
[

GC GC
−GC −GC

]
For the ease of notation we define the operator on the right
hand side of (15) asM(G,L, P ), so that (15) can be written
in compact form as

P =M(G,L, P )

Minimization of the cost function (3) is equivalent to
minimization of

J = E
[
x>t C

>Cxt
]

=
[
C C

]
P

[
C>

C>

]
(16)

Hence, the LQG-type cheap optimal control problem can be
written as:

J∗ := min
G,L

J

s.t. P =M(G,L, P ) (17)
P ≥ 0

and L∗, G∗ will denote the optimal gains, which can be
found adapting the results in [4] as explained in the next
section.

IV. SOLUTION TO THE OPTIMAL CONTROL PROBLEM

We now derive the solution to the LQG-type optimal
control problem (17). The proof technique is borrowed from
[6] and goes through the introduction of the Lagrangian

L(P,Λ, L,G) := J + Tr{Λ (P −M(G,L, P ))} (18)
s.t. P = P> ≥ 0 Λ = Λ> ≥ 0

Accorning to the matrix maximum principle [1] the necessary
conditions for optimality of G∗ and L∗ are

∂L
∂P

= 0
∂L
∂Λ

= 0
∂L
∂L

= 0
∂L
∂G

= 0 (19)

For future reference let us introduce the partition

Λ :=
[

Λ11 Λ12

Λ21 Λ22

]
where all blocks have size n×n. The following proposition
summarizes the optimality conditions.

Proposition 1: The necessary conditions (19) for station-
ary of the Lagrangian (18) admit the unique solution P ∗, Λ∗,
L∗, G∗ where

P ∗ :=
[
P ∗11 0
0 P ∗22

]
Λ∗ :=

[
Λ∗11 Λ∗11

Λ∗11 Λ∗22

]
and

G∗ = AP ∗22C
>Σ−1

α

L∗ = −
(
B>Λ∗11B

)−1
B>Λ∗11A

(20)

while

Σα :=
(

1 +
1
α

)(
σ2
v + CP ∗22C

>)+
1
α
CP ∗11C

> (21)

are the optimal gains that solve the LQG-type optimal control
problem (17). The matrices P ∗11, P ∗22, Λ∗11 and Λ∗22 can be
found solving the following (coupled) Riccati-type equations

P ∗11 = AL∗P
∗
11A

>
L∗+

+(1− ε)AP ∗22C
>Σ−1

α CP ∗22A
>

P ∗22 = AP ∗22A
> + σ2

wBB
>+

−(1− ε)AP ∗22C
>Σ−1

α CP ∗22A
>

Λ∗11 = A>L∗Λ
∗
11AL∗

+ 1−ε
α C>(G∗)>(Λ∗22 − Λ∗11)G∗C + C>C

Λ∗22 = εA>Λ∗22A+ C>C + σ2
wBB

>

(1− ε)(A−G∗C)>(Λ∗22 − Λ∗11)(A−G∗C)+
+(1− ε)A>Λ∗11A+
+ 1−ε

α C>(G∗)>(Λ∗11 − Λ∗22)G∗C
(22)

where AL∗ := A+BL∗.
We now report two important results (see the Appendix

for a proof) which characterize the structure as well as the
existence of a stabilizing estimator-controller pair (G∗, L∗).
First we show that, provided it exists, the optimal (G∗, L∗)
have a special structure that guarantees the control algorithm
can be implemented with memory equal to the state dimen-
sion.

Theorem 1: Assume the coupled Riccati equations (22)
admits a unique solution. Then the optimal gains (G∗, L∗)
satisfy

G∗ = [g∗ ag∗ a2g∗ . . . ad−1g∗]
L∗ = [0 0 . . . −a] (23)

so that

A∗L =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0


is nilpotent, i.e. the optimal controller is dead-beat.

We now show that the optimal value of the cost J∗ is
finite only provided a certain relation between packet loss
probability, SQNR and delay is satisfied. This condition
neatly extends the well known condition for the zero delay
case [4].



Theorem 2: Consider the optimal control problem (10)
under constraint (11) (or equivalently (17)). The optimal
value J∗ of the cost is finite if and only if

δ :=
1− ε

1 + a2d

α

> 1− 1
a2

(24)

Under this condition J∗ can be expressed as

J∗ = a2dp∗22 +
d−1∑
i=1

a2iσ2
w + σ2

v

where p∗22 is unique positive solution of the scalar Modified
Algebraic Riccati Equation (MARE)

p∗22 = a2p∗22 + σ2
w − δ

a2(p∗22)2

p∗22 + r̄(d)
(25)

where

r̄(d) :=
(

1 +
a2d

α

)−1
((

1 +
1
α

)
R+

1
α

d−1∑
i=1

a2iσ2
w

)

Although the theorem has been formally derived for d ≥ 1,
it provides the correct solution also for d = 0, i.e. in the zero
delay case that was derived in our previous work [12].

The previous theorem recovers some of the results avail-
able in the literature as special cases. In fact if we set
α = ∞, which is equivalent to consider a channel with
infinite capacity, we obtain:

ε <
1
a2

which is the same stability condition in the lossy network
literature [18]. Also, it shows that in the infinite capacity
scenario, the stability is independent of the delay d, as shown
in [16].

Alternatively, if we assume no packet loss in the channel,
i.e. ε = 0, and no delay, i.e. d = 0, then the stability
condition can be rewritten as

1− 1
a2

<
1

1 + 1
α

= 1− 1
1 + α

which lead to
α > a2 − 1

which is the same stability condition presented in the context
of SNR-limited control system in [2].

Finally, the quantity δ defined in Eqn. (24), which is
directly related to the stability of the closed loop system,
is the first expression that brings together all three channel
limitations which have been considered separately in the
literature. Such quantity will be useful to compare dif-
ferent communication protocols. In fact, by using a corse
quantizer it is possible to reduce the transmission rate Rq ,
thus allowing more redundant channel coding schemes and
consequently a smaller packet loss probability ε. On the other
hand a corser quantizer gives a smaller α and consequently a
higher α. Finally, a more complex coding scheme with higher
delay d can reduce the packet loss probability ε. Therefore,
α, ε and d are all coupled and cannot be designed separately.

V. CONCLUSIONS AND FUTURE WORK

We have considered an LQG control problem which
accounts for code rate limitations, as well as for packet drops
and delays arising from a communication channel between
the sensor and the controller. We have argued in fact that
there is a tight connection between the actual rate at which
one can transmit information, the decoding delay (due to
long block coding) and the packet-drop probability.

We have restricted our attention to a specific control
architecture in which the plant outputs are transmitted via a
rate limited channel and then processed through the cascade
of a state estimator followed by a linear (state) feedback
controller. We have considered a scalar model, with feedback
channel subject to delay, packet losses, and limited transmit
rate, and found that the optimal controller has a dead-
beat structure and the optimal estimator is a Kalman-like
constant gain estimator (which accounts for the packet drop
probability). Conditions for stability are derived in terms of
a modified algebraic Riccati equation and recapture results
from the literature as special cases.

APPENDIX

A. Proof of Theorem 1

First of all recall from [16] that the solution P ∗11, P ∗22, Λ∗11,
Λ∗22 can be obtained as fixed points of the iterates:

Gi = AP i22C
>Σ−1

α

Li = −
(
B>Λi11B

)−1
B>Λi11A

P i+1
11 = ALiP i11A

>
Li+

+(1− ε)AP i22C
>Σ−1

α CP i22A
>

P i+1
22 = AP i22A

> + σ2
wBB

>+
−(1− ε)AP i22C

>Σ−1
α CP i22A

>

Λi+1
11 = A>LiΛi11ALi

+ 1−ε
α C>(Gi)>(Λi22 − Λi11)GiC + C>C

Λi+1
22 = εA>Λi22A+ C>C + σ2

wBB
>

(1− ε)(A−GiC)>(Λi22 − Λi11)(A−GiC)+
+(1− ε)A>Λi11A+
+ 1−ε

α C>(Gi)>(Λi11 − Λi22)GiC
(26)

with initial conditions P 0
11 = P 0

22 = Λ0
11 = Λ0

22 = I .
Now, observe that B> = [0 . . . 0 1]. This implies that
B>Λ0

11 = [0 . . . 0 Λ0
11(d, d)] so that L0 = [0 . . . 0 − a].

Since Λ0
11 is diagonal, also A>L0Λ0

11AL0 is diagonal and Λ1
11

is still diagonal. As such B>Λ1
11 = [0 . . . 0 Λ0

11(d, d)] and
therefore L1 = [0 . . . 0 − a]. The same argument can be
iterated showing that, provided Li = [0 . . . 0 − a] and Λi11

is diagonal, then Λi+1
11 is diagonal and Li+1 = [0 . . . 0 − a].

Therefore, by induction, Li = [0 . . . 0 − a], ∀i, which
implies that

L∗ = lim
i→∞

Li = [0 . . . 0 − a]



This completes the proof as far as L∗ is concerned. Let us
now consider the optimal gain G∗. From Proposition 1 we
know that ξ̂t and ξ̃t are uncorrelated. Therefore ξ̂t can be
interpreted as the projection of ξt on a certain stationary
subspace Ξt−d of (the space spanned by the components of)
z−t−d+1, i.e.

ξ̂t = Ê[ξt|Ξt−d] ξ̂t+1 = Ê[ξt+1|Ξt−d+1]

where Ê[·|·] denote the orthogonal projection (linear mini-
mum variance estimator). Recalling (6), we now compute the
projection components of ξt+1 := [xt−d+2 xt−d+3 . . . xt+1]
assuming γt−d+1 = 1. Using the standard Kalman measure-
ments update and (8) if follows that

Ê[xt−d+2|Ξt−d+1] = Ê[xt−d+2|Ξt−d]+
+g∗

(
ht − Cξ̂t

)
for a suitable gain g∗. Similarly

Ê[xt−d+3|Ξt−d+1] = aÊ[xt−d+2|Ξt−d+1] + but−d+2

= aÊ[xt−d+2|Ξt−d] + but−d+2

+ag∗
(
ht − Cξ̂t

)
= Ê[xt−d+3|Ξt−d]+

+ag∗
(
ht − Cξ̂t

)
= Ê[xt−d+2|Ξt−d+1]+

+ag∗
(
ht − Cξ̂t

)
where the third equality has been obtained using the identity

xt−d+3 = axt−d+2 + but−d+2 + wt−d+2

and the fact that wt−d+2 is orthogonal to Ξt−d. Iterating we
obtain, ∀k ≥ 3:

Ê[xt−d+k|Ξt−d+1] = aÊ[xt−d+k−1|Ξt−d+1]+
+but−d+k

= Ê[xt−d+k|Ξt−d+1]+
+akg∗

(
ht − Cξ̂t

)
which shows that G∗ has the structure

G∗ = [g∗ ag∗ . . . ad−1g∗].

B. Proof of Theorem 2

First of all let us serve that, using (12), the state update
equation can be written in the form

ξt+1 = AL∗ ξ̂t +Aξ̃t +Bwt

As shown in Proposition 1 when using the optimal gains L∗

and G∗ the estimate ξ̂t and the error ξ̂t are uncorrelated.
Therefore, at steady state,

Σ∗ := V ar{ξt+1} = P ∗11 + P ∗22

= AL∗P
∗
11A

>
L∗ +AP ∗22A

> + σ2
wBB

> (27)

Note also that Σ∗ is the Toeplitz matrix build with the
covariance function of xt−d+i and, as such, it is constant
along the diagonal. Therefore

CΣ∗C> = HΣ∗H> H := [0 0 . . . 0 1]

Note also that HAL∗ = [0 . . . 0] so that, using (27) and
CB = 0

CΣ∗C> = HΣ∗H> = HAP ∗22A
>H>

= [0 . . . 0 a]P ∗22[0 . . . 0 a]>

= a2P ∗22(d, d)

where P ∗22(d, d) is the diagonal element in position (d, d) of
the matrix P ∗22 (the south-east corner). Now, using the fact
the P ∗22(i, i) is the i−steps ahead state prediction error, it is
easy to see that

P ∗22(d, d) = a2d−2P ∗22(1, 1) +
d−2∑
i=0

a2iσ2
w (28)

so that

C (P ∗11 + P ∗22)C> = CΣ∗C>

= a2P ∗22(d, d)
= a2dP ∗22(1, 1) +

∑d−1
i=1 a

2iσ2
w

= a2dCP ∗22C + q̄(d)
(29)

where q̄(d) :=
∑d−1
i=1 a

2iσ2
w. We can use this last condition

to manipulate Σα in (21) as follows:

Σα =
(
1 + 1

α

) (
σ2
v + CP ∗22C

>)+ 1
αCP

∗
11C

>

=
(
1 + 1

α

)
σ2
v + CP ∗22C

> + 1
αC (P ∗11 + P ∗22)C>

=
(

1 + a2d

α

)
CP ∗22C

> +
(
1 + 1

α

)
R+ 1

α q̄(d)

=
(

1 + a2d

α

) (
CP ∗22C

> + r̄(d)
)

where the last equation defines r̄(d). Therefore the equation
for P ∗22 in (22) takes the form of a Modified Algebraic Riccati
Equation (MARE) [18]

P ∗22 = AP ∗22A
> + σ2

wBB
>

−δAP ∗22C
> (CP ∗22C

> + r̄(d)
)−1

CP ∗22A
>

(30)
where

δ :=
1− ε

1 + a2d

α

Note also that HPC> = E[x̃t−d+1x̃t] = ad−1E
[
x̃2
t−d+1

]
=

ad−1P ∗22(1, 1). Now using the fact that HA = [0 . . . 0 a]
and multiplying (30) by H and H> from left and right
respectively, we obtain

HP ∗22H
> = a2HP ∗22H

> + σ2
w

−δ a
2HP∗22C

>CP∗22H
>

CP∗22C
>+r̄(d)

(31)

Defining p∗22 := CP ∗22C
> and using (28), so that

HP ∗22H
> = a2d−2p∗22 +

∑d−2
i=0 a

2iσ2
w equation (32) can be

manipulated to yield:

p∗22 = a2p∗22 + σ2
w − δ

(a2p∗22)
2

p∗22+r̄(d)
(32)

It is well known (see [16]) that (32) admits a solution if and
only if

δ =
1− ε

1 + a2d

α

> 1− 1
a2



A simple algebraic manipulation shows that this is equivalent
to (24). Using now (29) we immediately obtain an expression
for the optimal cost:

J∗ = C(P ∗11 + P ∗22)C> + σ2
v

= CP ∗22C + q̄(d) + σ2
v

= a2dp∗22 +
∑d−1
i=1 a

2iσ2
w + σ2

v

This concludes the proof.
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