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Abstract— We study the problem of unconstrained dis-
tributed optimization in the context of multi-agents systems
subject to limited communication connectivity. In particular we
focus on the minimization of a sum of convex cost functions,
where each component of the global function is available only
to a specific agent and can thus be seen as a private local
cost. The agents need to cooperate to compute the minimizer
of the sum of all costs. We propose a consensus-like strategy
to estimate a Newton-Raphson descending update for the local
estimates of the global minimizer at each agent. In particular,
the algorithm is based on the separation of time-scales principle
and it is proved to converge to the global minimizer if
a specific parameter that tunes the rate of convergence is
chosen sufficiently small. We also provide numerical simulations
and compare them with alternative distributed optimization
strategies like the Alternating Direction Method of Multipliers
and the Distributed Subgradient Method.

Index Terms— distributed optimization, convex optimization,
consensus algorithms, multi-agent systems, Newton-Raphson
methods

I. INTRODUCTION

The ability of distributedly and autonomously solve large
scale optimization problems is becoming nowadays of
paramount importance to build effectively smart networks
of agents performing auxiliary and automatic operations such
as in wireless sensor networks [1] and in the next-generation
electrical-power smart grids [2].

In distributed scenarios it is mandatory to provide the
agents with the ability to jointly and autonomously solve
optimization problems without relying on a central process-
ing units while requiring minimal coordination effort and
possibly small computational and memory requirements.

We focus on the problem of distributed unconstrained
minimization of a sum of convex functions, where each
component of the global function is available only to a
specific agent and can thus be seen as a private local cost.
Practical examples of this scenario arise in home automation
contexts, where smart electrical devices need to agree on
the total amount of energy consumption that maximizes an
overall utility-function that is given by the sum of the utility
functions of the devices. Other examples include distributed
computation of M-estimators in robust statistics [3] and
distributed statistical learning [4].

The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement n◦257462 HYCON2 Network of excellence and n◦223866
FeedNetBack, by Progetto di Ateneo CPDA090135/09 funded by the
University of Padova, and by the Italian PRIN Project “New Methods
and Algorithms for Identification and Adaptive Control of Technological
Systems”.

A. Previous work

Since the seminal work [5], both centralized and dis-
tributed optimization have been a major research topic for
the decades in the area of control and system theory [6], [7],
[8], [9]. Distributed optimization algorithms can be roughly
divided into three main categories: methods based on primal
decompositions, methods based on dual decomposition, and
heuristic methods.

In primal decomposition methods, there is a direct ma-
nipulation of the primal variables, often through subgradient
methods as shown in the survey [10] and in the references
therein. Even if they were originally proposed to boost the
convergence speed of centralized optimization schemes, they
are widely applicable, easy to implement and require mild
assumptions on the objective functions where convexity is
the most crucial one. Despite these nice properties, they
may be rather slow and may not progress at each iteration,
as shown in [11, Chap. 6] in the context of real wireless
sensor networks. There are several possible implementations
mostly based on incremental gradients methods [12] which
can be deterministic [13] or randomized [14], [15]. Important
extensions include the use of projections in order to take
into account possible different local constraints [16], and
the analysis of the convergence rate and error bounds [17],
[18]. These algorithms have also been compared with more
traditional linear consensus algorithms [19].

In dual decomposition methods, not only the primal vari-
ables are manipulated, but also the dual ones are. Usually the
original problem is split into several sub-problems whose
solution is simpler although some form of coordination
is required since the order of the execution of the sub-
problems is critical. Despite originally intended for CPU-
saving purposes, they have been successfully employed for
distributed optimization purposes. In dual based methods
every agent owns a local copy of the variables that are
locally updated by the same agent. Convergence to the global
optimum is then ensured constraining the convergence of the
local variables to a common value [20], [21]. In the class of
dual decomposition methods, a particularly popular strategy
is the alternating direction method of multipliers developed
in [8, pp. 253-261] which has been recently proposed in a
distributed context [22], [4].

Other approaches, e.g. the so-called Fast-Lipschitz strate-
gies [23], [24], exploit particular structures of the objective
functions and constraints to increase the convergence speed
at the cost of being suitable only for particular optimization
problems. Finally, alternative distributed optimization ap-
proaches can be based on heuristics, like swarm optimization



[25], or genetic algorithms [26], however their convergence
and performance properties are difficult to be studied ana-
lytically.

B. Contribution
In this work we propose a distributed algorithm for the

exact computation of optimal solution that approximatively
operates as a Newton-Raphson minimization procedure. The
algorithm is based on inter-agents communication schemes
that are used in classical average-consensus algorithms [27],
[28]. The main idea is to compute a Newton-Raphson ap-
proximation for the minimizer of the global cost function
via an average consensus algorithm and to move towards
such minimum sufficiently slowly to allow the consensus
algorithm to converge. The use of consensus algorithms has
also been adopted in other distributed strategies such as
the Distributed Subgradient Methods (DSMs) [29]. These
methods typically have a convergence rate of 1

k where k
is the number of performed steps, but are not always proven
to converge to the global optimum under non-smoothness
hypotheses (see e.g. [30, Prop. 3]). Differently, our algorithm
is proved to converge to the optimal solution for appropriate
choices of the algorithm parameters based on the principle
of separation of time-scales. Another very important feature
of the algorithm is that it inherits the properties of consensus
algorithms like their simplicity, their potential implementa-
tion with asynchronous communication schemes, and their
ability to adapt to time-varying network topologies. This
differentiates our algorithm from the strategies based on
the Alternating Direction Method of Multipliers (ADMMs)
whose asynchronous implementation is more involved and
cannot easily handle time-varying topologies [22], [4]. Fi-
nally, despite an existing literature on second-order based
distributed optimization techniques, see e.g. [31], [32], at
the best of our knowledge the proposed strategy is the
unique method (among the primal decomposition methods)
s.t. the local estimates evolve as driven by a Newton-Raphson
procedure.

In the following we present our algorithm under a num-
ber of simplificative assumptions. In particular we consider
smooth convex scalar cost functions and synchronous com-
munication schemes. Finally we complement the analytical
results with some numerical simulations and comparison
with DSM and ADMM optimization schemes on a ring
communication graph. Proofs of the offered propositions can
be found in the appendix.

II. PROBLEM FORMULATION

We assume that in a network of N agents, each agent is
endowed with a local strictly convex cost function fi : R 7→
R. We define the global cost function as

f : R 7→ R f (x) :=
1

N

N∑
i=1

fi (x) (1)

and we assume that the goal of each agent is to distributedly
minimize f , i.e. compute

x∗ := arg min
x
f (x) (2)

through low-complexity distributed optimization schemes.
The communication network is modeled as a graph G =
(V, E) whose vertexes V = {1, 2, . . . , N} represent the
agents and the edges (i, j) ∈ E represent the available
communication links. We assume that the graph is undirected
and connected. We say that a stochastic matrix P ∈ RN×N ,
i.e. a matrix whose elements are non-negative and P1 = 1

where 1 = [1 1 · · · 1]T ∈ RN , is consistent with a graph
G if Pij > 0 only if (i, j) ∈ E . If P is also symmetric
and includes all edges, i.e. Pij > 0 if (i, j) ∈ E , then
limk→∞ P k = 1

N 11
T . Such matrix P is also often referred

as consensus matrix.
For the purposes of the paper, we define the shorthands

gi (xi (k)) := f ′′i (xi (k)) · xi (k)− f ′i (xi (k)) (3)
hi (xi (k)) := f ′′i (xi (k)) (4)

x (k) :=

 x1 (k)
...

xN (k)

 (5)

g (x(k)) :=

 g1 (x1 (k))
...

gN (xN (k))

 (6)

h (x(k)) :=

 h1 (x1 (k))
...

hN (xN (k))

 (7)

where we used the shorthand notation f ′ := df
dx and f ′′ :=

d2f
dx2 , bold fonts to indicate vectors, and plain italic fonts
to indicate scalars. In general we will use the fraction bar
to indicate the Hadamard division, i.e. the component-wise
division of vectors:

g (x(k))

h (x(k))
:=

[
g1 (x1 (k))

h1 (x1 (k))
, . . . ,

gN (xN (k))

hN (xN (k))

]T
. (8)

We will also use bold fonts to indicate vectorial quantities
or functions which range is vectorial, plain italic fonts to
indicate scalar quantities or functions which range is a scalar.

To simplify the proofs, in the following we will exploit
the succeeding assumptions:

Assumption 1. The functions fi ∈ C2,∀i, i.e. they are con-
tinuous up to the second derivatives, their second derivatives
f ′′i are strictly positive, bounded, and they are defined for all
x ∈ R. Moreover the global minimizer x∗ does not take on
the extended values ±∞.

We notice that from the strictly convexity assumptions it
follows that x∗ is unique. Moreover the assumption x∗ 6=
±∞ is to obtain convergence proofs that do not require
modifications of the standard multi-time-scales approaches
for singular perturbation model analysis [33], [34, Chap. 11].

III. DISTRIBUTED NEWTON-RAPHSON CONSENSUS

It is well known that if the cost functions are quadratic,
then it is possible to distributively compute the optimal
solution x∗ using the output of two average consensus



algorithms [35], [36]. In fact, consider fi(x) = 1
2ai(x− bi)2

where ai > 0. Then straightforward computations show that
the minimizer is given by

x∗ =

∑N
i=1 aibi∑N
i=1 ai

=
1
N

∑N
i=1 aibi

1
N

∑N
i=1 ai

i.e. it is the ratio of two averages. Therefore if each agent
defines the following local variables yi(0) := aibi and
zi(0) := ai, and then updates them based on two average
consensus algorithms:

y(k + 1) = Py(k)
z(k + 1) = Pz(k)

x(k) =
y(k)

z(k)

then limk→∞ x(k) = x∗1 where P is a consensus matrix.
This means that each xi(k) = yi(k)/zi(k) corresponds to
the local estimate at time k that each agent has about the
global minimizer x∗. If the cost functions are not quadratic,
then the previous strategy cannot be applied as it is but needs
to be modified. First of all, it is important to notice that

aibi = f ′′i (x)x− f ′i(x) = gi(x), ai = f ′′i (x) = hi(x)

for all x. However we cannot simply run the previous strategy
with initial conditions yi(0) = gi(xi(0)) and zi(0) =
hi(xi(0)), since xi(k) changes over time and therefore one
should change accordingly the initial conditions of the con-
sensus algorithms. Therefore, it is necessary to modify the
consensus algorithm to track the changing signals gi(xi(k))
and hi(xi(k)). Secondly, setting xi(k) = yi(k)/zi(k) might
be too aggressive since the estimate is not correct at the be-
ginning, therefore only a small step should be taken towards
the estimated global minimum yi(k)/zi(k). These observa-
tions have been used to propose the following Algorithm 1,
where initialization given in line 4 is critical for convergence
to the global minimizer, lines 6-7 are local operations that
make sure that the Newton-Raphson computation is done
based on the current estimate xi(k) location, lines 9-10
perform the consensus operations, and line 11 is again a local
operation which performs a convex combination between the
past estimate xi(k − 1) and the new estimate yi(k)/zi(k).

To explain why Algorithm 1 distributedly computes the
global optimum x∗, we rewrite it as

v(k) = g(x(k − 1))
w(k) = h(x(k − 1))
y(k) = PM

(
y(k − 1) + g(x(k − 1))− v(k − 1)

)
z(k) = PM

(
z(k − 1) + h(x(k − 1))−w(k − 1)

)
x(k) = (1− ε)x(k − 1) + ε

y(k − 1)

z(k − 1)
.

(9)
Consider then the continuous-time system

εv̇(t) = −v(t) + g (x(t))
εẇ(t) = −w(t) + h (x(t))
εẏ(t) = −Ky(t) + (I −K) [g (x(t))− v(t)]
εż(t) = −Kz(t) + (I −K) [h (x(t))−w(t)]

ẋ(t) = −x(t) +
y(t)

z(t)

(10)

Algorithm 1
(storage allocation and constraints on parameters)

1: x(k),y(k,m), z(k,m)∈RN ,m=0, . . . ,M ; k=0, 1, . . .
2: P ∈ RN×N , positive and doubly stochastic
3: ε ∈ (0, 1)

(initialization)

4:
set: x(0) = 0, g (x(−1)) = h (x(−1)) = 0,

y(0,M) = z(0,M) = 0

(main algorithm)
5: for k = 1, 2, . . . do
6: y(k, 0) = y(k−1,M)+g (x(k − 1))−g (x(k − 2))
7: z(k, 0) = z(k−1,M)+h (x(k − 1))−h (x(k − 2))
8: for m = 1, . . . ,M do
9: y(k,m) = Py(k,m− 1)

10: z(k,m) = Pz(k,m− 1)

11: x(k) = (1− ε)x(k − 1) + ε
y(k,M)

z(k,M)

with K := I−PM . By construction the matrix K is positive
semidefinite and its kernel is generated by the vector 1, and
its eigenvalues are 0 = λ1 < Re[λ2] ≤ · · · ≤ Re[λN ] < 2. It
is immediate to check that system (9) is a discretized version
of (10), i.e. (9) can be derived from (10) through an Euler
discretization with time interval T = ε, thus qualitatively
behaving in the same manner for sufficiently small ε. In this
form, it is immediate to recognize the existence of a two-
time scales dynamical system regulated by the parameter ε.
Therefore, we can split the dynamics in the two time scales
and study them separately for sufficiently small ε. The fast
dynamics, i.e. the first four equations of system (10), imply
that y(t) ≈

(
1
N 1

Tg(x(t))
)
1 and z(t) ≈

(
1
N 1

Th(x(t))
)
1.

If these equations are inserted into the slow dynamics,
i.e. the last equation of system (10), then it follows that
x(t) ≈ x(t)1 where the quantity x(t) evolves with good
approximation following the ordinary differential equation

ẋ(t) = − f
′
(x(t))

f
′′

(x(t))
(11)

corresponding to a continuous Newton-Raphson algorithm
that, under our simplificative Assumption 1, converges to the
global optimum x∗1. These observations are formally stated
in the following:

Proposition 2. Consider Algorithm 1, which is equivalent
to system (9) with initial conditions v(0) = w(0) = y(0) =
z(0) = 0. If Assumption 1 holds true, then there exists
an ε ∈ R+ s.t. if ε < ε then Algorithm 1 distributedly
and asymptotically computes the global optimum x∗, i.e.
limk→+∞ x(k) = x∗1.

The claim of the previous proposition is valid only for
the specific initial conditions defined in line 4 of Algo-
rithm 1. Although these are initial conditions of an algorithm

1Asymptotic properties of the continuous time Newton-Raphson method
can be found e.g. in [37], [38].



and therefore can be arbitrarily designed, nonetheless it
is important to evaluate the robustness of the algorithm
for different initial conditions, since this gives suggestions
about its robustness to numerical errors and communication
noise. It turns out that the initial conditions on the initial
estimates xi(0) can be arbitrary, however initial conditions
vi(0), wi(0), yi(0), zi(0) can change the final convergence
point and might even lead to instability for sufficiently large
values. This is formally stated in the next proposition:

Proposition 3. Consider system (10) with arbitrary initial
conditions v(0),w(0),y(0), z(0),x(0), and define the fol-
lowing scalars:

α(0) :=
1

N
1T (y(0)− v(0))

β(0) :=
1

N
1T (z(0)−w(0)) .

(12)

If Assumption 1 holds true, then there exists an ε, α, β ∈
R+ such that if ε < ε, |α(0)| < α, |β(0)| < β then
limt→+∞ x(t) = ξ(α(0), β(0))1 where ξ(α(0), β(0)) is a
scalar continuous function of its arguments and has the
property that ξ(0, 0) = x∗.

IV. NUMERICAL EXAMPLES

We consider a ring network where agents can commu-
nicate only to their left and right neighbors through the
symmetric circulant consensus matrix

P =


0.5 0.25 0.25
0.25 0.5 0.25

. . . . . . . . .
0.25 0.5 0.25

0.25 0.25 0.5

 . (13)

We also assume that agents perform only one consensus
step per cycle of the algorithm, i.e. that M = 1. The local
objective functions are randomly generated as

fi(x) = cie
aix + die

−bix, i = 1, . . . , N (14)

where ai, bi ∼ U [0, 0.2] and ci, di ∼ U [0, 1].
Fig. 1 compares the evolution of the local states xi of

the continuous system (10) for different values of ε. When
ε is not sufficiently small, then the trajectories of xi(t) are
different even if they all start from the same initial condition
xi(0) = 0 (top panel). As ε decreases, the difference between
the two time scales becomes more evident and all trajectories
of xi(t) become closer to the trajectory given by the slow
Newton-Raphson dynamics x(t) defined in (11), which is
guaranteed to converge to the global minimizer x∗ (middle
and bottom panels).

Fig. 2 shows that, as stated in Proposition 3, if α(0) =
β(0) = 0, then local states xi(t) converge to the optimal
solution x∗ for arbitrary initial conditions xi(0).

Finally, Fig. 3 illustrates the robustness of the computation
of the global optimum with respect to perturbed initial
conditions v(0),w(0),y(0), z(0). More precisely we apply
Algorithm 1 to a set of independently generated f , injecting
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Fig. 1. Temporal evolution of system (10) for different values of ε (N =
15). The black dashed line indicates x∗. The dashed-dotted line indicates
the slow dynamics x(t). As ε decreases. the difference between the time
scale of the slow and fast dynamics increases, and the local states xi(t)
converge to the manifold of x(t).
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Fig. 2. Time evolution of the states xi(k), i = 1, . . . , N , for N = 30,
ε = 0.01, v(0) = w(0) = y(0) = z(0) = 0 and xi(0) ∼ U [−2, 2].



each time artificial and independent perturbations on the
initial conditions s.t. α(0), β(0) ∼ U [−σ, σ]. Fig. 3 shows
the boxplots of the errors xi(+∞)−x∗ for different σ’s (300
Monte Carlo runs, ε = 0.01, N = 30).
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+
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∗

Fig. 3. Empirical distribution of the errors xi(+∞)−x∗ under artificially
perturbed initial conditions α(0), β(0) ∼ U [−σ, σ] for different σ values.

V. COMPARISON WITH ALTERNATIVE DISTRIBUTED
ALGORITHMS

We now compare our Newton-Raphson consensus (NRC)
algorithm with the DSM and the ADMM methods, consider-
ing again an undirected ring graph with N = 30 nodes and
a synchronous implementation.

DSM, as proposed in [29], alternates consensus steps on
the current estimated global minimum xi(k) with subgradient
updates of each xi(k) towards the minimum of the local cost
fi. To guarantee the convergence, it is required to appropri-
ately decrease the amplitude of the local subgradient steps.
Algorithm 2 presents a synchronous DSM implementation,
where ρ is a tuning parameter and P is defined in (13).

Algorithm 2 DSM [29]
(storage allocation and constraints on parameters)

1: x(c)(k),x(`)(k) ∈ RN for k = 0, 1, . . .
2: ρ ∈ R+

(initialization)
3: set: x(`)(0) = 0

(main algorithm)
4: for k = 0, 1, . . . do
5: x(c)(k) = Px(`)(k)
6: for i = 1, . . . , N do
7: x

(`)
i (k + 1) = x

(c)
i (k)− ρ

k
f ′i
(
x
(c)
i (k)

)
The ADMM instead requires the augmentation of the sys-

tem through additional constraints which do not change the
optimal solution but allow the usage of Lagrange multipliers.
There exist different implementations of such algorithm
in a distributed context [22], [4]. Here we consider the
following problem, equivalent to (1)-(2) and consistent with

an undirected ring communication graph:

minx1,...,xN ,z1,...,zN

∑N
i=1 fi(xi)

s.t. zi = xi−1 = xi = xi+1, i = 1, . . . , N

where x0 := xN and xN+1 := x1. Algorithm 3 presents
a distributed implementation of the previous optimization
problem which has been obtained following [8, pp. 253-261],
where δ is a tuning parameter.

Algorithm 3 ADMM [8, pp. 253-261]
(storage allocation and constraints on parameters)

1: x(k), z(k), y(`)(k), y(c)(k), y(r)(k) ∈ RN for k =
0, 1, . . .

2: δ ∈ (0, 1)
3: Li(xi, k):= fi (xi) + y

(`)
i (k) (xi − zi−1(k)) +

+y
(c)
i (k) (xi−zi(k))+y

(r)
i (k) (xi − zi+1(k)) +

+ δ
2 |xi − zi−1(k)|2 + δ

2 |xi − zi(k)|2 +

+ δ
2 |xi − zi+1(k)|2

(initialization)

4:

set: x(0) = 0
y(`)(0) = y(c)(0) = y(r)(0) = 0
z(0) = 0

(main algorithm)
5: for k = 0, 1, . . . do
6: for i = 1, . . . , N do
7: xi(k + 1) = arg min

xi

Li(xi, k)

8:
zi(k + 1) = 1

3δ (y
(`)
i+1(k)+y

(c)
i (k)+y

(r)
i−1(k))+

+ 1
3xi−1(k+1)+ 1

3xi(k+1)+
+ 1

3xi+1(k + 1)

9: y
(`)
i (k+1) = y

(`)
i (k)+δ (xi(k+1)− zi−1(k+1))

10: y
(c)
i (k+1) = y

(c)
i (k) + δ (xi(k+1)− zi(k+1))

11: y
(r)
i (k+1) = y

(r)
i (k)+δ (xi(k+1)− zi+1(k+1))

Fig. 4 shows a comparison of the three strategies for
the same ring graph where the tuning parameters of each
algorithm, namely ε, ρ, δ, have been manually optimized
for fastest convergence. We notice that, for this specific
simulation, the DSM is the slowest to converge and has a
non-zero steady state error, while ADMM is the fastest and
converge to the global optimum. Despite being slower in this
synchronous implementation, our NRC strategy can be easily
adapted in an asynchronous scenarios where the topology of
graph is time-varying. Differently, even if ADMM can be
implemented asynchronously with some effort, it can hardly
cope with time-varying topologies since the dual variables yi
strongly depend on the specific constrain imposed between
the variables zi and xi.
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Fig. 4. Time evolution of the states xi(k), i = 1, . . . , N for the case
N = 30. First panel, NRC (Algorithm 1, ε = 0.8). Second panel, DSM
(Algorithm 2, ρ = 100). Third panel, ADMM (Algorithm 3, δ = 0.1). The
black dashed lines indicate the position of the global optimum x∗. Note the
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VI. CONCLUSIONS AND FUTURE WORKS

In this work we proposed a novel distributed convex
optimization strategy that combines a Newton-Raphson opti-
mization strategy with few parallel consensus algorithms. We
also provided proofs of convergence and analysis of robust-
ness in terms of initial conditions under some simplifying
assumptions like the use of scalar smooth convex functions
and synchronous implementations. Finally we provided some
numerical simulations confirming the properties of the pro-
posed algorithm and we compared it with popular distributed
optimization strategies. Although in these comparisons it did
not score as the best algorithm, we believe that its strength
will be more evident in an asynchronous implementation in
time-varying network topologies since it inherits all the good
features of consensus algorithms.

Many future research directions are open, such as the
extensions to multivariable settings, to non-smooth convex
functions and to asynchronous implementations. Also of
paramount importance is the design of on-line strategies for

tuning parameter ε which affects the speed of convergence
as well as stability.

APPENDIX

Additional notation: to prove the previous propositions,
we will exploit the following additional definitions:

Π‖ :=
11T

N
, Π⊥ := I − 11T

N
(15)

x‖ := Π‖x, x⊥ := Π⊥x (16)

g (x (k)) := f
′′

(x (k)) · x (k)− f ′ (x (k)) (17)

h (x (k)) := f
′′

(x (k)) (18)

g (x (k)) :=
1

N

N∑
i=1

(
f ′′i (xi (k))·xi (k)−f ′i (xi (k))

)
(19)

h (x (k)) :=
1

N

N∑
i=1

(
f ′′i (xi (k))

)
. (20)

Proof of Propositions 2 and 3. It is well known (see
e.g. [39]) that if ε is sufficiently small, then the discretized
time system (9) inherits the same stability properties of
the original continuous time system (10). Therefore it is
sufficient to prove that system (10) has the property that
limt→∞ x(t) = x∗1 for sufficiently small ε. Characterization
of system (10) can be performed through classical multi-
time-scales approaches for standard singular perturbation
model analysis [33], [34, Chap. 11]. The aim is then to
prove the proposition exploiting Theorem 11.4 in [34].

Changes of variables: Consider the changes of variables

d(t) := y(t)− v(t) (21)

which implies that

ẏ(t) = ḋ(t) + v̇(t)

and thus that

ε
(
ḋ(t)+v̇(t)

)
=−K [d(t)+v(t)]+(I−K) [g (x(t))−v(t)]

Since εv̇(t) = −v(t) + g (x(t)) it follows that

εḋ(t) = −K [d(t) + g (x(t))] .

This relationship can be decomposed exploiting the transfor-
mations d‖ = Π‖d and d⊥ = Π⊥d as follows:

εḋ‖(t) = 0 (22)
εḋ⊥(t) = −K

[
d⊥(t) + g (x(t))

]
(23)

where we used also the facts Π‖K = 0 and Π⊥K = KΠ⊥ =
K. (22) implies that

d‖(t) = d‖(0) = Π‖(y(0)− v(0)) = α(0)1

where α(0) has been defined in (12). Similarly, considering
the variable b(t) := z(t) − w(t), and applying similar
considerations to z, w and b, system (10) becomes

εv̇(t) = −v(t) + g (x(t))
εẇ(t) = −w(t) + h (x(t))

εḋ⊥(t) = −K
[
d⊥(t) + g (x(t))

]
εḃ⊥(t) = −K

[
b⊥(t) + h (x(t))

]
ẋ(t) = −x(t) +

d⊥(t) + α(0)1+ v(t)

b⊥(t) + β(0)1+ w(t)

(24)



Analysis of the boundary layer system: assume
g (x(t)) = g (x) and h (x(t)) = h (x) with x constant in
time, and consider the system

εv̇(t) = −v(t) + g (x)
εẇ(t) = −w(t) + h (x)

εḋ⊥(t) = −K
[
d⊥(t) + g (x)

]
εḃ⊥(t) = −K

[
b⊥(t) + h (x)

] (25)

Applying the changes of variables induced by the isolated
root of (25), namely

ṽ(t) := v(t)− g (x) , w̃(t) := w(t)− h (x)

d̃⊥(t) := d⊥(t) + Π⊥g (x) , b̃⊥(t) := b⊥(t) + Π⊥h (x)

τ =
t

ε
⇒ dτ

dt
=

1

ε

we obtain the boundary layer system
˙̃v(τ) = −ṽ(τ)
˙̃w(τ) = −w̃(τ)

˙̃
d⊥(τ) = −Kd̃⊥(τ)
˙̃
b⊥(τ) = −Kb̃⊥(τ)

that is exponentially stable. This last property is clear for the
dynamics of the first two equations, but it is less obvious for
the last two equations since the matrix −K is only negative
semidefinite. However, the dynamics of d̃⊥ and b̃⊥ are
restricted to the subspace defined by the projection operator
Π⊥, therefore the dynamics are exponentially stable. To see
this consider for example the Lyapunov function V (d̃⊥) =
1
2

∥∥∥d̃⊥∥∥∥2 and its time derivative V̇ (d̃⊥) = −(d̃⊥)TKd̃⊥ ≤

−λ2
∥∥∥d̃⊥∥∥∥2 ≤ −λ2V (d̃⊥), where λ2 > 0 is the smallest

non-zero eigenvalue of the matrix K. This implies that
limt→∞ d̃⊥(t) = 0. Similar considerations hold also for the
variable b̃⊥.

Therefore, we can claim that system (25) admits an
exponentially stable equilibrium s.t.

lim
t→∞


v(t)
w(t)
d⊥(t)
b⊥(t)

 =


g (x)
h (x)

−Π⊥g (x)
−Π⊥h (x)

 (26)

for each initial condition and x.
Analysis of the reduced system: Given the analysis of

the boundary layer system above, if we substitute (26) into
the last equation of system (3) we obtain the reduced system

ẋ(t) = −x(t) +
α(0)1−Π⊥g(x(t)) + g(x(t))

β(0)1−Π⊥h(x(t)) + h(x(t))

= −x(t) +
α(0) + g (x(t))

β(0) + h (x(t))
1 . (27)

where we used the fact that −Π⊥g(x(t)) + g(x(t)) =
Π‖g(x(t)) = g(x(t))1 in the numerator and similarly for
h(t) in the denominator. The reduced system dynamics can
then be rewritten as

ẋ(t) = Ψ(x(t), α(0), β(0)) (28)

with the map Ψ depending smoothly on the parameters
α(0), β(0) around the point α(0) = β(0) = 0, and with
h (x(t)) strictly greater than zero by assumption. We now
want to address the stability of this dynamical system by
decomposing the dynamics of system (27) along the usual
projections given by Π⊥ and Π‖: ẋ‖(t) = −x‖(t)+

g
(
x‖(t)+x⊥(t)

)
+α(0)

h
(
x‖(t)+x⊥(t)

)
+β(0)

1

ẋ⊥(t) = −x⊥(t)

(29)

It immediately follows that the dynamics of x⊥(t) is inde-
pendent of x‖(t) and it is exponentially stable with respect
to the origin. Moreover x‖(t) = x(t)1, i.e. x‖(t) is a vector
with identical entries, therefore its dynamics corresponds to
the dynamics of the scalar variable x(t), given by

ẋ(t) = −x(t) +
g (x(t)) + α(0)

h (x(t)) + β(0)
= ψ(x(t), α(0), β(0)) .

(30)
Considering the definitions (17) and (18) of g(x) and h(x),
and under the assumption that α(0), β(0) = 0, (30) reduces
to

ẋ(t) = − f
′
(x(t))

f
′′
(x(t))

(31)

which corresponds to a continuous-time Newton-Raphson
method. It is immediate to check that V (x) := f(x)−f(x∗)
is a Lyapunov function for (31), leading to the conclusion
that, under the assumption α(0) = β(0) = 0, x‖(t)
exponentially converges to x∗1. Now, since the hypotheses
of Theorem 1 in [40] are satisfied, we can claim that, under
the previous assumptions, also x(t) exponentially converges
to x∗1.

If α(0) 6= 0 6= β(0), then system (30) might not be stable,
however the vector flow ψ(x, α, β) is smooth in the last two
arguments around the point α = β = 0, since h(x) is strictly
positive for all x. Therefore there must exists a continuous
function ξ(α(0), β(0)) which is an exponentially stable point
for the system system (30) for sufficiently small values of
the parameters α(0) = β(0) which has the property that
ξ(0, 0) = x∗ and therefore, again using Theorem 1 in [40],
limt→∞ x(t) = ξ(α(0), β(0))1.

According to the derivations above, then hypotheses for
Theorem 11.4 in [34] are satisfied, which guarantee the
claims of Propositions 2 and 3.
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