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Abstract— In this work, we propose a distributed control
strategy for perimeter patrolling and target tracking in a
multi-camera videosurveillance system with communication,
resources and speed constraints. These cameras are required
to monitor a perimeter and share common portions of this
perimeter to allow redundant coverage. We propose an algo-
rithm that is able to find the global patrolling strategy only
through local asynchronous communication and coordination of
neighboring cameras even in presence of physical limits of each
camera visibility area. The algorithm converges to an optimal
solution, and its distribuited implementation is obtainet through
an electric circuit analogy. The proposed system also includes
a Kalman-based filter for each camera to track moving targets
within its areas of competence, and a distributed coordination
scheme for target hand-off between different cameras that
guarantees target locking at all times. Numerical simulations
are provided to test the proposed algorithms.

I. INTRODUCTION

A. Motivations

Patrolling means to keep on traveling around an assigned
area to visit every point more and more [1], therefore a good
patrolling strategy consists in minimizing the time elapsed
between two visits of the same point. Patrolling is a funda-
mental task in many applications: military defense systems,
mobile robots, chemical and nuclear factories and, obviously,
surveillance systems in which camera networks are used
to monitor perimeters, indoor and outdoor areas. Another
important task within this class of application is tracking. In
fact when an event occurs, the system has to detect it and
then track it. In the context of camera networks, this means
that high-resolution and good-dynamic cameras are required,
in fact a common trend is the adoption of systems of
multiple pan-tilt-zoom (PTZ) cameras which can potentially
monitor large areas with high resolution. At present, most
surveillance systems are centralized and human-controlled,
however the need for scalable systems calls for distributing
intelligence on the cameras and for automated patrolling and
tracking without human intervention. This is not an easy task
since the objective is still to guarantee good global behavior
of the whole system, while using only local information
and coordination among the different cameras with different
resources and constraints.
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B. Previous Work

This work addresses two different but complementary
problems: multi-agent patrolling and tracking. Multi-agent
patrolling finds applications not only in surveillance prob-
lems. A theoretical analysis of this problem is carried out
in [1], where the author studies conditions that guarantee
the existence of optimal strategies by means of graphs
analysis. In [2] the authors introduce a multi-agent patrolling
algorithm based on a physical analogy: gas-filled balloons.
The agents partition the area and each becomes responsible
of its subarea. A very interesting article is [3], in which
a multi-agent cooperative solution is realized. The solution
is robust and can fit itself to perimeter changes. The main
feature of this article is that communication between the
agents takes place only when they come in contact, therefore
as a result they need to move in phase opposition, i.e their
either move towards or away from each other. Another
physical analogy is provided in [4] where the authors propose
a series of interconnected spring-mass systems. In [5] it is
proposed the use of potential functions to coordinate a robot
fleet. In [6], [7] the authors provide a detailed algorithm to
dynamically cover a region using a team of mobile agents
that avoid flocking and collisions. The main feature is that
coordination control laws are local since each agent uses
information brought only by its neighbors.

As for multi-camera tracking in surveillance networks,
most of the literature is concerned with computer-vision
problems, such as dedicated algorithms to track faces or
specific targets such as cars. This is outside the scope of
this work since we assume that each camera is provided
with a low-level visual servoing to maintain the target in the
filed of view. We addressed the reader interested in review of
the field of intelligent surveillance systems to the survey [8].
Nonetheless some relevant works are available. For example
in [9] a distributed algorithm for PTZ camera networks is
provided. Another notable work is given [10] which proposes
a Kalman-based autonomous surveillance system, even if
based on a centralized processor. A further application of
Kalman filter is developed in [11] and applied successfully
to Pan-Tilt-Zoom cameras. The same article also addresses
problem of designing a control system for the cameras.

C. Contribution

We address the problem of optimal patrolling and target
tracking with multiple cameras by casting it as a real-
time control problem. In particular in this work we do not
consider the (static) problem of optimal camera placement
for patrolling perimeter, sometimes referred to as the “art
gallery problem”, see [12], [13] for example. Differently, we



assume that cameras positions on the perimeter is given as
an input of the problem. Thus, our problem is constrained,
because our agents (cameras) cannot move freely on the
whole patrolling perimeter. Nevertheless, we assume some
overlap in the physical range of cameras to justify the search
for an optimal coordinated patrolling algorithm. In fact, if
there were no overlaps, no coordination would be required.
We give an innovative contribution in terms of guaranteed
global optimality despite the use of local controllers and
despite the cameras constraints, such as their speeds and
physical ranges. These two aspects are rarely considered
in literature. In particular, we propose a patrolling scheme
that is distributed, suitable for asynchronous cammunication,
robust to camera failures and parameters variations, and
optimal in terms of the global objective, i.e. the worst-case
time-to-detection of a random event along the perimeter.

The other main contribution of the paper is the tracking
strategy where we adopt a Kalman-based approach. Although
the use of a Kalman-filter for tracking is standard for single
cameras, we also included a communication and coordina-
tion schemes among cameras to avoid that the target gets
lost when it goes outside the physical mobility limits of
the currently tracking camera, thus guaranteeing continuous
target locking. Moreover, when one or more cameras are
involved in tracking, the other cameras adaptively optimize
their patrolling coverage in order to include also the regions
that are not patrolled by the tracking cameras.

II. PROBLEM FORMULATION

Here and in the remainder of the paper we consider a
one-dimensional case, which refers to the realistic scenario
of perimeter surveillance, while allowing for an easier for-
mulation of the problem and a neater solution design. Also,
for the sake of simplicity, we assume: (a) 1-d.o.f. cameras,
meaning that the field of view (f.o.v.) of each camera is
allowed to change due to pan movements only, and (b) fixed
coverage range, meaning that during pan movements the
camera coverage range is not altered by the view perspective.

In this context, the following notation is adopted:
• L = [0, Ltot] ⊂ R+ is the rectified total length of the

perimeter to be monitored;
• N is the cardinality of camera set (also referred to as

agent set): {A1, . . . ,AN};
• Di = [Di,inf , Di,sup] ⊂ L is the total coverage range

of i-th camera Ai, due to the scenario topology, the
agent configuration and physical constraints;

• vi ∈ [−Vi,max, +Vi,max] is the (bounded) speed of i-th
camera during pan movements;

• zi(t) : R+ → Di , zi(t) ∈ C (R+), is the continuous
function mapping the center of the area covered by the
i-th camera as a function of the time variable t;

• Ai = [ai−1, ai] is the steady state coverage of the i-th
camera: a feasible solution is such if Ai ⊆ Di ∀i and,
if no overlapping zones are present,

∑N
i=1 |Ai| = Ltot,

being |Ai| the length of segment Ai.
In order to provide a procedure to solve the area coverage

problem, it is a key issue to define an appropriate cost

Fig. 1. Perimeter under surveillance. The physical coverage {Di} of three
cameras is shown, with some overlapping sections.

function J and state an optimality criterium. We propose
a functional J whose rationale is as follows: at each time
instant t and position x ∈ L, J is equal to 0 if location x is
currently seen (by any camera), else it takes a positive real
value as increasing as the time is passing since the last visit
of x. This choice is strictly related to the goal of finding an
optimal coverage criterion trading off between the patroling
activity and the additional task of tracking detected events.

More formally, given:

• the set of camera f.o.v. centers z(t) =
[ z1(t) . . . zN (t) ]′;

• the function t̄(x) : L → R+, as the elapsed time from
the most recent visit of x by a camera (elapsed time
from the last time t s.t. ∃i ∈ {1, . . . , N}|zi(t) = x);

• the function g(t̄(x)) : R+ → R+, as a strictly increasing
function with g(0) = 0;

the following cost function is assumed:

J(x, t, z(t)) : L×R+×CN (R+)→ R+, (1)

that is equal to:

J(x, t, z(t)) = g(t̄(x)). (2)

The initial conditions (t = 0) are:

• zi(0) ∼ U(Di), uniformly distributed random variables
in the interval Di;

• t̄(x) = 0 , ∀x ∈ L,

so that it holds:

J(x, 0, z(0)) = 0, ∀x ∈ L. (3)

Remark 1: We assume implicitly a point f.o.v. for the
cameras: in doing so, the pan motion associated to each
camera Ai is zi(t) and position x is visible if and only
if ∃ ī | zī(t) = x. This assumption nevertheless does not
affect the general validity of the approach: if visual cones
{f.o.v.(i)} are known (and in general different for each
camera), the point object case can be generalized considering
a modified length Leff of the trajectory to be monitored w.r.t.
Ltot, as

Leff = Ltot −
N∑
i=1

f.o.v.(i). (4)

The aim is now to design a control law that ensures the
minimization of index J(·, ·, ·) according to some norm. The



constrained cameras’ dynamics is:

żi(t) = vi(t), ∀ i (5)

s.t.

{
vi(t) ∈ [−Vi,max, +Vi,max]
zi(t) ∈ Di

, (6)

and the speed set {vi} appears as a natural control input for
the system:

V (t) = [ v1(t) . . . vN (t) ]′ , t ∈ [0 +∞). (7)

Therefore, the following minimization problem is posed:

V̄ (·) = arg min
V (·)

sup
t

max
x

J(x, t, z(·)) (8)

constrained to the system dynamics (5)-(6).
Remark 2: The proposed minimization problem (8) is

closely related to the ∞-norm minimization of function
J(·, ·, ·) and ensures that by a maximum time Tmax every
point of the perimeter is visited (which is a requirement for
the specific surveillance application). Moreover, assuming
the event is described by a Poisson Process Counter, and
taking g(·) as

g(t̄(x)) = 1− e−λt̄(x), (9)

J(·, ·, ·) is the probability that at least one event occurs in
position x, from last visit in x of a camera. Since an effective
surveillance system is required also to detect unexpected
events, the definition of such a control law corresponds to
minimizing the probability of missing an event.

III. OPTIMAL SOLUTION

Due to the many constraints, finding an optimal solution
to the camera coordination problem is not straightforward:
in this section we compute the optimal solution, supporting
the study on the following propositions.

A. Optimal trajectory without coverage bounds

Lemma 1: In the particular case of N = 1 camera A
monitoring a perimeter Ltot, the problem (8) takes the
optimal solution by commanding camera A to move with
periodic motion with period T̄ at the maximum speed ±Vmax
where

T̄ =
2Ltot
Vmax

. (10)

In this case, the minimum value of functional J is assumed
at the perimeter extreme points of the perimeter and its value
is

J̄ = 1− e−λT̄ , (11)

assuming g as in (9).
Proof: Considering agent A moving at speed v(t), it

stands:

2Ltot =
∫ T

0

|v(t)|dt = T |vmean|. (12)

Due to the patrolling policy, T is the elapsed time between
two consecutive visits of the extreme perimeter points, which
is also the maximum elapsed time between two consecutive
visits of any point x ∈ Ltot: for any other point to be visited
twice camera position z(t) has to move less than 2Ltot. The

minimum value of T , called T̄ , is attained when |vmean| =
Vmax, which yields the following relation on g

1− e−λT̄ ≤ g(·) < 1. (13)

Hence, it follows that to minimize J (g(·)) the optimal choice
of input signal V = [v(t)] is v(t) = ±Vmax.

This simple case suggests the following considerations: the
optimal coverage of the perimeter, also in the general case,
will be achieved by having each camera Ai to follow a
periodical motion at its maximum speed in its coverage area
Ai. In doing so, the problem of minimizing the index J(·, ·, ·)
is reduced to the optimal choice of Ai for each camera.

Proposition 1: The optimal coverage of the whole perime-
ter as the minimization of index J(·, ·, ·) with criterion (8)
and without the coverage constraint (6), is attained assuming
that every camera is moving at its maximum speed |Vi,max|
with a periodical motion of period T̄ in non-overlapping
coverage areas Ai. The area length |Ai| and optimal period
T̄ are obtained as

|Ai| = Vi,maxTo. (14)

and

T̄ = 2To =
2Ltot∑N
i=1 Vi,max

(15)

The perimeter is divided into N separate segments, each one
monitored by a camera moving at its maximum speed in To,
that is half of the optimal period T̄ .

Proof: From Lemma 1, the length of the Ai interval is

|Ai| = Vi,maxTo ≥
∫ To

0

vi(t)dt, (16)

where To is half of the optimal period T̄ . The stated
conditions imply

Ltot =
N∑
i=1

|Ai| =
N∑
i=1

Vi,maxTo , (17)

whence Eq. (15) follows. Modifications to the proposed
optimal solution can affect the length of sections {Ai}, either
keeping them or not non-overlapping. It is clear that the
overlapping case brings in non-optimality to the solution;
nonetheless modification to the {|Ai|} cannot be unilateral:

if ∃ i s.t. |A′i| < |Ai| ⇒ ∃ j s.t. |A′j | > |Aj | , (18)

and since the agents are already moving at their maximum
speed

T ′o = T ′j > To. (19)

It follows that an higher value of the functional J would be
attained.



B. Optimal trajectory with coverage bounds

In general, the optimal solution of problem (8) without any
constraint is not equivalent to the constrained optimal solu-
tion; this happens if the unconstrained solution is feasible,
that is if and only if

Ai ⊆ Di. (20)

To cope with the case where the unconstrained solution
violate the feasibility condition, we adopt a greedy approach:
starting from the optimal trajectory as computed with no con-
straint, this is adjusted w.r.t. to the introduction of constraints,
according to a best available choice strategy.

For simplicity, we show how to modify the optimal tra-
jectory in the case of feasibility violation by the first camera
A1: the case extends similarly to the other agents.

Fig. 2. Feasibility constraint violation for the camera A1: A1 * D1.

We introduce in this context the optimal patrolling period
with constraints, To,c. In general it holds: To,c ≥ To, the
equality standing only when the feasibility constraint (20) is
not violated.

Proposition 2: If the unconstrained solution yields (A1 *
D1), the optimal coverage of the trajectory is attained by
assigning to A1 the maximum feasible length complying to
its constraints, and recomputing the optimal solution for the
remaining N − 1 cameras to cover L \D1:

1) A1 = D1

2) |Ai| = Vi,maxTo,c i 6= 1
with

To,c =
Ltot − |D1|∑N
i=2 Vi,max

, To,c > To. (21)

Proof: If A1 = D1, then the remaining N − 1 agents
arrange to cover L \ D1 according to the optimal solution
of Prop. 1: the N agent optimal time To,c will be that of
the N −1 agent solution, since A1 will patrol a smaller area
than that of the unconstrained solution basically posing a non
effective constraint on the problem. Eq. (21) follows.

Suppose, for contradiction, that a A1 ⊂ D1 is assigned.
The remaining N − 1 cameras will necessarily cover length
Ltot − |A1| > Ltot − |D1|, yielding:

T̄ =
Ltot − |A1|∑N
i=2 Vi,max

> To,c, (22)

with To,c calculated as in (21). This solution would imply
higher values of the g function, hence higher values for the
optimization functional J .

IV. DISTRIBUTED SOLUTION

We shall now find a method to reach the optimal steady-
state configuration for patrolling extremes using only local
interaction between neighboring cameras. The goal is to let

Fig. 3. An example of constrained optimal patrolling coverage, respecting
all feasibility constraints.

each camera Ai calculate its Ai patrolling section. This is
achieved via analogy with an electric network. First, we
present the circuit model with continuous dynamics and then
we analyze numeric convergence in realistic conditions such
as discrete time control and asynchronous communication.
The idea is to relate voltages at circuit nodes to optimal
patrolling sections for the surveillance system, and see resis-
tor values as proportional to maximum patrolling speed of
cameras. The equivalence of the two systems is described in
details below.

A. Continuous time version, unconstrained problem

Consider a series of N resistors, and suppose to apply
known voltages {u0, uN} at its ends as shown in Fig. 4.

u0 u3

u1 u2 R3R3R2R2R1R1

C2C2C1C1

Fig. 4. Electric circuit analogy (N = 3). Voltages {ui} relate to the
positions of the patrolling sections {Ai}.

The resistors have local interaction at the circuit nodes,
meaning that currents {Ii} must sum to zero to obey Kirch-
hoff’s law. If the circuit is composed only by a series of
resistors, the voltages at nodes will follow the law of a
simple resistive voltage divider. We shall add some capac-
itors connected to the nodes to model dynamic evolution
of the voltages {u1(t), . . . , uN−1(t)} from general initial
conditions to the equilibrium configuration. Since the circuit
is passive, there is only one equilibrium point for this
circuit, and it is globally asymptotically stable for any initial
configuration {u1(0), . . . , uN−1(0)}. We can prove this by
means of an appropriate Lyapunov function, that will also
be useful for constrained and discrete time versions of this
problem. Let us define the vector U = [u0 u1 . . . uN ]′ and
consider the following function:

W (U(t)) =
N∑
i=1

1
2Ri

(ui(t)− ui−1(t))2, (23)



which represents the power dissipated on resistors. It is a a
nonnegative quantity and its time derivative is

Ẇ (U(t)) =
N∑
i=1

1
Ri

(ui(t)− ui−1(t))(u̇i(t)− u̇i−1(t))

=
N−1∑
i=1

u̇i(t)
(
ui(t)− ui−1(t)

Ri
+
ui(t)− ui+1(t)

Ri+1

)
, (24)

where we used the fact that u̇0(t) = u̇N (t) = 0. Moreover,
the law for charging capacitors requires that

u̇i(t) = − 1
Ci

(
ui(t)− ui−1(t)

Ri
+
ui(t)− ui+1(t)

Ri+1

)
, (25)

so Ẇ (U(t)) is the opposite of a sum of square terms, thus
negative semi-definite, and it is equal to zero only at the
equilibrium point Ẇ (U(t)) = 0 where all square terms
are equal to zero. Since we have the constraints u0(t) ≡
0, uN (t) ≡ 0, it is easy to verify that Ẇ (U) = 0 has a
unique equilibrium Ueq where

ui,eq =
ui−1,eq/Ri + ui+1,eq/Ri+1

1/Ri + 1/Ri+1
, i = 1, 2, . . . , N − 1

(26)
that is the equilibrium point of the resistive voltage divider.

One can also describe the circuit in state-space with the
following continuous-time free-evolution matrix for U̇(t) =
FU(t), U = [u0 u1 . . . uN ]′:

F =


0 0 0 . . . 0
1

C1R1
− R1+R2
C1R1R2

1
C1R2

. . . 0
...

. . .
...

0 . . . 1
CN−1RN−1

− RN−1+RN

CN−1RN−1RN

1
CN−1RN

0 0 0 . . . 0


and verify that it has a unique equilibrium point that satisfy
the constraints and it is asymptotically stable.

B. Continuous time version, constrained problem

We now modify the electric network to model the physical
limits of the cameras. More precisely, we add some diodes to
the previous circuit to impose saturation limits for capacitors
voltages, as shown in Fig. 5.

u0 u3

u1min u1max u2min u2max

u1 u2 R3R3R2R2R1R1

C1C1 C2C2

Fig. 5. Electric circuit with saturation constraints.

The complete circuit is still a passive network
with constant voltage sources applied to the inputs
{u0, u1,min, u1,max, ..., uN−1,min, uN−1,max, uN}. Energy

storing components (capacitors) are connected by dissipative
components (resistors), so global asymptotical convergence
to the unique equilibrium point is still assured. Let u̇i(t) be
the unconstrained expression for node voltage variation given
by (25), and ˙̃ui(t) be its constrained version:

˙̃ui(t) = 0 if ui(t) = ui,max ∧ u̇i(t) > 0
or if ui(t) = ui,min ∧ u̇i(t) < 0.

Henceforth, we redefine u̇i(t) := ˙̃ui(t) to simplify the
notation. Global convergence to a unique minimum can be
demonstrated using the same Lyapunov function W (U(t))
introduced in the unconstrained case. In fact, whenever a
saturation point is reached for the j-th capacitor, the voltage
at the saturated node becomes constant, that is u̇j(t) ≡ 0 for
t ≥ t̄ for some t̄. As a consequence, the Lyapunov function
Ẇ (U(t)) split into the sum of two independent parts:

Ẇ (U(t)) =
j−1∑
i=1

[. . .] +
N−1∑
i=j+1

[. . .], t ≥ t̄ (27)

where [. . .] identify the same argument of the sum in (24).
This sum can still be expressed as the opposite of the sum of
square terms, with the same substitution adopted before, and
thus is still a definite negative expression. When more than
one capacitor reaches the saturation limit, the sum expressing
Ẇ (U(t)) can be split again in more separate terms. If all
capacitors reach their saturation limits, this means that the
equilibrium point of the circuit is imposed by saturation
constraints.

In terms of the state-space representation of the un-
constrained electric circuit, the constrained circuit can be
obtained by simply setting the row of F to a null vector
whenever a saturation point is reached.

C. Discrete time version, unconstrained problem

We now focus on the structure of the dynamics matrix F
to obtain a discrete-time version Fd of the same system. Fd
is such that U((m + 1)∆) = FdU(m∆), where U(m∆) =
[u0(m∆) . . . uN (m∆)] are the state space variables of the
system discretized with ZOH-Euler integration and integra-
tion step ∆ > 0 (m ∈ Z):

Fd = I + ∆F

The matrix Fd has two unitary eigenvalues, and the others
are stable with an adequate choice for capacitors Ci and suf-
ficiently small integration time ∆. Fd is also row-stochastic.
This characteristic is very interesting in the perspective of
treating this problem as a consensus problem. In our scenario,
consensus is reached in a configuration that is a convex
combination of the steady eigenvectors, that in our system are
associated to the voltage values u0 and uN . It is important to
remark that the only equilibrium points of this discrete-time
systems is exactly the same of the continuous-time system.



D. Discrete time version, constrained problem and camera
analogy

Before adding more elements to the scenario, let us
see how the idea of this physical system can be used to
reach optimal patrolling section consensus for our system
of cameras. Suppose to identify ui = ai, i = 0...N and
Ri = Vi,max. This implies that uN−u0 = Ltot. If saturation
limits are not strict, the equilibrium point for the electrical
system is such that the optimal Ai = [ai−1, ai] and

Itot =
uN − u0∑N
j=1Rj

, Ii =
ui − ui−1

Ri
= Itot ∀i

ui − ui−1 = ItotRi =
Ltot∑N

j=1 Vj,max
Vi,max = ai − ai−1.

If saturation limits are reached, the electric circuit splits
at saturation points. In our multi-camera system, that is
equivalent to calculating optimal constrained patrolling time.
If patrolling sections reach physical limits, the optimal
patrolling time is the same for cameras between two sat-
urated patrolling extremes, and the system converges to
the optimal constrained solution. Cameras that share the
same patrolling period are the equivalent of resistors subject
to the same current. This analogy shows that if cameras
calculate the equilibrium points for the proposed electrical
system, they obtain their optimal patrolling range. This can
be performed with communication only between adjacent
agents: the i-th camera is ideally represented by the i-th
resistor, which knows the voltage between its ends, and can
calculate the current flowing through it. Resistors (cameras)
then communicate the current flowing through them, and if
they adequately compute the current difference at nodes and
apply it to the system composed by capacitor with saturation
diodes (ideally modeling the optimal patrolling extreme), the
equilibrium point is reached with only local interactions.
Moreover, the convergence speed is influenced by the choice
of the Ci values, acting as consensus weights.

As compared to the electric circuit analogy, the camera
networks present a peculiar different since it is not clear
which of the two neighboring cameras must calculate po-
sition of the common patrolling boundary. We solve this
problem by adopting a redundant strategy, that however fits
well a real-world scenario: each camera calculates positions
of both patrolling extremes, so each limit is modeled twice.
It is then important that the two versions of the shared
patrolling extremes are consistent in neighboring cameras.
This is achieved by periodically comparing the values of
the extremes, which are eventually reset to a mean value if
consensus has been lost. However, this scenario should occur
only at the system initialization: if communication is bidi-
rectional (as we assume), cameras can apply simultaneously
the same control law to the shared patrolling extremes, and
consensus on the patrolling extremes is never lost.

As for stability, one can say that the constrained discrete
model will still converge, based on the fact that we have a
discretization of a stable continuous system and by choosing
∆ such that ∆

Ci
is “small enough” ∀i, stability would still be

preserved. However, a Lyapunov function can be obtained
also for the discrete-time system, on the same line of the
previous derivations, and convergence can be readily verified.

E. Asynchronous problem

In a real scenario, communication can often be asyn-
chronous. We assume that when adjacent cameras commu-
nicate, they do it in a bidirectional fashion. In this way,
if cameras i and i + 1 separated by patrolling extreme ai
communicate at time instants in Ti = {ti,1, ti,2, . . . ti,Mi

}
where ti,j < ti,j+1, at any j-th instant of communication
they can calculate how to update the position of their
common optimal patrolling extreme ai adopting the same
control law to determinate its successive position a+

i . The
law is defined as a linear combination:

a+
i (ti,j) = ki−1ai−1(ti,j)+kiai(ti,j)+ki+1ai+1(ti,j), (28)

where the coefficients are computed so as to balance between
the different Vi,max of the two adjacent agents, similarly to
the voltage divider weights:

ki−1 =
∆

CiRi
ki = 1− ∆(Ri +Ri+1)

CiRiRi+1
ki+1 =

∆
CiRi+1

As previously stated, ai(·) have here the same role of the
ui(·) variables, but the control law is only applied at time
instants in Ti and not at every discrete time instant m∆ as
it is for the discrete-time version model of the initial electric
circuit.

With these positions, the proof of convergence is more dif-
ficult. However simulations show that the following function
of {a0(t), . . . , aN (t)}

W̄ (a0(t), . . . , aN (t)) =
N∑
i=1

1
2Ri

(ai(t)− ai−1(t))2

decreases in time even with the asynchronous update law
expressed by (28).

Remarkably, the performed simulations confirm equi-
librium stability and global convergence even with asyn-
chronous communication between cameras and with random
time delay between two consecutive communications.

V. TRACKING

In this section we address the problem of tracking a mobile
target once it is detected. A common approach is to model
the unknown motion of the target by a second-order linear
system driven by white noise. A state-space representation
of this model is given by the following equations:

x(t+ 1) =
[

1 1
0 α

]
x(t) +

[
0 0
β 0

] [
n1(t)
n2(t)

]
y(t) = [ 1 0 ]x(t) + [ 0 γ ]

[
n1(t)
n2(t)

]
(29)

where α ≈ 1 to model the inertia of the target, β, γ
regulate the intensity of process and measurement noise,
respectively, and n1(t), n2(t) are uncorrelated white noise



Fig. 6. Asynchronous communication pattern between cameras (top),
and corresponding global Lyapunov-like function (center) and patrolling
boundaries (bottom) for 4 cameras.

with unit variance. Parameters α, β, γ are set in order to
match the statistical information about target motion. Based
on this model, each camera processes measurements with a
Kalman filter which provides an estimate of the current target
position and speed. The equations for the Kalman filter are
standard and are therefore omitted. Although tracking based
on a Kalman filter is rather standard, in this setting there
is an interesting trade-off between patrolling and tracking:
if a camera is tracking, it cannot patrol its area any more.
However, tracking needs to be given higher priority over
patrolling since a target should never be lost, even when
it passes from a camera’s f.o.v. to that of a neighboring one.

Nonetheless, patrolling of the regions of competence of the
tracking cameras should be inherited by neighboring cameras
as much as possible to detect future events. The strategy
we propose to cope with coordinated tracking and adaptive
patrolling is the following:

1) the tracking camera produces a higher current on the
equivalent electric model to its boundaries in order to
attract towards itself the coverage boundaries of its
neighboring cameras within their physical limits, thus
promoting patrolling of regions left un-monitored by
the tracking cameras;

2) each camera tracks a target till it reaches its physical
boundaries, i.e. tracking has always higher priority over
patrolling;

3) each tracking camera calculates the estimated time-of-
arrival for the target to reach the physical boundaries,
and passes this information to its neighboring cameras;

4) the neighboring camera, according to estimated time-
of-arrival received by the tracking camera, stops pa-
trolling and starts moving towards the boundary to
catch the arriving target only when the expected time-
of-arrival of a target becomes smaller than the time
required for the camera to reach the boundary.

This strategy guarantees that the target is never lost, as the
cameras choose in the best way if they have to move towards
the boundaries or otherwise keep on patrolling. Moreover, the
update of the optimal patrolling boundaries takes place on-
line and distributively according to the theory developed in
the previous sections, thus providing very good performance.

VI. SIMULATIONS

The system described above has been implemented and
tested in very general conditions. Communication has been
modeled as asynchronous and real-world parameters for cam-
eras have been taken in account. Some of these parameters
include maximum patrolling speed, limited field of view, and
the overlapping patrolling range between adjacent cameras.

In the top plot of Fig. 6, we show an example of
asynchronous communication pattern between cameras, and
the associated Lyapunov function W (a0(t), ..., aN (t)) that
is monotonically decreasing with time. As expected, the
optimal patrolling range division is asymptotically reached.

Next, camera motion between patrolling extremes is
shown in top plot of Fig. 7. Every camera is represented
by two parallel lines (representing the field of view) that
move up and down the patrolling range. The physical range
of every camera is delimited by two dashed lines of the same
color. Optimal patrolling range limits are instead represented
by thick black lines. As expected, patrolling extremes con-
verge to a configuration in which all cameras have the same
patrolling time. The fact that cameras in this simulation have
different maximum patrolling speed is correctly taken into
account. Note that all saw-tooth camera trajectories have the
same period, which is a necessary condition for optimality.

Then, in middle plot of Fig. 7 we show an example of
camera lineup where physical coverage limits of camera A2

induce a constraint in the optimal patrolling of the other



Fig. 7. Camera motion between unconstrained (top) and constrained
(center) optimal patrolling limits. Concurrent camera motion and event
tracking (bottom).

cameras. The optimal configuration is such that camera A1

and camera A2 have the same patrolling period, i.e. TA1 =
TA2 , and so do camera A3 and camera A4, TA3 = TA4 ,
but these are different , i.e. TA2 6= TA3 . Basically, when
a camera reaches one of its physical coverage limits, it
splits the perimeter patrolling problem into two separated
and independent patrolling problems.

Finally, we demonstrate the ability of the system to
correctly locate and track a moving target in the bottom
plot of Fig. 7. The use of a Kalman filter and a good time-
of-arrival estimate ensures that the target is never lost. In
addition to that, the great advantage of an on-line calculation
of the optimal patrolling limits is evident: patrolling limits
correctly redistribute when the target passes from one camera
to another one. When one camera is engaged in tracking,
the others extend their patrolling ranges in the overlapping
zone. In this way patrolling coverage is maximized when one
agent is “distracted” from the patrolling task. This can also
be useful in case one of the cameras stops working, and a
self-adjustment of the system is needed in order to mitigate
the detrimental effects of the failure.

VII. CONCLUSIONS

In this work we address the problem of optimally pa-
trolling a one-dimensional perimeter using only local con-
trollers by means of an analogy with a passive electric net-
work. This analogy provides an intuitive proof of optimality
even in presence of mobility constraints. Its implementation
proves to be very robust also in a discrete time setting where
communication among cameras can be asynchronous or sub-
ject to packet loss. We also propose a Kalman-based adaptive
target tracking algorithm that provides continuous target
locking and optimal perimeter patrolling for the cameras not
involved in tracking. The proposed solution naturally extends
to real problems such as the coverage of closed perimeters,
of production line, or of roads with crossings. Future work
involves the formalization of the proposed algorithms and
their proofs of convergence to the optimal solution in the
asynchronous discrete time implementation, as the numerical
simulations seem to support.
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