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Abstract: In this work we introduce an algorithm for distributed average consensus which
is able to deal with asynchronous and unreliable communication systems. It is inspired by
two algorithms for average consensus already present in the literature, one which deals with
asynchronous but reliable communication and the other which deals with unreliable but
synchronous communication. We show that the proposed algorithm is exponentially convergent
under mild assumptions regarding the nodes update frequency and the link failures. The
theoretical results are complemented with numerical simulations.
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1. INTRODUCTION

In recent years, substantial effort has been dedicated to-
wards the design of distributed algorithms for large-scale
systems. The main driver for this is that, nowadays, the
availability of small and cheap computational units is
becoming widespread. As a consequence, it is affordable
to develop extended systems to monitor and control many
different environments. However, due to the size of this
systems, it is not always possible to collect all the infor-
mation in a single computational unit and sometimes it is
neither advisable, since some of the information collected
by the system could be sensible. Moreover, each unit is
endowed with some computational power which will not
be fully exploited otherwise. Another additional advantage
of using a distributed approach is that the whole system
is in a way safer, since it does not rely on a single unit but
is assigned to many different ones. Distributed algorithms
present two major drawbacks: memory and computational
constraints and need of a reliable communication system.
The first is due to the fact that the units which compose
the system can be quite limited in their computational
and storage capabilities, the second is intrinsic to the dis-
tributed setting, since each unit can exchange information
only with its neighbours in order to perform a global task.

It is therefore fundamental to always consider the prop-
erties of the communication system adopted. One very
important characteristic is the communication protocol,
which can be synchronous or asynchronous. Synchronous
protocols require substantial coordination between the
nodes, and when the number of agents in the system
increases, this coordination can become difficult to achieve.
An asynchronous communication protocol, on the other
hand, has no coordination requirements, but an algorithm
which uses such a protocol could in general require more
iterations because in each iteration of the algorithm only

a subset of the nodes in the networks are activated. An-
other important feature of the communication system is
its reliability due to the possibility that packets are lost
during the transmission. Obviously, the system should not
lose packets but perfect reliability could be difficult or too
expensive to enforce; to deal with possible packet losses,
either an acknowledgement scheme is developed or the
algorithm is implemented in such a way that the loss of a
packet is not detrimental for the convergence.

In this paper we describe and study a distributed algo-
rithm for average consensus. Basically, each unit has a
given scalar quantity and the aim for each node is to com-
pute the average of all these quantities. Sensor networks
represent a remarkable domain where the evaluation of the
average of the measured quantities is required in several
applications Xiao et al. (2005), Bolognani et al. (2010),
Garin and Schenato (2010). However, differently from the
rich literature on this topic, we adopt an asynchronous and
unreliable communication system, and we allow the com-
munication not to be bi-directional, that is if a unit com-
municates with another one, the converse is not assured.
In a synchronous and reliable communication scenario, im-
portant works are Boyd et al. (2004), Olshevsky and Tsit-
siklis (2009), Oreshkin et al. (2010), Domı́nguez-Garćıa
and Hadjicostis (2011). When unreliability in the com-
munication is introduced, some works have adopted the
acknowledgement scheme Chen et al. (2010) or assumed
that each unit can determine whether the communication
works Patterson et al. (2007), Xiao et al. (2005). However,
an acknowledgement scheme requires additional secondary
transmissions, which slow down the entire algorithm and
consume extra energy. Therefore, in context where the
energy consumption is constrained, the latter scheme is
not adoptable and the transmission has to be reduced
only to essential information. In an asynchronous setting,
Bénézit et al. (2010) introduce an algorithm that reaches



average consensus using the so-called ratio consensus. A
very interesting idea is introduced in Dominguez-Garcia
et al. (2011) and Vaidya et al. (2011) where the adopted
communication is synchronous and unreliable. In these
works a robust and synchronous algorithm inspired by
Bénézit et al. (2010) is introduced.

Adopting the idea of mass transfer given in Vaidya et al.
(2011), but developing an asynchronous algorithm as done
in Bénézit et al. (2010), we describe an algorithm for
average consensus which is provably convergent to the
average in an asynchronous and unreliable communication
scenario. The convergence proof relies on the introduction
of two assumptions concerning the communication scheme,
one regarding the frequency of waking up of each node and
the other regarding how many consecutive times a given
link can fail.

Our interest in this algorithm is justified by its possible ex-
ecution in more complex algorithms. In fact, even though
it is an interesting stand-alone algorithm, there are some
algorithms which need average consensus algorithm as a
building block, e.g. the Newton-Raphson algorithm for
convex optimization (see Varagnolo et al. (2016)), some
distributed versions of the Kalman filter (see Cattivelli and
Sayed (2010)) or some algorithms for energy resources dis-
tribution in power grids (see Dominguez-Garcia and Had-
jicostis (2010)). However, to be used in such algorithms,
the average consensus has to be exponentially convergent.
The aforementioned works by Bénézit et al. (2010) and
Vaidya et al. (2011), for example, do not show whether
exponential convergence is guaranteed in their algorithms
By proving this kind of convergence for our algorithm,
we make possible to use it in more advanced algorithms
which could then be applied in a realistic communication
scenarios (i.e. asynchronous and unreliable channels).

2. NOTATION & COMMUNICATION PROTOCOLS

Given a scalar x ∈ R, |x| denotes its absolute value.
Given a matrix A ∈ RN×N , [A]ij denotes its (i, j)−th
element, and A> indicate its transpose. A vector x is
strictly positive if xi > 0, ∀i ∈ {1, . . . , N}. Given two
vectors x, z ∈ RN , with xi or [x]i we denote its i−th
element and with x/z the Hadamard division of the two
vectors. IN indicates the N ×N identity matrix. A graph
G is represented by the couple (V, E), with V the set of
nodes {1, . . . , N} and E ⊂ V × V the set of edges. The
number of edges in the graph is E. We consider directed,
strongly connected and static graphs, with all the nodes
having a self loop. Given a node i ∈ V, the set N i

in
contains all the neighbours which communicate to i, that
is N i

in = {j | j ∈ V , i 6= j, (j, i) ∈ E}, while the set N i
out

contains all the neighbours to which i communicates, that
is N i

out = {j | j ∈ V , i 6= j, (i, j) ∈ E}. For a set A ∈ V, |A|
denotes the cardinality of the set. A matrix P ∈ RN×N
is row stochastic if P1N = 1N , where 1N is the all-ones
vector of dimension N . Finally, if a, b ∈ R, a < b, with
[a, b] we indicate the interval between a and b, extremes
included.
In the following we briefly describe some of the communi-
cation protocols which are usually adopted in wireless sen-
sors networks given a pre-assigned communication graph,
namely, the synchronous protocols, as opposed to the
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Fig. 1. Asynchronous communication protocols: the
opaque red node is the one that wakes up (for the
first 3 protocols), the other highlighted nodes are
those which exchange information with it. In gossip
symmetric there is no hierarchy in the nodes selected.

asynchronous ones like broadcast asymmetric, coordinated
broadcast, gossip asymmetric and gossip symmetric.
In a synchronous protocol all the nodes activate at the
same time instants and perform the updating and commu-
nication operations (almost) synchronously. This protocol
requires a common notion of time among the nodes; indeed
all the agents have to wake up simultaneously and so a
perfect coordination is required. If the graph is moderately
small, requiring synchronization may not be a great deal,
but as the dimension of the network increases, synchro-
nization can become an issue.
Instead, in asynchronous protocols, during each itera-
tion, only a small subsets of all the nodes in the network
perform the communication and updating steps. Specifi-
cally, in the broadcast asymmetric protocol, at each it-
eration, there is only one node transmitting information to
its out-neighbours, which, based on the received messages,
update their internal variables. At a given iteration, the
(unique) transmitter node is said to be the one that wakes
up (or turns on). The same terminology is applied to the
node that performs the first step of the communication
in the two protocols we describe next. The coordinate
broadcast can be considered as the dual protocol of the
broadcast asymmetric. Indeed, at each iteration, there is
only one node which wakes up, but, instead of sending
information, it polls all its in-neighbours in order to receive
from them some desired messages. In asymmetric gossip
again only one node wakes up but it sends information to
only one of its out-neighbours, typically randomly chosen.
Finally, the symmetric gossip is a protocol that requires
bidirectional communication, that is the communication
graph G has to be undirected (implying N i

in = N i
out for

all i ∈ V); during each iteration an edge of the graph is
selected and only the two nodes which are pointed by this
edge exchange information with each other. Figure 1 gives
a pictorial description of the asynchronous protocols just
described.

3. PROBLEM FORMULATION

Consider N agents (also called nodes) which can com-
municate with each other according to a graph G and
throughout some asynchronous communication protocol.
We assume the communications to be unreliable, that is,
some packet losses might occur during the transmissions
of the messages. Each node i ∈ {1, . . . , N} has a private
scalar quantity 1 vi ∈ R, which can be collected in vector
v ∈ RN , and the problem to solve is the evaluation of the
mean of these vi, that is of v̄ =

∑
i vi/N . The evaluation

has to be carried out by each node in a distributed way,
1 The algorithm can be modified to manage multidimensional quan-
tities.



and the nodes can exchange information among themselves
only if they are neighbours in the graph G.
Formally, denoted by xi(k) the estimate of the mean v̄
stored in memory by node i at time k, and introducing

the vector x(k) = [x1(k), . . . , xN (k)]
T ∈ RN , the problem

is to develop an algorithm such that

lim
k→∞

xi(k) = v̄, i ∈ {1, . . . , N} ≡ lim
k→∞

x(k) = v̄1N

and such that the update of xi(k) depends only on quan-
tities that belong to the neighbours of node i in N i

in.
Distributed algorithms to solve the given problem already
exists if the communication is synchronous, and the real
challenge we want to face is represented by the fact that
the communication is asynchronous and not reliable.
In this paper we assume the agents communicate with each
other through a broadcast asymmetric communication
protocol; however the analysis we propose in next sections
can be adapted to the other communication protocols we
have described in the previous Section.
Due to the communication scenario, some assumptions are
needed concerning how many times a given node wakes up
and how unreliable the communication is. We make the
following (deterministic) assumptions

Assumption 1. (Communications are persistent). For any
time instant k ∈ N there exists a positive integer τ̃
such that each node performs at least one broadcast
transmission within the interval [k, k + τ̃ ].

Assumption 2. (Packet losses are bounded). There exists
a positive integer L such that the number of consecutive
communication failures over every directed edge in the
communication graph is smaller than L.

A direct consequence of these assumptions is that, consid-
ering any instant k ≥ 0, in the interval k, k + 1, . . . , k +
L(τ̃ + 1)− 1 each link of the graph G is successfully used
at least once.

4. ASYNCHRONOUS AND ROBUST CONSENSUS

The asynchronous and robust Average Consensus algo-
rithm (ra-AC ) we present takes inspiration from the
algorithm presented in Vaidya et al. (2011) but under
asynchronous communication. In particular we adopt a
broadcast asymmetric communication protocol, that is
we only allow one node and, in a second moment, all
its out-neighbours that receive information, to update
part of their variables at each iteration. In Vaidya et al.
(2011), instead, all the nodes at each iteration perform
some computations. Thanks to our assumptions on the
communication, we are able to prove that the convergence
of the algorithm is exponential.

As the algorithm in Vaidya et al. (2011), also the ra-
AC algorithm is based on the average ratio consensus
introduced in Bénézit et al. (2010). According to the ratio
consensus, variable xi ∈ R of node i that reaches consensus
on the mean of the vector v is obtained as the ratio of
two appropriate scalar quantities yi and si; the update
of yi and si are made by node i as a linear combination
of its own variable and of the companion variables of
its neighbours. However, differently from Bénézit et al.
(2010)), where the communications were assumed to be
reliable, in our communication scenario the packets ex-
changed between two nodes can be lost. In this case, we

Algorithm 1 ra-AC (time k, node h wakes up)

1: % Node h updates its variables

2: yh(k + 1) = yh(k)

|Nhout|+1
;

3: sh(k + 1) = sh(k)

|Nhout|+1
;

4: xh(k + 1) = yh(k+1)
sh(k+1) ;

5: σ
(y)
h (k + 1) = σ

(y)
h (k) + yh(k + 1);

6: σ
(s)
h (k + 1) = σ

(s)
h (k) + sh(k + 1);

7: % Node h broadcasts variable σ
(y)
h (k+1) and σ

(s)
h (k+

1)
to all j ∈ N h

out

8: if node j receives σ
(y)
h (k + 1) and σ

(s)
h (k + 1) then

9: yj(k + 1) = σ
(y)
h (k + 1)− ρ(h,y)

j (k) + yj(k);

10: sj(k + 1) = σ
(s)
h (k + 1)− ρ(h,s)

j (k) + sj(k);

11: xj(k + 1) =
yj(k+1)
sj(k+1) ;

12: ρ
(h,y)
j (k + 1) = σ

(y)
h (k + 1);

13: ρ
(h,s)
j (k + 1) = σ

(s)
h (k + 1);

14: end if
15: % The variables of the other nodes are not changed

need to ensure that all the information sent by node i to its
neighbour j is received by j at least every once in a while.
The remarkable idea that allows to meet this requirement
is that of introducing the use of counters: in particular

node i has a counter σ
(y)
i (k) (σ

(s)
i (k) respectively) to keep

track of the total y-mass (total s-mass) 2 sent by itself to
its neighbours from time 0 to time k, while node j has a

counter ρ
(i,y)
j (k) (ρ

(i,s)
j (k) resp.) to take into account the

total y-mass (total s-mass) received from its neighbour i

from time 0 to time k (one such variable for all i ∈ N j
in). In

this way, if at time k node j receives information from node
i, the information coming from node i used in the update

of the variable yj(k) (sj(k) resp.) will be σ
(y)
i (k)−ρ(i,y)

j (k)

(σ
(s)
i (k)− ρ(i,s)

j (k) resp.); in this way the information sent
by an agent but not received due to packet losses is only
delayed and not lost.
We have inherited the idea of using counters from the
algorithm in Vaidya et al. (2011). Our ra-AC algorithm,
taking inspiration from the latter ideas, carries out a
ratio consensus according to an asynchronous commu-
nication protocol, and the generic k-th iteration is de-
scribed in Algorithm 1. To be implemented, each node
i ∈ {1, . . . , N} in the network has to keep in memory the

following scalar quantities: yi(k), si(k), σ
(y)
i (k), σ

(s)
i (k) and

ρ
(i,y)
j (k), ρ

(i,s)
j (k),∀(i, j) ∈ E , while the quantity of interest

xi(k) is evaluated as yi(k)/si(k). We collect variables yi(k)
and si(k) resp. in theN -dimensional vectors y(k) and s(k).
Suppose that at a given iteration node h wakes up. Then,

the main steps of ra-AC are the following: first node h up-
dates its variables yh and sh dividing their previous value
by the cardinality of its out-neighbours set augmented
by 1 (steps 2-3). Note that this operation leaves in fact
unchanged the value of variable xh. Then it updates the

2 As in Vaidya et al. (2011), we interchangeably use the word mass
for information, since the physical idea of the transferring of mass
quantities can be helpful in understanding how the algorithm works.



counters σ
(y)
h and σ

(s)
h (steps 5-6) and sends these updated

values to its out-neighbours. Now, if node j ∈ N h
out receives

the packet from node h, it updates the variables yj and
sj as described in steps 10-11, then it adjourns xj and it

finally stores in memory the new values for ρ
(h,y)
j and ρ

(h,s)
j

(steps 11-12-13).
The following Theorem shows that, with a proper ini-
tialization of the variables, the ra-AC algorithm works
as an average consensus algorithm, that is, the variables
xi, i ∈ {1, . . . , N}, which are updated distributively and
iteratively, converge to the average of the N components
of the vector v.

Theorem 3. Under Assumptions 1 and 2 and under the
following initialization for the variables

y(0) = v, s(0) = 1N ,

σ
(y)
i (0) = σ

(s)
i (0) = 0, ∀i{1, . . . , N},

ρ
(i,y)
j (0) = ρ

(i,s)
j (0) = 0, ∀(i, j) ∈ E ,

the evolution, obtained using ra-AC algorithm, of the vari-
able x(k) exponentially converges to v̄1N , v̄ = v>1N/N ,
that is, there exist suitable constants C > 0, 0 < d < 1
such that

‖x(k)− v̄1N‖2 ≤ C
(
d

1
τ

)k
‖x(0)− v̄1N‖2, (1)

where τ = NL(τ̃ + 1).

Since the proof of the Theorem is quite involved and
consists of several steps we postpone it in the next Section.

The bound in (1) depends on our communication scenario
through τ . For a fixed number of nodes N , τ might
increases, either because each node wakes up less often,
or because each communication link may fail for a longer
period of time (or both), which implies that the dissemi-
nation of information may become more difficult. In Equa-
tion (1), if τ increases the upper bound becomes larger and
larger, which is coherent with the fact that the information
is spread through the network in a slower way.

Remark 4. If no packet losses occur, the variables σ
(y)
i (k),

σ
(s)
i (k), ρ

(j,y)
i (k) and ρ

(j,s)
i (k) can be discarded (and vari-

ables yi and si of the nodes that receive the information
are updated directly using the packets they receive). The
algorithm we obtain in this case is subsumed by those
presented in (Bénézit et al., 2010).

5. PROOF OF CONVERGENCE

The proof of Theorem 3 is based on the theory of ergodic
coefficients for positive matrices Seneta (2006), applied
to the particular case of stochastic matrices. In the first
part, we follow what is done in Vaidya et al. (2011).
The Assumptions 1 and 2 allow us to state the results
in Vaidya et al. (2011) without resorting to probability
theory. However, we exploit the ergodicity theory in a
way such that it allow us to conclude the exponential
convergence of the algorithm. To proceed with the proof,
we first rewrite the algorithm iteration in a matrix form,
then we study the property of the matrices involved and we
finally exploit ergodicity theory to prove the convergence
of the algorithm.

Matrix form for ra-AC We start by introducing the
indicator variables χi(k) and χ(i,j)(k), i, j ∈ {1, . . . , N}.
The variable χi(k) is equal to 1 if node i wakes up at time
k, otherwise is 0; at this regard, recall that since we adopt
a broadcast asymmetric protocol only one node turns on
at each iteration. Concerning χ(i,j)(k), the variable is 1 if

node i wakes up at time k, if j ∈ N i
out and if the edge

(i, j) ∈ E is reliable at time k, while it is 0 otherwise.
Formally

χi(k) =

{
1 if node i wakes up at time k
0 otherwise

(2)

and

χ(i,j)(k)=

{
1 if χi(k)=1, (i,j)∈E active at time k
0 otherwise 3 (3)

Observe that
∑N
i=1 χi(k) = 1. Now, we only analyze the

matrices which describe the evolution of variable y(k),
since the same matrices drive the evolution of variable
s(k). Using the indicator variables we can rewrite the

update for the total sent-mass counter σ
(y)
i (k) and for the

total received-mass counter ρ
(i,y)
j (k) as

σ
(y)
i (k + 1) = σ

(y)
i (k) + χi(k)

yi(k)

|N i
out|+ 1

(4)

ρ
(i,y)
j (k + 1) = ρ

(i,y)
j (k)−

− χi(k)χ(i,j)(k)
(
ρ

(i,y)
j (k)− σ(y)

i (k + 1)
)

(5)

Let us introduce variables

ν
(y)
(i,j)(k) = σ

(y)
i (k)− ρ(i,y)

j (k), ∀(i, j) ∈ E .
These variables indicate how much of the mass sent by
node i is still to be received by node j. If at time k−1 node
i turns on and the communication between node i and j

(where j is a neighbour of i) is successful, then ν
(y)
(i,j)(k) is

0, otherwise it contains the information missing in node j.
Using equations (4) and (5) the update of these variables
can be written as

ν
(y)
(i,j)(k + 1)=

[
1−χi(k)χ(i,j)(k)

][
σ

(y)
i (k + 1)−ρ(i,y)

j (k)
]

=
[
1− χi(k)χ(i,j)(k)

] [
χi(k)

yi(k)

|N i
out|+ 1

+ ν
(y)
(i,j)(k)

]
. (6)

We will exploit these variables to rewrite the update of
vector y(k) in a matrix form. Note that these quantities are
not actually computed by the nodes, and are just auxiliary
variables used to enable the matrix version of the update.

To rewrite the update for the yi(k) variable, we have to
consider three different cases:

• if χi(k) = 1, it holds yi(k + 1) = yi(k)
|N iout|+1

;

• if χj(k) = 1 and i ∈ N j
in and χ(j,i)(k) = 1, then

yi(k + 1) = σ
(y)
j (k + 1)− ρ(j,y)

i (k) + yi(k)

= ν
(y)
(j,i)(k) +

yj(k)

|N j
out|+ 1

+ yi(k);

• if χj(k) = 1 and i ∈ N j
in and χ(j,i)(k) = 0 or if i /∈ N j

in,
then it holds

yi(k + 1) = yi(k).

3 χ(i,j)(k) is considered identically 0 for all k, if (i, j) /∈ E



The above three cases are all captured by the following
update

yi(k + 1) = χi(k)
yi(k)

|N i
out|+ 1

+ [1− χi(k)]·

·

∑
j 6=i

[
χj(k)χ(j,i)(k)

(
ν

(y)
(j,i)(k)+

yj(k)

|N j
out|+1

)]
+yi(k)

 . (7)

Now let us introduce the column vector ν(y)(k) =

[ν
(y)
(i,j)(k)] ∈ RE , which collects all different ν

(y)
(i,j)(k). More-

over let us define the row vector

φ(y)(k) = [y(k)> ν(y)(k)>] ∈ RN+E .

Our aim is to find matrix M(k) ∈ R(N+E)×(N+E) accord-
ing to which it holds

φ(y)(k + 1) = φ(y)(k)M(k). (8)

Let us first consider the i−th row of matrix M(k), with
i ∈ {1, . . . , N}. The element [M(k)]ii indicates how yi(k)
influences yi(k + 1), so

[M(k)]ii =
χi(k)

|N i
out|+ 1

+ [1− χi(k)].

The element [M(k)]ij , j ∈ {1, . . . , N} \ {i} indicates how
yi(k) influences yj(k + 1). It holds

[M(k)]ij = [1− χj(k)]

[
χi(k)χ(i,j)(k)

|N i
out|+ 1

]
.

Finally, if ` ∈ {N +1, . . . , N +E} is such that [φ(y)(k)]` =

ν
(y)
(r,j)(k), the element [M(k)]i` indicates how yi(k) influ-

ences ν
(y)
(r,j)(k). It holds

[M(k)]i` =

{ [
1− χi(k)χ(i,j)(k)

] [ χi(k)
|N iout|+1

]
if r = i

0 if r 6= i

We now analyse the h−th row of M(k), with h ∈ {N +

1, . . . , N + E}. Let us suppose that [φ(y)(k)]h = ν
(y)
(r,`)(k).

Reasoning as before, we have

[M(k)]hh = 1− χr(k)χ(r,`)(k),

[M(k)]h` = [1− χ`(k)]
[
χr(k)χ(r,`)(k)

]
.

and all the other elements in the h−th row are 0.
Using the matrices M(k) just defined and introducing

variables ν
(s)
(i,j)(k) = σ

(s)
i (k) − ρ

(i,s)
j (k), ∀(i, j) ∈ E and

φ(s)(k) = [s(k)> ν(s)(k)>], the evolution of φ(y)(k) and

φ(s)(k) is given by{
φ(y)(k + 1) = φ(y)(k)M(k)

φ(s)(k + 1) = φ(s)(k)M(k)
(9)

We recall that the first N elements of vectors φ(y)(k) and

φ(s)(k) corresponds respectively to y(k) and s(k).

Properties of matrices M(k). Introducing the set M,
which collects all possible matrices M(k), the following
lemma holds true.

Lemma 5. The set of matrices M satisfies

(1) M is a finite set;
(2) each M ∈M is a row-stochastic matrix;
(3) each positive element in any matrix M ∈M is lower

bounded by a positive constant c;

(4) given τ = NL(τ̃ + 1), for all k ≥ 0, the stochastic
matrix

V (τ)(k) = M(k)M(k+1) · · ·M(k+τ−1), M(t) ∈M,

is such that its first N columns have all the elements
which are strictly positive.

Proof. (1) Each matrix M ∈ M depends on which node
wakes up and on which communication links from this
node to its neighbours work. Since the number of all
possible combinations is finite (and in particular equal to∑N
i=1 2|N

i
out|) the property is verified.

(2) Consider first the i−th row of M , with i ∈ {1, . . . , N}.
Then, either χi(k) = 0, from which it follows{

[M(k)]ii = 1
[M(k)]ij = 0 if j ∈ {1, . . . , N} \ {i}
[M(k)]ij = 0 if j ∈ {N + 1, . . . , N + E}

,

or χi(k) = 1 (and all other χj(k) = 0, j 6= i), implying
[M(k)]ii = 1

|N iout|+1

[M(k)]ij =
χ(i,j)(k)

|N iout|+1
if j ∈ {1, . . . , N} \ {i}

and

[M(k)]i` =
1− χ(i,j)(k)

|N i
out|+ 1

for those ` ∈ {N + 1, . . . , N + E} for which there exists

a j ∈ {1, . . . , N} \ {i} such that ψ`(k) = ν
(y)
(i,j)(k) and

[M(k)]i` = 0 otherwise. Note that in both cases the sum
of the row is 1.

Consider now the h−th row of matrix M(k), with h such

that [φ(y)(k)]h = ν
(y)
(r,`)(k). If χr(k) = 0 it holds{

[M(k)]hh = 1
[M(k)]h` = 0 if ` ∈ {1, . . . , N + E} \ {i} .

On the other hand, if χr(k) = 1 [M(k)]hh = 1− χ(r,`)(k)
[M(k)]h` = χ(r,`)(k)
[M(k)]hj = 0 if j ∈ {1, . . . , N + E} \ {i, `}

In both cases the row sums up to 1.
(3) This directly follows from the construction of M(k).
(4) Let us define V (h)(k) = M(k)M(k + 1) . . .M(k + h−
1), k ≥ 0, h ≥ 1, V (0)(k) = IN , k ≥ 0, which can be divided
as

V (h)(k) =

[
A

(h)
11 (k) A

(h)
12 (k)

A
(h)
21 (k) A

(h)
22 (k)

]
,

with A
(h)
11 (k) ∈ RN×N , A(h)

22 (k) ∈ RE×E , A(h)
12 (k) ∈ RN×E

and A
(h)
21 (k) ∈ RE×N . Since every matrix M ∈ M is such

that [M ]ii > 0 if i ∈ {1, . . . , N}, it holds, for h ≥ 1,
that if in the product which yields V (h)(k) there exists a
matrix with the element in position (i, j) strictly greater
than 0, then also [V (h)(k)]ij > 0. Due to Assumptions 1
and 2, after L(τ̃ + 1) iterations, all the links in graph G
have successfully transmitted at least once. Moreover, if at
time k + ∆, 0 ≤ ∆ ≤ Lτ̃ , the communication link of the
edge (i, j) ∈ E is reliable, then considering index s such

that [φ(y)(·)]s = ν
(y)
(i,j)(·), it holds [M(k + ∆)]sj > 0. As

a consequence, each row of A
(Lτ̃)
21 (k) has at least one non

zero element. Using a similar reasoning, for all (i, j) ∈ E ,



it holds that [V (Lτ̃)(k)]ij > 0. Since graph G is connected,

it holds that all the elements of A
((N−1)L(τ̃+1))
11 (k) are

strictly positive. Due to the last two properties, choosing
τ = NL(τ̃ + 1), matrix V (τ)(k) has the first N columns
with all the elements strictly positive. 2

Remark 6. The constant τ has been evaluated in the worst
possible scenario. As a matter of fact we assumed that in
graph G there are at least two nodes that communicate
with each other in no less than N − 1 steps and we also
assumed that the communication along one link fails L−1
times consecutively. This implies that in a random network
G, where the diameter of the graph is usually much smaller
than the number of nodes, the actual constant τ according
to which the firstN columns of V (τ)(k) are strictly positive
will be, in general, much smaller.

Ergodicity theory and convergence of ra-AC We
will briefly recall some useful concepts of ergodicity theory
to be later applied to prove the convergence of the algo-
rithm. An exhaustive explanation for ergodicity theory can
be found in Seneta (2006).
Given a stochastic matrix P ∈ RN×N , a coefficient of
ergodicity for P quantifies how much its rows are different
from each other . Two well-known coefficients of ergodicity
for a stochastic matrix P are

δ(P ) := max
j

max
i1,i2
|[P ]i1j − [P ]i2j | ,

λ(P ) := 1−min
i1,i2

∑
j

min {[P ]i1j , [P ]i2j} .

These coefficients are proper (that is δ(P ) = 0 and λ(P ) =
0 if and only if P = 1nw

>, with w such that w>1n = 1),
and, as all the coefficients of ergodicity, 0 ≤ δ(P ) ≤ 1 and
0 ≤ λ(P ) ≤ 1.
Consider now a stochastic matrix P such that δ(P ) < ψ.
Selecting two elements in any column of P , the difference
between these two elements is necessarily smaller than ψ.
Consider now a vector y ∈ RN which sums to 0, that is
1N
>y = 0. Let us define the related quantities

ypos =
∑
i|yi>0

yi ≥ 1, yneg =
∑
i|yi<0

yi ≤ 0, ypos+yneg = 0,

and also, for any j ∈ {1, . . . , N}, the quantities

P j = max
h

[P ]hj , P j = min
h

[P ]hj , P j − ψ ≤ P j ≤ P j .

Suppose now that 4 ypos > 0. We aim at finding an upper
and lower bound for [y>P ]j , for any 1 ≤ j ≤ N . The
maximum value for this product is achieved in case the
positive elements of vector y are multiplied by P j and the
negative elements of the same vector are multiplied by P j ,
that is

[y>P ]j ≤ yposP j + ynegP j ≤ yposP j + ynegP j − ynegψ

which reduces to [y>P ]j ≤ −ynegψ. The minimum value
of [y>P ]j is instead produced if the negative elements are

multiplied by P j and the positive ones by P j , i.e.

[y>P ]j ≥ ynegP j + yposP j ≤ ynegP j + yposP j − yposψ

which implies [y>P ]j ≥ −yposψ. From these two bounds
we obtain

4 It is possible to verify that the property we are interested in, that
is the bound in Equation 10, is still verified if yi = 0 ∀i.

∣∣[y>P ]j
∣∣ ≤ ψ N∑

i=1

|yi| (10)

This bound will be used to prove the convergence of the
algorithm. In particular, the stochastic matrix involved
will be the forward product of the matrices that define
the evolution of the algorithm as seen in (9), that is
matrix T (k) = M(0)M(1) · · ·M(k). This matrix allows

to evaluate φ(y)(k+1) given φ(y)(0) (supposing the initial
time is 0). In order to evaluate the coefficient δ(T (k)), we
will exploit an important property that holds for δ(·) and
λ(·) when we are dealing with the product of row stochastic
matrices: given h stochastic matrices P1, . . . , Ph, then

δ(P1P2 · · ·Ph) ≤
h∏
i=1

λ(Pi). (11)

As a consequence if some of the matrices Pi are such that
λ(Pi) < 1, then also δ(P1P2 · · ·Ph) will be strictly less
than 1. A stochastic matrix P such that λ(P ) < 1 is
called scrambling, and a sufficient condition for P to be
scrambling is that at least one column is strictly positive,as
can be verified by the definition of λ(·).
Let us apply this theory to our forward product of matri-
ces, starting by defining the following

W (h) =

hτ−1∏
k=(h−1)τ

M(k), h ≥ 1, M(k) ∈M

which, by Lemma 5, have strictly positive columns. As a
consequence, λ(W (h)) < 1 for all h ≥ 1. Moreover, the
number of different W (h) is finite since matrices M(k) are
finite and the Assumptions 1 and 2 have to be satisfied.
Collecting all W (h) in set W, it is possible to define value

d = max
W∈W

λ(W ),

which is strictly smaller than 1.
The following lemma holds

Lemma 7. The constant β = d1/(2τ), 0 < β < 1, is such
that δ(T (k)) ≤ βk for k ≥ τ .

Proof. If k ≥ τ , T (k) can be rewritten as

T (k) = W (1) · · ·W (h)M(hτ)M(hτ + 1) · · ·M(hτ + ∆)

with h = bk/τc and ∆ = k − hτ, 0 ≤ ∆ ≤ τ − 1. As a
consequence, using Formula (11)

δ(T (k)) ≤ λ(W (1)) · · ·λ(W (h))λ

 ∆∏
j=0

M(hτ + j)

 ≤ dh.
Since h ≥ k/(2τ), dh ≤ dk/(2τ), so choosing β = d1/(2τ),
δ(T (k)) ≤ βk. �

Lemma 7 implies that the coefficient of ergodicity for T (k)
converges to 0 as k goes to infinity.
Before showing the convergence of ra-AC, we need to
show that each component of s(k) is lower bounded by a
constant µ > 0, since the variable x(k) is obtained through
the Hadamard division by s(k). Note that if k ≥ τ , the
elements of the first N columns of T (k) are strictly bigger

than cτ . As a consequence, si(k+1) ≥ cτ
∑N
j=1 sj(0) ≥ cτ .

On the other hand, since the first N elements of the
diagonals of matrices M(k) are strictly positive, if 1 ≤
k ≤ τ − 1, si(k + 1) ≥ cksi(0) ≥ cτ , since 0 < c < 1 and



s(0) = 1N . Therefore we take µ = cτ .
Let us finally prove convergence: we will first prove the
exponential convergence in case vector v is zero mean,
v̄ = 0, and then we will generalize to the case, v̄ 6= 0.
For k ≥ τ , by Lemma 7 we have δ(T (k)) ≤ βk, where

T (k) is such that φ(y)(k+1) = φ(y)(0)T (k). Starting from
Formula (10), and remembering that the first N elements

of φ(y)(0) are y(0) and the other elements are 0, for all
1 ≤ i ≤ N it holds∣∣∣[φ(y)(k + 1)]i

∣∣∣= ∣∣∣[φ(y)(0)T (k + 1)]i

∣∣∣ ≤ βk∑
i

|yi|

Now, since for 1 ≤ i ≤ N , yi(k + 1) = [φ(y)(k + 1)]i and
the elements of s(k) are strictly greater than µ, we have

|yi(k + 1)| =
∣∣∣∣si(k + 1)

si(k + 1)
yi(k + 1)

∣∣∣∣ ≤ βk∑
i

|yi|

which implies

|xi(k + 1)| =
∣∣∣∣yi(k + 1)

si(k + 1)

∣∣∣∣ ≤ 1

si(k)
βk
∑
i

|yi| ≤
1

µ
βk
∑
i

|yi|

and then

‖x(k+1)‖2≤ N

µ2β2
(β2)k+1

(∑
i

|yi|

)2

≤ N2

µ2β2
(β2)k+1‖x(0)‖2

where the last inequality is a consequence of the Cauchy-
Schwarz inequality and the fact that x(0) = y(0).

Defining C∞ := N2

µ2β2 the latter becomes

‖x(k)‖2 ≤ C∞(d1/τ )k‖x(0)‖2, k ≥ τ + 1.

If 0 ≤ k ≤ τ, T (k) is still stochastic and it surely holds
that δ(T (k)) ≤ 1, so applying a similar reasoning we have

‖x(k)‖2 ≤ Ck(d1/τ )k‖x(0)‖2, Ck =
N2

µ2(d1/τ )k
.

Introducing C = max{C1, . . . , Cτ , C∞} = Cτ we have

‖x(k)‖2 ≤ C(d1/τ )k‖x(0)‖2, k ≥ 0, (12)

that is we have the exponential convergence of the algo-
rithm when vector v is 0, since the mean v̄ is 0, and the
vector x(k) is converging to 01N .
Let us finally generalize to the case in which v is such that
v̄ 6= 0. Introducing vector v0 = v − v̄1N , we consider two
evolutions of the algorithm, one initialized using v0 and
the other initialized to v. At each time step k the same
matrix M(k) is applied for both initializations. We use
the subscript 0 to indicate the variables of the evolution
starting from the zero-mean vector v0 and the subscript v̄
to indicate those starting from vector v (vectors s(k) and

φ(s)(k) do not have a subscript since they are the same in
both evolutions). Remembering that s(0) = 1N , we have

x0(0)=
y0(0)

s(0)
, xv̄=

yv̄(0)

s(0)
=

y0(0)+v̄1N
s(0)

=
y0(0)

s(0)
+v̄1N

so xv̄(0) = x0(0) + v̄1N . Moreover, it is possible to verify

that φ
(y)
v̄ (0) = φ

(y)
0 (0) + v̄φ(s)(0), according to which we

have for all 1 ≤ i ≤ N

[x0(k)]i =

[
φ

(y)
0 (k)

φ(s)(k)

]
i

=

[
φ

(y)
0 (0)T (k − 1)

φ(s)(0)T (k − 1)

]
i

[xv̄(k)]i =

[
φ

(y)
v̄ (k)

φ(s)(k)

]
i

=

[
φ

(y)
v̄ (0)T (k − 1)

φ(s)(0)T (k − 1)

]
i

=

[
φ

(y)
0 (0)T (k − 1)

φ(s)(0)T (k − 1)

]
i

+

[
v̄
φ(s)(0)T (k − 1)

φ(s)(0)T (k − 1)

]
i

= [x0(k)]i + v̄.

We have just proved that xv̄(k) can be always obtained as
x0(k) + v̄1N for all k ≥ 0, and therefore, since for x0(k)
Equation (12) holds, we also have

‖xv̄(k)− v̄1N‖2 ≤ C(d1/τ )k‖xv̄(0)− v̄1N‖, k ≥ 0,

that is the exponential convergence of x to v̄1N holds for
any vector v ∈ RN .

Remark 8. It is possible to adequately modify the algo-
rithm in order to work also in the other asynchronous
communication scenarios introduced in Section 2. If some
deterministic assumptions equivalent to the ones in this
paper hold, the proof of convergence of the modified al-
gorithm can be obtained by the one just described, intro-
ducing appropriate modifications in the constructions of
matrices M(k) and showing that the properties in Lemma
5 are still verified.

Remark 9. The idea of using a consensus algorithm with
an augmented state in order to prove the convergence
of this particular ratio consensus is taken from Vaidya
et al. (2011). However, in the latter the communication is
synchronous, that is at each iteration all the nodes perform
some updates, and moreover the results concerning the
convergence are given in probability. In the set-up illus-
trated in this paper, the algorithm is asynchronous and
the convergence result is stated considering a worst-case
scenario. This is a consequence of the two assumptions we
made, which, remarkably, also allow us to prove that the
convergence is exponential.

6. SIMULATIONS

In this section we show the results of some simulations
done for ra-AC. The set-up of the simulations is the
following: the number of agents considered is N = 50,
the underlying communication graph is random geometric,
with the agents arranged in a squared environment of
edge equal to 1 and with maximum distance between
neighbouring nodes equal to r. In addition, in order to
work on directed graphs, some of the links have been forced
to be unidirectional. The value of τ̃ and L for Assumptions
1 and 2 are respectively 75 and 10. In particular, we
consider a probability 0 < p < 1 of losing a given packet,
but if the link that is selected has failed to transmit for
L−1 previous consecutive times, then the link is forced to
be reliable without considering the packet loss probability.
In Table 1 we give the averaged root mean squared error
(ARMSE) of the results. In particular, for each value of d
and p selected, we run M = 500 Monte Carlo runs (MCR)
for different graph realizations. Denoting with x{i}(k) the
value x(k) obtained in the i−th MCR, then

ARMSE(k) =
1

M

M∑
i=1

[
1√
N
‖x{i}(k)− v̄1N‖2

]



ARMSE(2000) p = 20% p = 50% p = 80%

r = 0.25 0.395 0.635 1.22

r = 0.33 0.033 0.131 0.45

r = 0.5 1.62 10−5 9.17 10−4 0.0319

Table 1. Values of ARMSE at time k = 2000,
computed over M = 500 Monte Carlo runs for

different values of r and p.
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Fig. 2. ARMSE as a function of time for 3 different
values for the packet loss probability, evaluated over
M = 500 MCR. The value for the maximum distance
r between nodes is 1/3.
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Fig. 3. Time evolution for the scalar variables x14(k),
y14(k) and s14(k) for one run of the algorithm. In
this simulation r = 1/3 and p = 20%.

The results of the simulations show that the more con-
nected the graph is, the faster the convergence is. On the
other hand, the packet loss probability, as expected, makes
the convergence slower. Note that for r = 0.25 , even at
iteration 2000 the convergence is still not good. However,
even in the best case, at iteration 2000 all the nodes have
woken up at most 40 times, and so, due to the presence
of packet losses and the fact that each node have only few
neighbours, this is not surprising.
Figure 2 shows the time evolution for the ARMSE(k), in
case r = 1/3. For all the different values of the packet
loss probability it is possible to appreciate the exponential
convergence of the algorithm. Finally, Figure 3 shows the
time evolution of the variables of a single node in the net-
work. It is interesting to see that, while the ratio between
y14(k) and s14(k) exponentially converges to the mean v̄,
the single variables do not converge but keep oscillating.
This behaviour is typical in the ratio consensus algorithm
in presence of unidirectional links and packet losses.

7. CONCLUSIONS

In this paper we presented an algorithm which allows each
node in the network to reach consensus on the mean of
some private constants which belong to each agent. We
gave the proof for the exponential convergence of the
algorithm under mild conditions and we carried out some

simulations to further verify its performance.
As future research, we want to apply ra-AC as the fun-
damental block for consensus in the Newton-Raphson al-
gorithm presented in Varagnolo et al. (2016). Newton-
Raphson is an algorithm that allows to distributively
minimize the sum of convex cost functions and one of
the steps of its iterations is a consensus. Introducing ra-
AC in its implementation would make Newton-Raphson
an asynchronous and robust algorithm, where the latter
features are important in real applications.
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