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Abstract

In this paper, we address sensor fusion for the attitude estimation of Micromechanical Aerial

Vehicles (MAVs), in particular a biologically inspired robotic housefly.

First, a dynamic observer is proposed which estimates attitude based on kinematic data available

from different and redundant bio-inspired sensors such as halteres, ocelli, gravitometers, magnetic

compass and light polarization compass. In particular, following a geometric approach, the tradi-

tional structure of complementary filters, suitable for multiple sensors fusion, is specialized to the

Lie group of rigid body rotations SO(3) and almost-global asymptotic stability is proved.

Then, the filter performance is experimentally tested via a 3 degrees-of-freedom robotic flapper

and a custom-made set of inertial/magnetic sensors. Experimental results show good agreement,

upon proper tuning of the filter, between the actual kinematics of the robotic flapper and the

kinematics reconstructed from the inertial/magnetic sensors via the proposed filter.

keywords: Sensor Fusion, Dynamic Attitude Estimation, Biologically Inspired Robots.

1 INTRODUCTION

Today there are several successful examples of autonomous flying vehicles, from airplanes [1] to heli-

copters [2]. However, their size hamper their use in surveillance and search-and-rescue missions in urban

areas, in indoor environments and in natural disaster scenarios as after earthquakes. Therefore, there is

an increasing need for very small size air vehicles with high performance. In particular, the current trend

is to study micro aerial vehicles (MAVs) using traditional air-vehicle paradigms such as fixed-winged

air-vehicles [3] or rotorcrafts [4]. Differently, inspired by the unmatched maneuverability and hovering

capability by real insects such as the common housefly (or Musca Domestica), some groups have started
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using biomimetic principles to develop micromechanical flying insects (MFIs) with flapping wings that

will be capable of sustained autonomous flight [5, 6].

The extraordinary performance of flying insects is the result of two peculiar features: the first

feature is the enhanced unsteady-state aerodynamic forces and moments generated by the flapping

wings [7, 8, 9, 10], and the second feature is the multimodal sensor fusion, i.e. the ability to integrate

information from a number of different and redundant sensors to reduce the effect of noise and external

disturbances [11, 12, 13].

In this paper, we focus explicitly on the latter feature of insect flight, i.e. on sensor fusion of

redundant information for attitude control, and we assume that we can control directly the torque

applied to the insect body as shown in [10]. The reason for focusing on orientation is that attitude

stabilization is the first step towards overall flight control, as clear from a vast amount of literature on

helicopter stabilization [14].

Complementary and Kalman filters have traditionally been used to design attitude observers, espe-

cially in presence of redundant measurements. Kalman filters work in the time domain focusing on the

noise corrupting the signals and leads to optimality when the noise is Gaussian. Complementary filters

approach the problem from the frequency domain, falling in the category of the so called Wiener filters,

i.e. less general when it comes to dealing with noise. It should be noted however that in real applications

such as navigation assuming white, Gaussian noise is defintely a strong assuption. For linear systems,

both types of filters may in fact lead to similar equations [15]. Although sensor fusion has been studied

for decades and many results are available for linear spaces [16], it remains a hard problem on the

Lie group of rigid body rotations SO(3) where standard tools like Kalman filtering cannot be applied

directly.

Kalman filters were originally developed for linear systems and then extended to cope with nonlin-

earities via linearization techniques, nevertheless cannot guarantee global stability. On the other hand,

complementary filters are capable of fully exploiting the rich nonlinear structure underlying problems

such as rigid body rotations, well described by the theory of Lie groups. Therefore, nonlinear comple-

mentary filters able to globally address stability properties of the proposed observer, i.e. taking into

account the geometric features of SO(3), in order to take advantage of powerful results such as the

separation principle, proved by Maithripala et al. [17] to also hold on compact Lie Groups such as the

case of interest, will be a fundamental step towards attitude stabilization.

As the main contribution of this work, the traditional structure of complementary filters is specialized

to the Lie group of rigid body rotations SO(3). In particular, a dynamic observer is proposed which

derives an attitude estimate from redundant information typically available from bio-inspired sensors.

Following the geometric approach of [18, 19, 20], this is achieved by avoiding the parametrization step.

The proposed observer is based on a notion of state error which is intrinsic, so its performance does not

depend on an arbitrary choice of coordinates, and coordinate-free, in the sense that the equations may

be written explicitly without specifying coordinates for the configuration space.

As an experimental validation, the filter is used to reconstruct the kinematics of a 3 degrees-of-
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freedom robotic flapper on which a suite a redundant inertial/magnetic sensors was assembled.

Section 2 reviews the navigation sensory system of real insects. In Section 3, a complementary filter

for sensor fusion is proposed. In Section 4, the experimental validation of the filter performance is

presented.

2 THE SENSORY SYSTEM OF FLYING INSECTS

One reason for superior performance exhibited by flying insects, besides the enhanced unsteady state

aerodynamic forces from flapping flight, is the highly specialized sensory system. In order to stabilize

flight, insects can rely upon a number of different sensors. In the following, we briefly review a number of

sensors available to insects for navigation, which represent a rich source of inspiration for the mechanical

flying insect [21, 22].

2.1 Halteres

The halteres are club-shaped small appendages behind each wing that oscillate in anti-phase with respect

of the wing, as shown in Fig. 1. The plane of oscillation is slightly tilted toward the tail of the insect to

Figure 1: Photo of a fly haltere. Courtesy of [42].

be able to measure Coriolis forces along all three body axes [23]. The halteres function as tiny gyroscopes

and through appropriate signal processing [24] they can reconstruct the body angular velocity vector:

yhl = ω (1)

The major drawback of halteres is that their measurements can be unpaired by body translational

acceleration, which cannot be distinguished from the Coriolis forces. However, this problem can be

alleviated by integrating angular velocities estimates from sensors such as the ocelli and the compound

eyes visual system, which are immune from linear accelerations. Recently, preliminary prototypes of

micro-electromechanical halteres have been fabricated and have shown promising results [25].
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2.2 Mechanoreceptors

Insects wings and other parts of the body such as the antennae, neck and legs are innervated by

campaniform sensilla. These nerves can sense and encode pressure forces when they are stretched or

strained [26]. A large number of sensilla are located at the base of the wing to measure aerodynamic

forces acting on the wings during motion and to elicit a compensatory mechanism to stabilize wing

trajectory. Differently, the sensilla on the legs can be used to measure the gravity acceleration, thus

acting as a gravitometer. Therefore, we can assume that insect can measure the gravity vector with

respect to the body frame, i.e.

yg = RT g0 (2)

where g0 are the (known) gravity vector components, measured with respect to the space frame. Similarly

to the halteres, also the mechanoreceptors are affected by linear body accelerations (for example the

antennae in moths act very similarly to halteres by measuring Coriolis’s forces on mechanoreceptors

placed at the base of the vibrating antennae [27]) and need to be integrated with other sensors.

2.3 Ocelli

The ocelli are three additional light-sensitive organs that look forward, leftward and rightward, respec-

tively, located in the middle of the compound eyes as shown in Fig. 2 and provide signals that are used

for stabilization with respect to rapid perturbations in roll and pitch [21]. In fact, these sensor can

estimate the position of the sun with respect to insect body by comparing the signals from the left and

right ocelli to estimate the roll angle, and by comparing the signal from the forward-looking ocellus with

the mean of the signals from the left and the right ocelli to estimate the pitch angle [28].

Compound
eyes

Ocelli

Figure 2: Photo of fly’s head showing compound eyes and the ocelli with its three photoreceptors.

Courtesy of [43].
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2.4 Compound Eyes

The compound eyes of the insects provide different types of signals needed for the optomotor systems.

They provide computation of insect angular velocities accomplished by using large-field neurons that

are tuned to respond to the specific patterns of optic flow that are generated by yaw, roll and pitch

[29]. Differently from halteres, these estimates require longer signal processing periods, but are not

affected by linear accelerations. In other words, compound eyes precisely estimate angular velocities at

low frequencies.

The compound eyes can also estimate body orientation and position by higher level visual processing

like object fixation and landmarks detection. Although this signal processing requires even longer times,

it can provide useful position information at low frequency for navigation and path planning [13].

Finally, the dorsally directed (upward-looking) regions of the compound eyes of many insects are

equipped with specialized photoreceptors that are sensitive to the polarized light patterns that are

created by the sun in the sky. These photoreceptors feed into polarization-sensitive interneurons that

function as “celestial compasses”, informing the insect about the direction in which it is flying in relation

to the sky’s polarization pattern. The polarization-sensitive system is used by insects to establish and

maintain the correct heading direction whilst navigating toward a distant goal. In other words, insects

can measure their orientation relative to the direction of the light polarization: p0 ∈ R3, as:

yp = RT p0 (3)

Differently from the ocelli, the light polarization direction is not affected by light intensity. In fact,

while estimation of sun position using the ocelli can be impaired when passing from a shaded region

to a sunny region, the estimation of polarization direction is unaffected. Bio-inspired polarized light

compasses have been successfully fabricated and used for robot navigation [30].

2.5 Magnetic Compass

Recent studies indicate that some insects also possess a magnetic sense that informs them of their

heading direction, and helps them maintain it [31]. Similarly to the light polarization sensor, we can

argue that insect can measure the components of the magnetic field with respect to the body as follows:

ym = RT b0 (4)

where b0 ∈ R3 is the direction of magnetic field relative to the space frame. A possible electromechanical

implementation of a magnetic compass suitable for small size vehicles is given in [32].

3 SENSOR FUSION VIA COMPLEMENTARY FILTERS

The sensory system of real insects is clearly redundant, e.g. kinematic quantities such as the angular

velocity are derived from more than one sensor. Information from different sensors is then “fused”

together.
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Complementary filters traditionally arise in applications where redundant measurements of the same

signal are available [16] and the problem is combining all available information in order to minimize the

instrumentation error.

For sake of simplicity, consider only two sensors, s1 and s2, providing readings of the same quantity,

e.g. the angular velocity ω, with different noise characteristics, i.e. s1 = ω + n1 and s2 = ω + n2, where

‖n1‖ < ‖n2‖ at high frequency while ‖n2‖ < ‖n1‖ at low frequency. Then an low-pass filter L(s) and

its complementary high-pass filter H(s) = 1 − L(s) can be used to fuse information

sfusion = s1H(s) + s2L(s) = ω + n2L(s) + n1(1 − L(s)) (5)

from two or more sensors (e.g. halteres, ocelli and compound eyes). The cut-off frequencyt of the filter

L(s) can be chosen so that the spectral content of n2L(s) + n1(1 − L(s)) will be less than the spectral

content of n1 or n2 [16].

Remark 1 (non-dynamic estimation) The kinematic variable is dynamically unaffected by the fil-

ter. The estimated variable (i.e. the output of the filter) is related to the input variable via a purely

algebraic relation in the time domain and no dynamics are involved in the noiseless case.

Such filters can be safely used in feedback loops to fuse readings of the same kinematic variable from

different sensors since no extra dynamics is added to the overall system and stability (which involves

noiseless conditions) is not affected.

Complementary filters can be generalized to fuse information deriving from sensors when the sensed

variables are related by differential equations, e.g. position and speed. In these cases, the filter introduces

some dynamics between the estimated output and the sensed inputs.

The differential equations relating the sensed variables may be nonlinear, this is typically the case

when attitude is concerned. Theory of complementary and Kalman filters has been traditionally used

to design attitude filters. Although the Kalman filters can be extended (EKF) to nonlinear cases, they

fail in capturing the nonlinear structure of the configuration space of problems involving, for example,

rotations of a rigid body, and most importantly, they can run into instabilities. On the other hand,

nonlinear filters [33], in particular complementary filters, can better capture such a nonlinear structure.

3.1 Dynamic Attitude Estimation

As an example of use of complementary filters when different kinematic variables are involved, consider

the linear case of a rotational mechanical system with one degree of freedom (θ). As shown in [16],

complementary filters such as the one represented in Fig. 3 are traditionally used to fuse information

available from both angular position sensors and tachometers, respectively θsens and ωtacho. Let θ∗ be

the estimate of θ. The filter gain k in Fig. 3 determines the transition frequency of the filter after which

the data from the tachometer (ωtacho) are weighted more whereas before the transition frequency data

from the position sensors (θsens) are predominant on the dynamic equation (the integrator 1/s). The

optimal value for k is in fact determined by the characteristics of measurement noise, see [16].
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Figure 3: Linear complementary filter for a rotational mechanical system with one degree of freedom.

Differently from previous example, SO(3) is a nonlinear space and that is where the advantages

of a geometric approach can be fully appreciated. Besides nonlinear dynamics, the very definition of

estimation error requires caution. In the linear case e = θ−θ∗ is a typical choice while quantities such as

R−R∗ with R, R∗ ∈ SO(3) are no longer guaranteed to belong to SO(3). Following [34], the estimation

error will be defined as E = RT R∗.

Next, a complementary filter on SO(3) for dynamic attitude estimation is presented which fuses

information from gyroscopes and from different and possibly redundant navigation sensors, such as the

ones described in Section 2.

3.2 Complementary filtering on SO(3)

Consider N ≥ 2 homogenous and time-invariant vector fields ~v1, ~v2, . . . , ~vN (e.g. the gravitational field,

the geomagnetic field, the light direction etc...) without the need, for the moment, to specify their

components (therefore the symbol ~· ). Assume that at least two of them (e. g. ~v1 and ~v2, without loss

of generality) are independent, this can be expressed in a form that is invariant and coordinate-free:

~v1 × ~v2 6= 0 (6)

Definition 1 Given a rigid body, define a body frame B on it. Let the rigid body be at rest at some

time t0 and define thus a space frame S0 as the one coincident with the body frame B at time t0. Let

the constant vectors vi0 = [vi0x vi0y vi0z ]
T represent the components of each vector field at time t0

as measured by a set of sensors on the rigid body. At any time t, let R(t) : R → SO(3) be a twice-

differentiable function representing the orientation of the rigid body in 3D space with respect to the space

frame S0, let vi = [vix viy viz ]
T be the (time-variant) components of each field and let ωgyr be readouts

of the gyroscopes, both vi and ωgyr are referred to the (body) moving frame.

Before presenting the main theorem concerning the proposed observer and its convergence properties,

two lemmas are presented which relate the influence of the current attitude R on the sensor measurements

vi as well as the role of gyroscopes in navigation.
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Lemma 1 The trajectory R(t) ∈ SO(3), defined as in Definition 1, is reflected in the measurements of

the gyroscopes and of the vector fields sensors and can be expressed as





ω̂gyr = RT Ṙ = ω̂

vi = RT v0i

(7)

See proof in Appendix.

Lemma 2 Let R(t) : R → SO(3) represent, as in Definition 1, the trajectory on SO(3) of a rigid body

embedding a set of gyroscopes and let the angular velocity ω of the rigid body be available, as in (7), via

readings from such gyroscopes. Let R∗T Ṙ∗ = ω̂ denote the dynamics of an estimator, then the tracking

error

E
∆
= RT R∗ (8)

is such that ‖E(t)‖SO(3) = constant. In particular, the following identity holds:

〈〈log(E),−ET ω̂E + ω̂〉〉so(3) = 0 (9)

See proof in Appendix.

Lemma 2 simply states that gyroscopes, in fact, are not necessary for stability, for which the mea-

surements of at least two vector fields such as the gravitational and the geomagnetic ones are sufficient

[35], but knowledge of the angular velocity is beneficial for performance, especially when disturbances

are present. Therefore, the proposed filter can be still used for stable tracking when the information from

gyroscopes is completely or partially missing (e.g. only mono-axial or bi-axial gyroscopes are available,

as for the case of the halteres), of course with a worsening of the performance.

Theorem 1 Let R(t) : R → SO(3) represent the orientation of the rigid body as in Definition 1. Let

R∗(t) denote the estimate of R(t) and let it be defined by the following observer:






Ṙ∗ = R∗ ω̂∗

ω∗ = ωgyr +
∑N

i=1 ki(vi × v∗i )

v∗i = R∗T v0i

(10)

where ki > 0 are the filter gains, ωgyr and vi represent the sensor readings as in (7).

The observer (10) asymptotically tracks R(t) for almost any initial condition R∗(0) 6= R(0) and in

particular:

lim
t→∞

RT (t)R∗(t) = I (11)
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See proof in Appendix.

Theorem 1 is stated in a form which is similar to [36] but our proof, which extends our previous

work [35], is in line with [20, 17]. In particular, we adopt a geometric approach which allows applying

the separation principle as in [20, 17], proved to hold for compact Lie Groups as SO(3), the case of

interest. The aim is to prove that our proposed observer can provide a robust estimation of orientation

to be used for attitude stabilization, which will be described in a forthcoming paper.

4 Experimental Results

In this section, the experimental results relative to attitude estimation of the end-effector of a robotic

flapper are presented.

4.1 Experimental Setup

A robotic wrist was designed to generate motion in three independent rotational degrees of freedom. A

bevel gear wrist mechanism was developed to transmit the motion of coaxial drive shafts to the plate

holder as shown in Fig. 4. The roll and pitch ranges do not have any limits, but the yaw angle was

constrained to 450 in our mechanical wrist. Drive shafts were powered by Maxon 16mm DC brush

motors with planetary gearheads and magnetic encoders. Gearhead reductions were 19:1 for yaw and

pitch, and 84:1 for roll. All three motors have been upgraded to 84:1 gearheads. The mechanism itself

saw gear ratios (drive to driven) of 4:1 for roll, 8:1 for yaw, and 1:1 for pitch. The wrist mechanism was

reduced in size (roughly 1.5” x 1.5” x 1.25”) to accommodate greater motion. A parallel plate mounting

structure for the motors makes the setup compact and portable (see Fig. 4). The design allows for

quick and easy changing of sensor plate. The motors were driven from MATLAB Simulink models,

which used an additional toolbox provided by the control board manufacturer (Quanser consulting)

to communicate with the hardware. PID controllers were used to run the motors at a high level of

precision: up to a tenth of a degree. Motion commands from the computer were amplified by analog

amplifier units (Advanced Motion Control) running in torque mode, which directly controls the input

current that the motor receives in order to perform a given motion.

As for the sensors, we used the Honeywell HMC2003 high sensitivity, three-axis magnetic sensor to

measure low magnetic field strengths, such the geomagnetic field. The sensitivity is 1V/gauss and the

bandwidth is 1 kHz. The micro accelerometer we used is ADXL330 (from Analog Devices) which is

a small, thin, low power 3-axis accelerometer with signal conditioned voltage outputs all on a single

monolithic IC. It measures acceleration with range of up to 3g. It can measure the static acceleration of

gravity, as well as dynamic acceleration resulting from motion. Bandwidth has a range of 0.5 Hz to 1600

Hz for X and Y axes, and a range of 0.5 Hz to 550 Hz for the Z axis. The sensitivity each axis is 300

mV/g with good linearity. For angular rate sensor, we used IDG-300 (from InvenSense), an integrated

2-axis angular rate sensor (gyroscope). Two chips of IDG-300 was used to make a 3-axis gyroscope
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driven by DC motors
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L−plate to host
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Figure 4: First generation 3DOF mechanical flapper. Left: design layout (not to scale). Right: actual

implementation comprising the assembled Inertial Magnetic Unit (IMU).

system, and the bandwidth is 140Hz.

4.2 Results

The sensors were assembled and mounted on the plate attached to the robotic wrist. Angular motions

in roll, pitch, yaw were performed independently and real time sensor output was obtained from the

data acquisition systems and the sensor fusion algorithm results are compared with the actual wrist

motion (read from the motor encoder).

Coupled motions with multiple degrees of freedom were also performed, calibrated data from sensors

derived from a particular motion are shown in Fig. 5. Experimental results are promising in the sense that

the actual motion can be reconstructed after proper tuning of the filter (i.e. after choosing appropriate

gain values). Fig. 6 shows how the commands given to the high precision servo-motors (φ, α and β) of

the robotic flapper can be estimated. Note that, due to the mechanical coupling of the 3DOF mechanical

flapper, only two motors need to be driven in order to produce a 3-dimensional motion of the fin.

Also, in Fig. 5, the actual sensor data from the test have high frequency oscillations which is due to

the plate vibration during acceleration, this can be reduced by mounting the sensors on a shorter plate

therefore reduce the load induced torque on the gearbox.
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Figure 5: Normalized calibrated data from sensors. Acceleration and magnetic field are normalized

with respect to the Earth gravitational and the Geomagntic fields. Angular velocity is normalized with

respect to 0.11 rad/s (maximum value obtained in the performed experiment).

5 CONCLUSION

In this work, we present a geometric, i.e. intrinsic and coordinate-free, approach to attitude estimation

of a micromechanical flying insect, derived from multiple and possibly redundant bio-inspired naviga-

tion sensors. Such a multimodal sensor fusion is implemented by a dynamic observer, in particular a

complementary filter is proposed which is specialized to the nonlinear structure of the Lie group of rigid

body rotations.

The proposed filter is experimentally tested. In particular, a 3 degrees of freedom robotic flapper is

used to generate a known trajectory. A custom-made suite of inertial/magnetic sensors was assembled

on the end-effector of the robotic flapper and the filter was used to estimate the actual (known) motion

of the robotic flapper.

The attitude observer presented in this work can robustly be used for attitude stabilization. In

particular, the property of almost-global stability on the configuration space of rigid body orientations

is fundamental to invoke the separation principle which decouples the attitude estimation problem from

the attitude control problem, but this will be part of future work where the proposed filter will be

used to stabilize the attitude of robotic platforms such as small flying vehicles as well as biomimetic

swimming robots.
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Figure 6: The angular motions (φ, α and β) of each of the three high precision servo-motors (the

solid line denotes the input command to the motor) can be reconstructed from calibrated data via the

complementary filter algorithm.

APPENDIX

A MATHEMATICAL BACKGROUND

This section briefly describes the notation and several geometric notions that will be used throughout

the paper. For additional details, the reader is referred to texts such as [37, 38, 39, 40, 41].

A.1 Basic Definitions

As shown in [37, 39], the natural configuration space for rigid body orientations is the Lie group SO(3):

SO(3) = {R ∈ R3×3 : RT R = I, detR = 1}
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Consider now the coordinate frames R3
S and R3

B:

• R3
S ≈ R3: the space coordinate frame, or initial configuration frame.

• R3
B ≈ R3: the body frame, which is attached to the body (can be thought of as defined by the

sensors sensitive axis), initially coincident with the space frame.

An element R of SO(3) can be thought of as a map from the body frame to the space frame, i.e.

R : R3
B → R3

S .

A trajectory of the rigid body is curve R(t) : R → SO(3). The velocity vector Ṙ is tangent to the

group SO(3) in R but, as shown in [37, 39], rather than considering Ṙ, two important quantities are

worth to be considered:

• Ṙ RT : representing the rigid body angular velocity relative to the space frame;

• RT Ṙ: representing the rigid body angular velocity relative to the body frame.

These are both elements of the Lie algebra so(3), i.e. the tangent space to the group SO(3) at the

identity I. Elements of the Lie algebra are represented by skew-symmetric matrices.

In the case of SO(3), there exists [39] an isomorphism of vector spaces ·̂ : so(3) → R3, referred to as

hat operator, that allows writing so(3) ≈ R3. For a given vector a = [a1 a2 a3]
T ∈ R3, we write:

·̂ : a =





a1

a2

a3




−→





0 −a3 a2

a3 0 −a1

−a2 a1 0




= â (12)

Denote (·)∨ : R3 → so(3) its inverse, referred to as vee operator:

(·)∨ : â =





0 −a3 a2

a3 0 −a1

−a2 a1 0




−→





a1

a2

a3




= (â)∨ (13)

The Lie algebra is equipped with an operator, the Lie brackets [·, ·] which is defined by the matrix

commutator:

[â, ĉ] = â ĉ − ĉ â = â × c (14)

where a, c ∈ R3, â, ĉ ∈ so(3) and × is cross product in R3.

Given a finite-dimensional vector space V , let V ∗ be its dual space, i.e. the space whose elements

(covectors) are linear functions from V to R. If σ ∈ V ∗, then σ : V → R. Denote the value of σ on

v ∈ V by 〈σ, v〉, i.e. the pairing operator 〈·, ·〉 : V ∗ × V → R.

If V = Rn then V ∗ ≃ Rn. For all v ∈ V and σ ∈ V ∗ ≃ Rn then

〈σ, v〉 = σT a

〈 σ̂, v̂ 〉 = 1
2trace( σ̂T v̂ )

(15)
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A.2 Metric properties of SO(3)

On a general manifold M , a positive definite quadratic form 〈〈ξ1, ξ2〉〉TxM defined on any tangent space

TxM ∋ ξ1, ξ2 (the space tangent to M in x ∈ M) is called a Riemannian metric [37]. In mechanics a

metric is tightly linked to the definition of kinetic energy [41]. Lie groups are, by definition, manifolds

and therefore are entitled to posses metric properties. Lie groups, in particular SO(3), are structured in

such a way that some metrics naturally1 arise. A left-invariant metrics does not depend on the choice

of the space frame, i.e. it only needs to be defined on the Lie algebra and then it can be left-translated

to the tangent space at any other group element:

〈〈R â, R ĉ〉〉TRSO(3) = 〈〈â, ĉ〉〉so(3)

where R ∈ SO(3) and â, ĉ ∈ so(3).

Still, there many choices for a metrics in the Lie algebra, as many as there are positive definite

matrices P :

〈〈â, ĉ〉〉so(3)
∆
= aT P c

where a, c ∈ R3 correspond to â, ĉ ∈ so(3) as in Eq.(12). However, there only exists one choice (up to a

coefficient, [37, 39, 34, 41]) when the metrics needs to be bi-invariant (i.e. both right- and left-invariant):

〈〈â, ĉ〉〉so(3)
∆
= aT I c = aT c = 〈a, c〉 (16)

where I is the 3 × 3 identity matrix.

Two main results provided in [34] are:

- the existence of a natural norm2 on SO(3):

‖R‖SO(3) = 〈〈φ̂R, φ̂R〉〉1/2
so(3) = ‖φR‖R3 (17)

- and a formula for computing its time derivative on the Lie algebra so(3):

1

2

d

dt
‖R(t)‖SO(3) = 〈〈φ̂R, RT Ṙ〉〉so(3) (18)

where φ̂R ∈ so(3), also referred to as log R, is defined as the angular velocity that takes the rigid body

from I to R ∈ SO(3) in one time unit, see [39] for details on the logarithmic map:

φ̂R = log R =
θR

2 sin θR
(R − RT ) (19)

where, for trace(R) 6= −1, θR satisfies 1+2 cos θR = trace(R) and ‖φR‖2 = θ2
R, and the Rodrigues’

formula:

R = exp(φ̂R) = I + αR φ̂R + βR φ̂2
R (20)

where αR = ‖φR‖−1 sin ‖φR‖ and βR = (1 − cos ‖φR‖)‖φR‖−2.

1Natural means that it does not depend on a particular choice of coordinates.
2Which measures the distance between R and the identity I.
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B Proof of Main Theorem and Related Lemmas

Proof of Lemma 1:

Monoaxial sensors are characterized by a sensitive axis along which the components of a vector field

(e.g. angular velocity, gravitational field, geomagnetic field etc...) can be measured. A body frame B
identifies three orthogonal directions on a rigid body. Monoaxial sensors are, by construction, assembled

on a rigid body in such a way that their sensitive axis coincides with one of axes defined by B.

By construction, a set of three monoaxial gyroscopes provides the components of the angular velocity

with respect to the body frame B, i.e. ω̂gyr = ω̂ = RT Ṙ.

As for the effect of an arbitrary rotation R on the components of the fields ~v1, ~v2, . . . , ~vN as these are

measured in the body frame, when the body frame coincides with the space frame S0, by Definition 1,

the fields components are given by v0i both in the body frame and in the space frame, i.e. the identity

matrix I relates the field components in S0 with the measured components in the body frame. For an

arbitrary orientation R of the body with respect to S0 the components of the fields as measured by the

sensors relative to the body can be expressed as vi = RT v0i.

Q.E.D.

Proof of Lemma 2:

First, a proof of (9) is provided which mainly makes use of the following identities on so(3) which

hold for all x, y ∈ R3:

x̂ = −x̂T

x̂2 = x̂2T

x̂ ŷ = yxT − xT y I

x̂ ŷ − ŷ x̂ = ̂(x × y)

x̂ ŷ2 + ŷ2 x̂ = −‖y‖2 x̂ − xT y ŷ

x̂ ŷ x̂ = −xT y x̂

x̂2ŷ x̂ − x̂ ŷ x̂2 = 0

x̂2ŷ x̂2 = xT y ‖x‖2 x̂

(21)

where xT y is the dot product in R3.

Express E as a function of φE (where φ̂E = log(E)) via the Rodrigues’ formula (20):

E = exp(φ̂E) = I + αE φ̂E + βE φ̂2
E (22)

where





αE = sin ‖φE‖

‖φE‖

βE = 1−cos ‖φE‖
‖φE‖2

(23)

Using identities (21) and the fact that βE −α2
E − β2

E‖φE‖2 = −βE , expand the term −ET ω̂E + ω̂ after

substituting (22) as:

−ET ω̂E + ω̂ = αE
̂(φE × ω) + βE ‖φE‖2 ω̂+

+φT
Eω(βE − α2

E − β2
E‖φE‖2) φ̂E

= αE
̂(φE × ω)+

+βE ‖φE‖2 ω̂ − βE (φT
Eω) φ̂E
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It is now straightforward verifying equation (24)

〈〈log(E),−ET ω̂E + ω̂〉〉so(3) = 〈〈φ̂E , αE
̂(φE × ω) + βE ‖φE‖2 ω̂ − βE (φT

Eω) φ̂E〉〉so(3)

= φT
E

(
αE (φE × ω) + βE ‖φE‖2 ω − βE (φT

Eω)φE

)

= 0 + βE ‖φE‖2 (φT
Eω) − βE (φT

Eω) ‖φE‖2

= 0

(24)

which proves (9).

Given the tracking error definition E = RT R∗, the error dynamics are easily computed as

Ė = ṘT R∗ + RT Ṙ∗

Since R∗T Ṙ∗ = ω̂ = RT Ṙ, it can be verified that

ET Ė = −ET ω̂E + ω̂

Rather than E(t), we are interested in ‖E(t)‖ and from (18) we can write:

d
dt‖E(t)‖SO(3) = 〈〈φ̂E , ET Ė〉〉so(3)

= 〈〈φ̂E ,−ET ω̂E + ω̂〉〉so(3)

= 0

and therefore:

‖E(t)‖SO(3) = constant = ‖E(0)‖SO(3)

Q.E.D.

Proof of Theorem 1:

Considering that ω̂gyr = ω̂ by (7), the whole system (10) can be conveniently rewritten as:

Ṙ∗ = R∗ (ω̂ +

N∑

i=1

ki [v̂i, v̂
∗
i ]) (25)

where the (14) was used to rewrite the cross product in R3 in terms of the Lie commutator in so(3).

Following [34], define the estimation error E as in (8) and consider its time derivative Ė = ṘT R∗ +

RT Ṙ∗. Use now (25) to write the dynamics of estimation error as:

ET Ė = R∗T RṘT R∗ + R∗T RRT Ṙ∗

= R∗T RṘT R∗ + R∗T Ṙ∗

= R∗T RṘT R∗ + ω̂ +
∑N

i=1 ki [v̂i, v̂
∗
i ]

= R∗T R ṘT R RT R∗ + ω̂ +
∑N

i=1 ki [v̂i, v̂
∗
i ]

= ET ṘT RE + ω̂ +
∑N

i=1 ki [v̂i, v̂
∗
i ]

Note that d
dt(R

T R) = d
dt (I) = 0 implies that ṘT R + RT Ṙ = 0 and therefore:

ET Ė = −ET ω̂ E + ω̂ +

N∑

i=1

ki [v̂i, v̂
∗
i ] (26)
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In order to prove stability, as in [34], the natural norm on SO(3) defined in (17) is chosen as a positive-

definite candidate Lyapunov function W (E), i.e.:

W (E)
∆
=

1

2
‖E‖SO(3) =

1

2
〈〈log(E), log(E)〉〉1/2

so(3) (27)

where log(E) = φ̂E ∈ so(3) is defined in (19) while 〈〈·, ·〉〉so(3) is the bi-invariant metric defined in (16).

The time derivative of W (E) can be computed via (18) as:

Ẇ (E) =
1

2

d

dt
‖E‖SO(3) = 〈〈log(E), ET Ė〉〉so(3)

Substituting (26):

Ẇ (E) = 〈〈log(E),−ET ω̂ E + ω̂〉〉so(3) +

+〈〈log(E),
∑N

i=1 ki [v̂i, v̂
∗
i ]〉〉so(3) (28)

As shown in Lemma 2, the first term in the right side of the last equation is always zero and therefore

Ẇ (E) = 〈〈log(E),

N∑

i=1

ki [v̂i, v̂
∗
i ]〉〉so(3) (29)

Equation vi = RT v0i from (7) and equation v∗i = R∗T v0i from (10) lead to

vi = Ev∗i

therefore, recalling (14) and (16), Ẇ (E) can be written in terms of R3 vectors as:

Ẇ (E) = φT
E

(
N∑

i=1

ki ((Ev∗i ) × v∗i )

)

=

N∑

i=1

ki φT
E((Ev∗i ) × v∗i )

In order to study the sign of Ẇ (E), it is convenient to express E as a function of φE via the Rodrigues’

formula (20):

E = exp(φ̂E) = I + αE φ̂E + βE φ̂2
E (30)

where





αE = sin ‖φE‖

‖φE‖

βE = 1−cos ‖φE‖
‖φE‖2

(31)

and rewrite:

Ẇ (E) =

N∑

i=1

ki φT
E((v∗i + αE φ̂Ev∗i + βE φ̂2

Ev∗i ) × v∗i ) (32)

Consider the following identities for all φ, v ∈ R3:

v × v = 0

(φ̂ v) × v = (φT v)v − ‖v‖2 φ

φT ((φ̂2v) × v) = 0

17



which allow writing:

Ẇ (E) =
∑N

i=1 ki φT
E((αE φ̂Ev∗i ) × v∗i )

=
∑N

i=1 ki αE ((φT
Ev∗i )2 − ‖v∗i ‖2‖φE‖2)

(33)

Recalling that, by the dot product in R3, φT
Ev∗i = ‖φE‖‖v∗i ‖ cos θi where θi is the angle between φE and

v∗i , a since, as in (30), αE = sin ‖φE‖/‖φE‖ , we can write:

Ẇ (E) = −
N∑

i=1

ki sin ‖φE‖ ‖φE‖ ‖v∗i ‖2(1 − cos2 θi) (34)

moreover, since v∗i = R∗T v0i and R∗ ∈ SO(3) then ‖v∗i ‖ = ‖v0i‖, and then

Ẇ (E) = −‖φE‖ sin ‖φE‖
N∑

i=1

ki‖v0i‖2(1 − cos2 θi) (35)

Consider the following inequality

N∑

i=1

ki‖v0i‖2(1 − cos2 θi) ≥
2∑

i=1

ki‖v0i‖2(1 − cos2 θi)

since ki > 0. θi represents the alignment between φE and vi and since v1 and v2 are assumed independent

in (6), φE can never be aligned, at the same time, with both v1 and v2. Therefore θ1 and θ2 can never

be zero at the same time. This implies that ∃γ > 0 such that

∑N
i=1 ki‖v0i‖2(1 − cos2 θi) ≥

≥∑2
i=1 ki‖v0i‖2(1 − cos2 θi) ≥ γ > 0

therefore, recalling from (27) that W (E) = 1/2 ‖φE‖2, we can write

Ẇ (E) ≤ − γ
√

2W (E) sin
√

2W (E) (36)

or, simplifying the notation,

Ẇ ≤ − γ
√

2W sin
√

2W (37)

For any initial configuration E(0) such that trace(E(0)) 6= −1, the logarithmic map (19) guarantees

that ‖φE‖ < π, i.e. the following holds for W0
∆
= 2W (E(0)):

0 ≤ 2W0 < π2

In such an interval, as shown in Fig. 7, a linear upper bound can always be found such that:

Ẇ ≤ −λ
√

2 W sin
√

2 W ≤ Ẇ0

W0
W = −η W

where η > 0 since Ẇ0 = Ẇ (E(0)) < 0. This finally proves convergence since the linear upper bound

can easily be integrated, leading to:

0 < W (t) ≤ W0e
−η t ⇒ lim

t→∞
W (t) = 0

Since W (t) = W (E(t)) measures the distance between E = RT (t)R∗(t) and I ∈ SO(3), then:

lim
t→∞

RT (t)R∗(t) = I

Q.E.D.
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Figure 7: Plot of the function Ẇ = −γ
√

2W sin
√

2W vs. 2W .
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