
A Hierarchical Multiple-Target Tracking
Algorithm for Sensor Networks

Songhwai Oh, Luca Schenato and Shankar Sastry
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720, U.S.A.
{sho,lusche,sastry }@eecs.berkeley.edu

Abstract— Multiple-target tracking is a canonical applica-
tion of sensor networks as it exhibits different aspects of
sensor networks such as event detection, sensor information
fusion, multi-hop communication, sensor management and
decision making. The task of tracking multiple objects in
a sensor network is challenging due to constraints on a
sensor node such as short communication and sensing ranges,
a limited amount of memory and limited computational
power. In addition, since a sensor network surveillance system
needs to operate autonomously without human operators, it
requires an autonomous tracking algorithm which can track
an unknown number of targets. In this paper, we develop
a scalable hierarchical multiple-target tracking algorithm
that is autonomous and robust against transmission failures,
communication delays and sensor localization error.

Index Terms— Sensor networks, multiple-target tracking,
Markov chain Monte Carlo, data association

I. I NTRODUCTION

In wireless ad-hoc sensor networks, many inexpensive
and small sensor-rich devices are deployed to monitor
and control our environment. It is envisioned that the
sensor networks will connect us to the physical world in
a pervasive manner [6], [8]. Each device, called a sensor
node, is capable of sensing, computation and communi-
cation. Sensor nodes form a wireless ad-hoc network for
communication. The limited supply of power and other
constraints, such as manufacturing costs and limited pack-
age sizes, limit the capabilities of each sensor node. For ex-
ample, a typical sensor node has short communication and
sensing ranges, a limited amount of memory and limited
computational power. However, the abundant number of
spatially spread sensors will enable us to monitor changes
in our environment accurately despite of inaccuracy of each
sensor node.

Multiple-target tracking is a canonical application of
sensor networks as it exhibits different aspects of sen-
sor networks such as event detection, sensor information
fusion, communication, sensor management, and decision
making. Each sensor node has a limited supply of power
and operates in the low SNR regime, leading to low
detection probability. If the detection is done by a thresh-
old test, one can increase the detection probability by
decreasing the threshold level. However, as we decrease
the threshold level, the false alarm rate gets increased.
The presence of false alarms and missing observations due
to the low detection probability complicate the problems

of track initiation and track termination. These important
issues are ignored by many tracking algorithm designed
for sensor networks. For example, when the false alarm
rate is high, the naive track initiation routine will overflow
the network with spurious tracks. Hence, an algorithm for
sensor networks must be robust against the low detection
probability and high false alarm rate.

In sensor networks, we seek for an autonomous tracking
algorithm which does not require a continuous monitoring
by a human operator. The localization of sensor nodes
in an ad-hoc wireless sensor network, without expensive
hardware such as the global positioning system (GPS), is
a challenging problem (see [15] and references therein).
Since the position of a target is reported with respect to
the location of the reporting sensor, the algorithm must be
robust against the sensor localization error. We also need
to consider the following constraints on sensor networks.
Due to the limited supply of power, the multi-hop wireless
ad-hoc communication is used in sensor networks. In
many cases, the communication bandwidth is low and the
communication links are not reliable, causing transmission
failures. In addition, due to the low communication band-
width and a limited amount of memory, communication
delays can occur frequently. It is well known that com-
munication is costlier than computation in sensor networks
in terms of power usage [7]. Hence, it is essential to fuse
local observations before the transmission. Since the data
association problem is NP-hard [5], [17], we cannot expect
to solve it with only local information. But, at the same
time, we cannot afford to have a centralized algorithm
since such solution cannot be scalable. In summary, we
need a simple and efficient tracking algorithm that is robust
against the low detection probability and high false alarm
rates; capable of initiating and terminating tracks; uses
less memory; combines local information to reduce the
communication load; and is scalable. Also it must be robust
against transmission failures, communication delays and
sensor localization error. But at the same time we want
an algorithm that can provide a good solution and improve
its solution toward the optimal solution given an enough
computation time.

In [16], an efficient real-time algorithm that solves the
data association problem and is capable of initiating and
terminating a varying number of tracks, Markov chain
Monte Carlo data association (MCMCDA), is presented.
MCMCDA is an approximation to the optimal Bayesian

filter [16]. It has been shown that MCMCDA is com-
putationally efficient compared to the multiple hypothesis
tracker (MHT) [18] and outperforms MHT under extreme
conditions, such as a large number of targets in a dense
environment, low detection probabilities, and high false
alarm rates [16]. MCMCDA is suitable for sensor networks
since it can autonomously initiate and terminate tracks.
Since transmission failure is another form of a missing
observation, MCMCDA is robust against transmission fail-
ures. MCMCDA performs data association based both
current and past observations, so delayed observations can
be easily combined with previously arrived observations
to improve the accuracy of estimates. Furthermore, MCM-
CDA requires less memory as it maintains only the current
hypothesis and the hypothesis with the highest posterior. It
does not require the enumeration of all or some of hypothe-
sis as in [10], [18]. In this paper, we extend the MCMCDA
algorithm to sensor networks in a hierarchical manner so
that the algorithm becomes scalable and we show the
robustness of the algorithm against transmission failures,
communication delays and sensor localization error in
simulations. To our knowledge, the algorithm presented
in this paper is the first general multiple-target tracking
algorithm for sensor networks which can systematically
track an unknown number of targets in the presence of
false alarms and missing observations and is robust against
transmission failures, communication delays and sensor
localization error.

We consider a simple shortest-path routing scheme on
a sensor network. The transmission failures and commu-
nication delays of the network are characterized proba-
bilistically. We assume the availability of a small num-
ber of special nodes,supernodes, that are more capable
than regular nodes in terms of computational power and
communication range. Each node is assigned to its nearest
supernode and nodes are grouped by supernodes. We call
the group of sensor nodes formed around a supernode
as a “tracking group”. When a node detects a possible
target, it communicates with its neighbors and observations
from the neighboring sensors are fused and sent to its
supernode. Each supernode receives the fused observa-
tions from its tracking group and executes the tracking
algorithm. Each supernode communicates with neighboring
supernodes when a target moves away from its range.
Lastly, the tracks estimated by supernodes are combined
hierarchically.

The remainder of this paper is structured as follows.
In Section III, the multiple-target tracking problem and
its probabilistic model are described. The MCMCDA al-
gorithm for multiple-target tracking is presented in Sec-
tion IV. The sensor network model is described in Sec-
tion V and the hierarchical MCMCDA method is given
in Section VI. The simulation results are shown in Sec-
tion VII.

II. RELATED WORK

The traditional multiple-target tracking algorithms such
as the joint probabilistic data association filter (JPDAF)

[1] and multiple hypothesis tracker (MHT) [18] are robust
against the low detection probability and high false alarm
rate. But they are not suitable for sensor networks since
the track initiation and termination is difficult with JPDAF
and both JPDAF and MHT require large memory and
computation cycles. Since MHT can initiate and terminate
tracks, the tracking task can be easily distributed in a
network of sensors. In [3], a distributed tracking algorithm
based on MHT is developed for multiple sensors. But
the approach is not suitable for sensor networks since it
demands large computational power and large amount of
memory on each sensor.

In [11], the authors propose to use a classification algo-
rithm to disambiguate closely located targets. But signals
received from targets are correlated and we cannot recover
the uncorrelated signals in all cases. Since we do not know
in advance the number of targets around each sensor, the
problem is ill-posed and very challenging even for a high-
end computer. In [13], the distributed track initiation and
maintenance methods are described. By electing a leader
among the sensors by which a target is detected, unnec-
essary communications are reduced. But considering the
complexity of the data association problem, the approach
will suffer from incorrect associations when there are many
targets crossing or moving close to each other. In addition,
when the false alarm rate is high, the proposed approach
will overflow the network with spurious tracks and it is
unclear how the missing observations are handled.

Many of newly proposed multiple-target tracking algo-
rithms for sensor networks try to solve the identity manage-
ment problem [12], [19]. They assume the availability of a
classification algorithm as in [11] but the disambiguation is
delayed until targets are sufficiently separated. As assumed
in simulations of [12], when the targets are of different
classes, a target can be classified by the signature of its
class. But, if all targets are of the same class, a target
cannot be easily classified by its signature and, in the
absence of reliable classification information, the proposed
methods will behave like the naive nearest neighbor tracker.
Our algorithm can complement the identity management
algorithms when tracking targets with the same class or
reliable classification information is not available.

A distributed particle filtering algorithm for sensor net-
works is presented in [4] and used to track a single
maneuvering target. The paper assumes the availability of
supernodes and a hierarchical topology similar to ours. The
paper also assumes the availability of sensors which can
measure an angle and distance to a target. But we are not
aware of sensors with such capability available for sensor
networks. The most widely used and realistic sensor model
is based on the signal strength and this is the model we
use in this paper.

III. GENERAL MULTIPLE-TARGET TRACKING

A. Problem

Let T ∈ Z+ be the duration of surveillance. LetK
be the unknown number of objects moving around the

surveillance regionR for some duration[tki , tkf] ⊂ [1, T]
for k = 1, . . . ,K. Let V be the volume ofR. Each object
arises at a random position inR at tki , moves independently
aroundR until tkf and disappears. At each time, an existing
target persists with probability1 − pz and disppears with
probability pz. The number of objects arising at each time
over R has a Poisson distribution with a parameterλbV
where λb is the birth rate of new objects per unit time,
per unit volume. The initial position of a new object is
uniformly distributed overR.

Let F k : Rd → Rd be the discrete-time dynamics of the
object k, whered is the dimension of the state variable,
and letxk

t ∈ Rd be the state of the objectk at time t for
k = 1, 2, . . . ,K. The objectk moves according to

xk
t+1 = F k(xk

t) + wk
t , for t = tki , . . . , tkf − 1,

where wk
t ∈ Rd are white noise processes. The noisy

observation of the state of the object is measured with
a detection probabilitypd which is less than unity. There
are also false alarms and the number of false alarms has
a Poisson distribution with a parameterλfV whereλf is
the false alarm rate per unit time, per unit volume. Letnt

be the number of observations at timet, including both
noisy observations and false alarms. Letyj

t ∈ Rm be the
j-th observation at timet for j = 1, . . . , nt, wherem is
the dimensionality of each observation vector. Each object
generates a unique observation at each sampling time if it
is detected. LetHj : Rd → Rm be the observation model.
Then the observations are generated as follows:

yj
t =

{
Hj(xk

t) + vj
t if j-th observation is fromxk

t

ut otherwise,

where vj
t ∈ Rm are white noise processes andut ∼

Unif(R) is a random process for false alarms. Notice that,
with probability 1− pd, the object is not detected and we
call this a missing observation. We assume that targets are
indistinguishable in this paper. But, if observations include
target type or attribute information, the state variable can
be extended to include target type information.

B. Probabilistic Model

Let yt = {yj
t : j = 1, . . . , nt} and Y = {yt}T

1 . Let Ω
be a collection of partitions ofY such that, forω ∈ Ω,

1) ω = {τ0, τ1, . . . , τK};
2)

⋃K
k=0 τk = Y andτi ∩ τj = ∅ for i 6= j;

3) τ0 is a set of false alarms;
4) |τk ∩ yt| ≤ 1 for k = 1, . . . ,K & t = 1, . . . , T ; and
5) |τk| > 1 for k = 1, . . . ,K.

Here, K is the number of tracks for the given partition
ω ∈ Ω. We call τk a track when there is no confusion
although the actual track is the set of estimated states
from the observationsτk. However, we assume there is a
deterministic function that returns a set of estimated states
given a set of observations, so no distinction is required.
The fourth requirement says that a track can have at most
one observation at each time, but, in the case of multiple

Fig. 1. (a) An example of observationsY (each circle represents an
observation and numbers represnt observation times); (b) an example of
a partitionω of Y

sensors, we can easily relax this requirement to allow multi-
ple observations per track. A track is assumed to contain at
least two observations since we cannot distinguish a track
with a single observation from a false alarm. An example
of a partition is shown in Fig. 1.

Let et be the number of targets from timet−1 andat be
the number of new targets at timet. Let zt be the number of
targets terminated at timet andct = et− zt. Let dt be the
number of detections at timet andut = et−zt+at−dt be
the number of undetected targets. Finally, letft = nt − dt

be the number of false alarms. It can be shown that the
posterior ofω is:

P (ω|Y) ∝
∏T

t=1 pzt
z (1− pz)ctpdt

d (1− pd)utλat

b λft

f P (Y |ω)
(1)

whereP (Y |ω) is the likelihood of observationsY given
ω, which can be computed based on the chosen dynamic
and measurement models. Our goal is to find a partition of
observations such thatP (ω|Y) is maximized.

IV. MCMC DATA ASSOCIATION ALGORITHM

In this section, we develop an MCMC sampler to solve
the multiple-target tracking problem. MCMC-based algo-
rithms play a significant role in many fields such as physics,
statistics, economics, and engineering [2]. In some cases,
MCMC is the only known general algorithm that finds
a good approximate solution to a complex problem in
polynomial time [9]. MCMC techniques have been applied
to complex probability distribution integration problems,
counting problems such as #P-complete problems, and
combinatorial optimization problems [2], [9]. The MCMC
approach applied to combinatorial optimization problems
is generally known as simulated annealing.

MCMC is a general method to generate samples from a
distribution π by constructing a Markov chainM whose
states areω and whose stationary distribution isπ(ω). If
we are at stateω ∈ Ω, we proposeω′ ∈ Ω following the
proposal distributionq(ω, ω′). The move is accepted with
an acceptance probabilityA(ω, ω′) where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (2)

otherwise the sampler stays atω, so that the detailed bal-
ance is satisfied. If we make sure thatM is irreducible and
aperiodic, thenM converges to its stationary distribution
by the ergodic theorem.

The MCMC data association (MCMCDA) algorithm
is described in Algorithm 1. MCMCDA is an MCMC

Algorithm 1 (MCMC Data Association):
Input: Y, nmc, ωinit
Output: ω̂

ω ← ωinit ; ω̂ ← ωinit
for n = 1 to nmc

propose ω′ based on ω (see [16])
sample U from Unif[0, 1]
ω ← ω′ if U < A(ω, ω′)
ω̂ ← ω if p(ω|Y)/p(ω̂|Y) > 1

end

algorithm whose state space isΩ described in Section III-
B and whose stationary distribution is the posterior (1).
The proposal distribution for MCMCDA consists of five
types of moves. They are (1) birth/death move pair; (2)
split/merge move pair; (3) extension/reduction move pair;
(4) track update move; and (5) track switch move. The
MCMCDA moves are graphically illustrated in Fig. 2.
For detail description of each move, see [16]. The inputs
for MCMCDA are the set of all observationsY , the
number of samplesnmc, and the initial stateωinit . The
acceptance probabilityA(ω, ω′) is defined in (2) where
π(ω) = P (ω|Y) from (1). In Algorithm 1, we use MCMC
to find a solution to a combinatorial optimization problem.
So it can be considered as simulated annealing at a constant
temperature. No burn-in samples are used since we are sim-
ply looking for a partition which maximizes the posterior.
In addition, the memory requirement of the algorithm is at
its bare minimum. Instead of keeping all{ω(n)}nmc

n=1, we
simply keep the partition with the maximum posterior,ω̂.
Notice that, in MCMC, the construction ofω′ is done on
fly according to the proposal distributionq(ω, ω′) and there
is no need to store previously visited states.

The Markov chain designed by Algorithm 1 is irre-
ducible (Theorem 1 in [16]) and aperiodic [16]. In addition,
the transitions described in Algorithm 1 satisfy the detailed
balance condition since it uses the Metropolis-Hastings
kernel (2). Hence, by the ergodic theorem, the chain
converges to its stationary distribution.

V. SENSOR NETWORK MODEL

In this section, we describe the sensor network and
sensor model used for simulations in Section VII. LetNs

be the number of sensor nodes, including both supernodes
and regular nodes, deployed over the surveillance region
R ⊂ R2. We assume that each supernode can communicate
with its neighboring supernodes. Letsi ∈ R be the location
of the i-th sensor node and letS = {si : 1 ≤ i ≤ Ns}.
Let Rt ∈ R be the transmission range of a regular sensor
node. A pair of sensor nodesi and j can communicate
to each other if the Euclidean distance‖si − sj‖ ≤ Rt.
Let G = (S, E) be a communication graph such that
(si, sj) ∈ E if and only if ‖si − sj‖ ≤ Rt. Let Nss� Ns

be the number of supernodes and letss
j ∈ S be the

position of thej-th supernode, forj = 1, . . . , Nss. Let
g : {1, . . . , Ns} → {1, . . . , Nss} be the assignment of
each sensor to its nearest supernode such thatg(i) = j

Fig. 2. Graphical illustration of MCMCDA moves (associations are
indicated by dotted lines and hollow circles are false alarms)

if ‖si − ss
j‖ = mink=1,...,Nss‖si − ss

k‖. For a nodei, if
g(i) = j, then the shortest path fromsi to ss

j in G is
denoted bysp(i).

Let Rs ∈ R be the sensing range. If there is an object
at x ∈ R, a sensor can detect the presence of the object.
Each sensor records the sensor’s signal strength,

zi =
{ β

1+γ‖si−x‖α + wi, if an object is present atx
wi, if no object is present,

(3)
whereα, β andγ are constants specific to the sensor type
and they are normalized such thatwi has the standard
Gaussian distribution. This signal-strength based sensor
model (3) is general for sensors available in sensor net-
works, such as acoustic and magnetic sensors, and has been
used frequently [12]–[15]. For eachi, if zi ≥ η, whereη is
a threshold set for appropriate values of detection and false-
positive probabilities, the node transmitszi to its neighbor-
ing nodes, which are at most2Rs away fromsi, and listens
to incoming messages from its2Rs neighborhood. Note
that this approach is similar to the leader election scheme in
[13] and we assume thatRt ≥ 2Rs. However, this approach
may cause some missing observations if there is more than
one object in this disk of radius2Rs. A better approach to
fuse local data is required and we will address this issue
in our future work. For the nodei, if zi is the larger than
all incoming messages,zi1 , . . . , zik−1 , and zik

= zi, then
the position of an object is estimated as

ẑi =

∑k
j=1 zij

sij∑k
j=1 zij

. (4)

Thenẑi is transmitted to the supernodeg(i) via the shortest
pathsp(i). If zi is not the largest compared to the incoming

messages, the nodei does nothing and goes back to
the sensing mode. Although each sensor cannot give an
accurate estimate of object’s position, as more sensors
collaborate, the accuracy of estimates improves as shown in
Fig. 3 (left). The collaboration of sensors makes the system
more robust against node failures and we can increase the
detection probability and decrease the false alarm rate by
collaboration.

A transmission along the edge(si, sj) fails indepen-
dently with probabilitypte and the message never reaches
a supernode. So we can consider transmission failure as
another form of a missing observation. Ifk is the number
of hops required to relay data from a sensor node to
its supernode, the probability of successful transmission
decays exponentially ask increases. To overcome this
problem, we usek independent paths to relay data if the
reporting sensor node isk hops away from its supernode.
The probability of successful communication from the
reporting nodei to its supernodeg(i) can be computed
as1−

(
1− (1− pte)k

)k
, wherek = |sp(i)|.

The (additional) communication delay is modeled by the
negative binomial distribution. We assume each node has
the same probabilitypde of delaying a message. Ifdi is
the number of delays occurred on the message originating
from the sensori, di is distributed as

p(di = d) =
(
|sp(i)|+ d− 1

d

)
(1− pde)|sp(i)|(pde)d. (5)

If the network is heavily loaded, the independence assump-
tions on transmission failure and communication delay may
not hold. However, the model is realistic under the moder-
ate conditions and we have chosen it for its simplicity.

VI. HIERARCHICAL MCMCDA

We use the online MCMCDA algorithm with a sliding
window of sizews [16]. The supernodes maintains a set
of observationsY = {yj

t : tcurr− ws < t ≤ tcurr, 1 ≤ j ≤
nt}, where tcurr is the current time. Eachyj

t is a fused
observationẑi from some sensori. At time tcurr + 1, the
observations at timetcurr − ws are removed fromY and
a new set of observations is appended toY . Any delayed
observations are appended to appropriate slots. Then each
supernode initializes the Markov chain with the previously
estimated tracks and executes Algorithm 1 onY . Once
tracks are found, the next state of each track is predicted.
If the predicted next state belongs to the surveillance area
of another supernode, track information is passed to the
corresponding supernode. The newly received tracks are
incorporated into the initial state of the Markov chain for
the next time step.

Since each supernode maintains its own set of tracks,
there can be multiple tracks from a single object main-
tained by different supernodes. To make the algorithm
fully hierarchical, we do track-level data association to
combine tracks from different supernodes. Letωj be the
set of tracks maintained by supernodej ∈ {1, . . . , Nss}.
Let Y = {τi(t) ∈ ωj : 1 ≤ t ≤ T, 1 ≤ i ≤ |ωj |, 1 ≤
j ≤ Nss} be the combined observations only from the

established tracks. We form a new set of tracksωinit from
{τi ∈ ωj : 1 ≤ i ≤ |ωj |, 1 ≤ j ≤ Nss} while making sure
that constraints defined in Section III-B are satisfied. Then
we run Algorithm 1 on this combined observation setY
with the initial stateωinit .

VII. SIMULATION RESULTS

For simulations below, we consider the surveillance over
a rectangular region on a plane,R = [0, 100]2. The state
vector isx = [x, y, ẋ, ẏ]T where(x, y) is a position inR
along the usualx andy axes and(ẋ, ẏ) is a velocity vector.
The following linear dynamic and measurement models are
used

xt+δ = Aδxt + Gδwt

yt = Cxt + vt,
(6)

where δ is a sampling interval,wt and vt are white
Gaussian noises with zero mean and covarianceQ =
diag(.152, .152) and R (set according to Fig. 3 (left)),
respectively, and

Aδ =

 1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

 Gδ =

δ2

2
0

0 δ2

2
δ 0
0 δ

 C =

 1 0
0 1
0 0
0 0

T

.

We assume a100×100 sensor grid, in which the separation
between sensors is normalized to 1. So the unit length in
simulation is the length of the sensor separation. In all
simulations,Rt = 10, nmc = 1000, ws = 10 and the
window is forward by a single step. For the sensor model,
we useα = 2, γ = 1, η = 2, andβ = 3(1 + γRα

s).
Since the number of targets is not fixed, it is difficult to

measure the performance of an algorithm using a standard
criterion such as the mean square error. Hence, we use two
separate metrics to measure performance: the estimation
error in the number of targetsεK and the estimation error
in position εX . Let K∗

t be the number of targets at timet
and Kt be the estimated number of targets at timet. We
define

εK =
1
T

T∑
t=1

|Kt −K∗
t |. (7)

The computation ofεX is done when it makes sense. At any
t, there can be at mostMt = min(Kt,K

∗
t) common tracks.

We find Mt matches between true tracks and estimated
tracks based on positions att− 1, t, t + 1. For each match
i, let x∗

t (i) andxt(i) be the position of the true track and
the estimated track att, respectively. We define

ε2X =
1∑
Mt

T∑
t=1

Mt∑
i=1

‖xt(i)− x∗
t (i)‖2. (8)

We first evaluate the effect of the sensing range and
empirically find that there is an optimal value at which
the estimation error is minimized. Then we illustrate the
robustness of our algorithm against sensor localization
error, transmission failures and communication delays. We
then give an example of surveillance with sensor networks
and demonstrate how the hierarchical MCMCDA algorithm
works.

Fig. 3. (left) estimation errorεX (single target, Monte Carlo simulation of 1000 samples); (middle) estimation errorεK (10 targets); (right) estimation
error εM (10 targets) - as functions of sensing rangeRs

A. Sensing Range

When localizing a single target, we can minimize the
localization error by allowing more sensors to collaborate,
which is equivalent to increasingRs as shown in Fig 3
(left). But when there is more than one target, this is no
longer true, since observations from different targets can
collide, giving missing observations and observations away
from target positions. Fig. 3 (middle) and (right) show the
estimation errorsεK and εX when 10 targets appear and
disappear at random times andT = 50. The speedṡx
and ẏ of slow-speed vehicles are between 0 and 1 unit
length per sampling period whilėx, ẏ ∈ [1, 2] for medium-
speed vehicles anḋx, ẏ ∈ [2, 5] for high-speed vehicles.
For each vehicle type, we used five different scenarios and
an example is shown in Fig. 4 (left). WhenRs = .5, the
sensors do not cover the surveillance regionR and do
not detect a target at all times, hence, the estimation error
is higher. As we increaseRs, estimation errors increase,
since there are more collisions among observations of
different targets. The estimation errors are low for high-
speed vehicles since it is easier to disambiguate crossing
targets. We find thatRs = 1.5 is a good range for all types
of vehicles and it is used in simulations below. We can also
interpret this result in terms of sensor density for a fixed
value of Rs. Hence, once the surveillance region is fully
covered by sensors, a further increase in density does not
improve the estimation error.

B. Sensor Localization Error

The localization of sensor nodes in an ad-hoc wireless
sensor network, without expensive hardware such as the
global positioning system (GPS), is a challenging problem
[15]. Hence, an algorithm which utilizes sensor positions
needs to be robust against the sensor localization error.
Suppose that the true position of sensor nodei is s∗i =
si +wi, wherewi are Gaussian noises with zero mean and
covarianceΣ = diag(σ2, σ2). Fig 4 (middle) and (right)
show the estimation errors from tracking 10 targets as
functions of the sensor localization errorσ. It shows that
the algorithm is robust against the sensor localization error
and, forσ ≤ .5, the algorithm performs as if there is no
sensor localization error. Notice thatεK is always under
1.8, so the algorithm finds most tracks for allσ. But εX gets
larger at highσ, since the target position estimation was

based on incorrect node positions. However, considering
the fact thatεX is computed from the norm of a vector in
R2, εX is mostly due to the sensor localization error.

C. Transmission Failures

To assess the effects of transmission failures alone, we
assume that there are no delayed observations, no false
alarms, and no missing detections. A single supernode is
placed at the center. As mentioned earlier, transmission
failures are missing observations and Fig. 5 (left) shows the
ratio between the number of lost packets and the number
of total packets as a function of the transmission failure
rate pte. As pte increases, we lose more packets and, at
pte ≈ .9, we lose all packets. Fig. 5 (middle) and (right)
show the estimation errors and the algorithm performs well
for pte ≤ .4. Notice that whenpte = .4 more than 50% of
packets are lost. It shows that our algorithm is very robust
against transmission failures. The estimation errorεX is
low at highpte since the algorithm loses the most of tracks
at high pte and εX is computed with a small number of
samples.

D. Communication Delays

As in the previous section, we assume that there are
no transmission failures, no false alarms, and no missing
observations. Fig. 6 (left) shows the ratio between the
number of delayed packets and the number of packets as
a function of the communication delay ratepde. As pde

increases to 1, all packets are delayed. Sincews = 10,
we do not receive all the delayed packets and the ratio
between the number of delayed packets that are eventually
received and the number of packets is shown as a dotted
line in Fig. 6 (left). The estimations errors are shown in
Fig. 6 (middle) and (right). It shows a good performance
for pde≤ .6; this is when the most of delayed packets are
received. Clearly, the performance can be improved if we
increasews.

E. An Example of Surveillance with Sensor Networks

In this section, we give an example of surveillance with
sensor networks. The surveillance regionR is divided
into four quadrants and sensors in each quadrant form a
tracking group, where a supernode is placed at the center
of each quadrant. We usedpte = .3, pde = .3, andη = 2.

Fig. 4. (left) a scenario used in simulation (numbers are target appearance and disappearance times, initial positions are marked by circles); (middle)
estimation errorεK as a function ofσ; (right) εX as a function ofσ

Fig. 5. (left) ratio between no. of lost packets and no. of total packets; (middle) estimation errorεK ; (right) εX - as functions ofpte

Fig. 6. (left) ratio between no. of delayed packets and no. of total packets; (middle) estimation errorεK ; (right) εX - as functions ofpde

The surveillance duration is increased toT = 100. The
scenario is shown in Fig. 8 (left). Fig. 7 (left) shows the
accumulated fused observations at the sensor level. There
were a total of 1174 observations and 603 observations
were false alarms. Fig. 7 (middle) shows the observations
received by supernodes and the delayed observations are
circled in Fig. 7 (right). Notice that we solve the multiple-
target tracking problem with observations shown in Fig. 7
(middle), not those in Fig. 7 (left). A total of 319 packets
out of 1174 packets were lost due to transmission failures
and 449 packets out of 855 received packets were delayed.
The tracks estimated by the algorithm are shown in Fig. 8
(middle) and Fig. 8 (right). Fig. 8 (middle) shows the tracks
estimated by supernodes while Fig. 8 (right) shows the
tracks estimated by the track-level data association step.
Fig. 8 (right) shows that the track-level data association
step corrects mistakes made by supernodes due to missing
observations. The ability to correct mistakes made by a
lower-level agent is another strength of our algorithm. The

algorithm is written in C++ and MATLAB and run on PC
with a 2.6-GHz Intel Pentium 4 processor. It takes less than
0.06 seconds per supernode, per simulation time step.

VIII. CONCLUSIONS

In this paper, a scalable hierarchical multiple-target
tracking algorithm for sensor networks is presented. The
algorithm is based on the efficient MCMC data association
algorithm and it is suitable for autonomous surveillance
in sensor networks. This new multiple-target tracking al-
gorithm can initiate and terminate tracks and requires a
small amount of memory. The algorithm is also robust
against transmission failures, communication delays and
sensor localization error. In order to reduce the commu-
nication overhead, observations are first locally fused and
then transmitted to its supernode. The task of tracking is
done hierarchically by forming a tracking group around
a supernode and later combining tracks from different
supernodes. The algorithm also features an ability to correct
mistakes made by a lower-level agent. The simulation

Fig. 7. (left) accumulated observations at the sensor level fromt = 1 to t = T ; (middle) accumulated observations received by supernodes; (right)
accumulated observations received by supernodes with delayed observations circled

Fig. 8. (left) a scenario used in Section VII-E (numbers are target appearance and disappearance times, initial positions are marked by circles); (middle)
tracks estimated by supernodes superimposed; (right) tracks estimated by the track-level data association step of hierarchical MCMCDA

results show that the algorithm is well suited for sensor
networks where transmission failures and communication
delays are frequent.

REFERENCES

[1] Y. Bar-Shalom and T.E. Fortmann.Tracking and Data Association.
Mathematics in Science and Engineering Series 179 Academic
Press, San Diego, CA, 1988.

[2] I. Beichl and F. Sullivan. The metropolis algorithm. InComputing
in Science and Engineering, volume 2(1), pages 65–69, 2000.

[3] C.Y. Chong, S. Mori, and K.C. Chang. Multitarget multisensor track-
ing. In Y. Bar-Shalom, editor,Multitarget-Multisensor Tracking:
Advanced Applications, pages 247–295. Artech House: Norwood,
MA, 1990.

[4] Mark Coates. Distributed particle filters for sensor networks.
In Proc. of 3nd workshop on Information Processing in Sensor
Networks (IPSN), April 2004.

[5] J.B. Collins and J.K. Uhlmann. Efficient gating in data association
with multivariate distributed states. InIEEE Trans. Aerospace and
Electronic Systems, volume 28(3), 1992.

[6] David Culler, Deborah Estrin, and Mani Srivastava. Overview
of sensor networks. InIEEE Computer, Special Issue in Sensor
Networks, Aug. 2004.

[7] L. Doherty, B. A. Warneke, B. Boser, and K. S. J. Pister. Energy and
performance considerations for smart dust. InInternational Journal
of Parallel and Distributed Sensor Networks, Dec 2001.

[8] Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme.
Connecting the physical world with pervasive networks. InIEEE
Pervasive Computing, volume 1(1), pages 59–69, 2002.

[9] M. Jerrum and A. Sinclair. The markov chain monte carlo method:
An approach to approximate counting and integration. In Dorit
Hochbaum, editor,Approximations for NP-hard Problems. PWS
Publishing, Boston, MA, 1996.

[10] Thomas Kurien. Issues in the design of practical multitarget tracking
algorithms. In Y. Bar-Shalom, editor,Multitarget-Multisensor Track-
ing: Advanced Applications. Artech House: Norwood, MA, 1990.

[11] D. Li, K. Wong, Yu Hen Hu, and A. Sayeed. Detection, classification
and tracking of targets. InIEEE Signal Processing Magazine,
volume 17-29, March 2002.

[12] J.J. Liu, J. Liu, M. Chu, J.E. Reich, and F. Zhao. Distributed state
representation for tracking problems in sensor networks. InProc.
of 3nd workshop on Information Processing in Sensor Networks
(IPSN), April 2004.

[13] J.J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed
group management for track initiation and maintenance in target
localization applications. InProc. of 2nd workshop on Information
Processing in Sensor Networks (IPSN), April 2003.

[14] Seapahn Meguerdichian, Farinaz Koushanfar, Gang Qu, and Mio-
drag Potkonjak. Exposure in wireless ad hoc sensor networks. In
Procs. of 7th Annual International Conference on Mobile Computing
and Networking, pages 139–150, July 2001.

[15] XuanLong Nguyen, Michael I. Jordan, and Bruno Sinopoli. A
kernel-based learning approach to ad hoc sensor network localiza-
tion. In AAAI-2004 Workshop on Sensor Networks, July 2004.

[16] Songhwai Oh, Stuart Russell, and Shankar Sastry. Markov chain
monte carlo data association for general multiple-target tracking
problems. In43rd IEEE Conference on Decision and Control (to
appear), Paradise Island, Bahamas, Dec. 2004.

[17] A.B. Poore. Multidimensional assignment and multitarget tracking.
In Partitioning Data Sets. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, volume 19, pages 169–196,
1995.

[18] D.B. Reid. An algorithm for tracking multiple targets. InIEEE
Transaction on Automatic Control, volume 24(6), pages 843–854,
December 1979.

[19] J. Shin, L. Guibas, and F. Zhao. A distributed algorithm for
managing multi-target identities in wireless ad-hoc sensor networks.
In Proc. of 2nd workshop on Information Processing in Sensor
Networks (IPSN), April 2003.

