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Abstract: In this paper we propose a novel distributed clock synchronization protocol for
networks of clocks which have different initial offsets and internal clock speeds. The algorithm
is based on an PI-like consensus protocol where the proportional (P) part compensates the
different clock speeds while the integral part (I) eliminates the different clock offsets. This
synchronization protocol is formally studied in its synchronous implementation and we provide
both convergence guarantees as well optimal design using standard optimization tools when the
underlaying communication graph is known. We also show how this protocol can be readily used
to study the effect of noise and external disturbances on the steady-state performance. Finally,
some simulations are presented.

1. INTRODUCTION

The extraordinary success of Internet and of wireless
technologies has created the opportunity to interconnect
hundreds to thousands of devices which can exchange in-
formation. This possibility to connect large numbers of de-
vices which are physically distributed over large distances
with a communication network offers the opportunity to
accomplish new tasks and to control of the environment
more effectively. However, large interconnected systems re-
quire coordination and cooperation to achieve these goals.
One important problem to be solved in many applications
involving a network of distributed devices is to maintain
it temporally synchronized. These applications include, for
example, mobile target tracking using a large number of
motion detection devices Oh et al. (2005), power schedul-
ing and TDMA communication schemes in wireless sensor
networks Hohlt et al. (2004), and rapid synchronized coor-
dination of powerlines nodes in electric power distribution
networks for catastrophic power-outage prevention Amin
and Schewe (2007).

Clock synchronization is an old problem and very so-
phisticated methodologies have been devised. The most
naive strategy to synchronize two clock is simply elect
one clock as a reference and then periodically update the
offset of the other clock based on the clocks difference.
However, if the two clocks have different speeds, the time
difference between two clocks diverges in between syn-
chronization updates, thus showing a saw-tooth evolution.
A methodology to compensate for different time speeds
is to estimate the relative speed and use it to correctly
predict the reference node time. A very natural extension
of the previous time synchronization strategy to a network
of clocks is first to elect a root and to create a tree
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from the communication graph and then use the previous
strategy where each son synchronizes itself with respect
to its parent, see e.g. Ganeriwal et al. (2003), Maròti
et al. (2004). Another very natural approach is to divide
the network into distinct clusters, each with an elected
cluster-head. All nodes within the same cluster synchro-
nize themselves with the corresponding cluster-head, and
each cluster-head synchronize itself with a another cluster-
head, see Elson et al. (2002). Although these two strategies
can be easily implemented and have shown remarkable
performance Maròti et al. (2004) they suffer from two
main problems. The first problem is robustness. In fact,
if a node dies or a new node is added to the network
it is necessary to rebuild the tree or the clusters, at the
price of additional implementation overhead and possibly
long periods in which the network or part of it is poorly
synchronized. The second problem is that, depending on
how the tree or clusters are built, it might happen that two
clocks which are physically close and can communicate
with each other belong to two different branches of the
tree or two different clusters, thus possibly having large
clock differences. This is particularly harmful in those
applications such as TDMA communication which requires
good synchronization of each node with its neighbors.

Another major problem in interconnected systems is the
time delay between the clock readings of two distinct
devices. In fact, the synchronization algorithms described
above implicitly assume that the clock reading at the
reference node and at synchronizing node is instantaneous.
If this is not the case, due for example to software access
time required to read the local clock, to propagation
delay, and to the reading time at the receiver clock, then
the synchronization performance can degrade and even
generating instabilities in the algorithms. Although, there
are algorithms that try to mitigate these effects, see e.g.
Solis et al. (2006), the general trend is to solve this problem
at hardware level by trying to read the clocks right before
packet transmission and as soon the packet arrives, as



discussed in Maròti et al. (2004). Therefore, in this work
we will neglect transmission delay and assume that clock
reading are instantaneous.

In this paper, we propose a novel fully distributed time
synchronization protocol based on a PI-like modifica-
tion of standard consensus algorithms (see e.g. Olfati-
Saber (2007)). The proportional part (P) of the consen-
sus algorithm compensates for the different clock skews,
while the integral part (I) compensate for the different
clock offsets. The implementation of this protocol requires
minimal computational and memory resources since each
node needs only few operations. Recently, other fully dis-
tributed algorithms for clock synchronization have ap-
peared. For example, the Reachback Firefly Algorithm
(RFA) in Werner-Allen et al. (2005), a protocol inspired by
the fireflies integrate-and-fire synchronization mechanism,
is able to compensate for different clock offsets but not
for different clock skews. On the opposite, the algorithm
proposed in Simeone and Spagnolini (2007), adopting a
control-based approach similar to this paper, is able to
compensate for the clock skews but not for the offsets,
i.e. at the end of the synchronization process, all clocks
will measure a constant time difference with the other
clocks. Distributed protocols that can compensate for both
clock skews and offsets are the Tiny-Sync Protocol in Yoon
et al. (2007), the Distributed Time-Sync Protocol in Solis
et al. (2006) and the Average Time-Sync Protocols by
Schenato and Gamba (2007). The first one is based on a
type of robust linear regression, the second on distributed
least-square estimator, and the last on a cascade of two
consensus algorithms. They are all proved to synchronize
a network of clocks in the absence of noise and delivery
time-delay and they also show good performance in exper-
imental testbeds. However it is difficult to mathematically
predict the effect of noise on the steady-state performance,
i.e. the distribution of synchronization errors. Differently,
the synchronization protocol proposed in this paper can
analyze not only the noiseless scenario but also the effect of
noise in the steady-state performance. Moreover it allows
for optimal design of protocol parameters if the graph of
the network is known. It is important to remark that our
protocol is proposed in a synchronous implementation, i.e.
all nodes are supposed to communicate at the same time
instant, while the other protocols mentioned above are all
asynchronous, i.e. they do not need a specific coordination
for the communication. We will come back to the conse-
quence of this point in the conclusions.

The rest of the paper presents the mathematical formula-
tion of the proposed protocol and also how the protocols
parameters can be easily globally optimized through some
standard numerical optimization tools. We also study the
effect of noise in the overall system performance. We tested
our protocol through some simulations, and finally we
present some future research extensions.

2. PROBLEM FORMULATION AND THE
PROPOSED SOLUTION

In this paper we will model a clock as a discrete time
integrator x(t + 1) = x(t) + d where x(t) denotes the
local time at time t and d > 0 denotes the time drift
(speed) of the clock. If we have a family of N clocks with

local time xi(t), these will be in general characterized by
different initial local time xi(0) and by different drifts di.
We assume that it is possible to control each clock by a
local input ui(t) as follows xi(t + 1) = xi(t) + di + ui(t).
By defining the N -dimensional vectors x(t), u(t) and d as
vectors with components xi(t), ui(t) and di respectively,
we can write the following vector model of the set of clocks

x(t + 1) = x(t) + d + u(t).

Clocks synchronization, i.e. xi(t) = xj(t) ∀i, j, can be
achieved by acting on the control input u(t). In practice
clock synchronization can only be achieved asymptotically,
i.e. ∃a, b ∈ R such that

x(t) − (at + b)1
t→∞−→0

where 1 denotes the column vector with all entries equal to
1. The control action ui(t) can only use local information.
More precisely, the information exchange is described by
a graph G with set of vertices {1, . . . , N} in which we have
an edge from j to i whenever the information coming from
clock j can be used by ui(t) to control clock i. The problem
we have to solve looks like a consensus problem and so
the first attempt is to apply the standard linear consensus
algorithm in which u(t) = −Kx(t) where K ∈ R

N×N is
such that

(1) I − K is an aperiodic and irreducible stochastic
matrix.

(2) Kij 6= 0 only if (j, i) is an edge of the graph G.

It can be shown that this technique does not solve the
problem since it is not able to get an agreement when
both the drifts and the offsets (encoded by initial states
xi(0)) are different. This is intuitively motivated by the
fact that, if one wants to control a system with a constant
disturbance and obtain a zero asymptotic error, the in-
ternal model principle suggests that an integrator should
be included in the controller. This intuition suggests the
following structure

w(t + 1) = w(t) − Hx(t) w(0) = 0

u(t) = w(t) − Kx(t)

where w(t) ∈ R
N is the controller state and K, H ∈ R

N×N .
Observe that, in case the clocks are already synchronized,
namely d = a1 and x(0) = b1, then we want that u(t) = 0
for all t. This equivalent to imposing that K1 = H1 = 0.
In this paper we shall restrict to matrices H of the form
H = αK and also assume that K is a symmetric matrix;
this will allow to perform optimization of both α and K
using standard tools in convex optimization. Symmetry
can only be achieved only provided the associated graph
is undirected. Note also that the controller for the i-th
clock has the following form

wi(t + 1) = wi(t) − α
N

∑

j=1

Kijxj(t)

ui(t) = wi(t) −
N

∑

j=1

Kijxj(t).

(1)

Hence the global system will be the following
[

x(t + 1)
w(t + 1)

]

=

[

I − K I
−αK I

] [

x(t)
w(t)

]

+

[

d
0

]

.



Remark 1. Note that, using the assumption K1 = 0 the
following holds:

N
∑

j=1

Kijxj(t) =

N
∑

j=1,j 6=i

Kij(xj(t) − xi(t))

showing that this protocol, similarly to others in the liter-
ature, only needs the time differences between neighboring
nodes. This is actually the only quantity which can reason-
ably be computed in a not-yet-synchronized network. For
simplicity of exposition we shall however keep the notation
in formula (1) in this paper.

3. STABILITY ANALYSIS

We first define

y(t) = (I − 1

N
11∗)x(t)

It is clear that our objective is to drive y(t) to zero. In order
to show that the previous strategy solves the problem,
observe that, since K is symmetric, then there exists a
orthogonal matrix U such that U∗KU = Λ where

Λ = diag {λ1, λ2, . . . , λN}
where λi ∈ R. Observe that, from the assumption we
introduced above that K1 = 0, we have that one of the
λ’s is zero and the associated column of U is N−1/21.
Moreover it follows that

UT

(

I − 1

N
11∗

)

U = diag {0, IN−1} . (2)

With no loss of generality we assume that λ1 = 0 and that
the first column od U is N−1/21.

By defining the new vectors x̄(t) := UT x(t), w̄(t) :=
UT w(t), d̄ := UT d, ȳ(t) := UT y(t). After this change of
coordinates the model becomes

[

x̄(t + 1)
w̄(t + 1)

]

=

[

I − Λ I
−αΛ I

] [

x̄(t)
w̄(t)

]

+

[

d̄
0

]

The overall system consists in N decoupled 2-dimensional
systems

[

x̄h(t + 1)
w̄h(t + 1)

]

=

[

1 − λh 1
−αλh 1

] [

x̄h(t)
w̄h(t)

]

+

[

d̄h

0

]

(3)

¿From (2) it follows that ȳ1(t) = 0 and ȳh(t) = x̄h(t) for
h 6= 1. If all the systems with h 6= 1 are asymptotically
stable, then the steady state solution must satisfy the
equation

[

x̄h(∞)
w̄h(∞)

]

=

[

1 − λh 1
−αλh 1

] [

x̄h(∞)
w̄h(∞)

]

+

[

d̄h

0

]

which has unique solution x̄h(∞) = 0 and w̄h(∞) = −d̄h.
This shows that ȳ(t) tends to zero and so y(t) tends to
zero as well. More precisely, since

x̄1(t) = d̄1t + x̄1(0)

and since x̄h(t) converges to zero if h 6= 1, then

x(t) = Ux̄(t) −→ U









d̄1t + x̄1(0)
0
...
0









=
1

N
11∗(dt + x(0))

which is exactly what we require.

We now want to find conditions on K and α ensuring the
stability of the systems (3) for all h 6= 1. The characteristic
polynomial of these systems is

(z − 1)2 + λh(z − 1 + α)

Using standard techniques (such as the root locus method)
it is easy to verify that the previous polynomial has both
roots inside the unit circle if and only if 0 < α < 1
and 0 < λh < 4/(2 − α). Therefore there is no loss
of generality if we further restrict K to be also positive
semidefinite. In particular we shall denote with K the set
of symmetric, positive semidefinite matrices compatible
with the graph structure and such that K1 = 0. Under
these conditions the non zero eigenvalues of this matrix
are all positive. Without loss of generality we assume the
eigenvalues λ1, .., λN are ordered such that

0 = λ1 ≤ λ2 ≤ . . . ≤ λN .

Remark 2. A solution can be found for instance by taking
the Laplacian matrix L of the undirected graph. This
is a symmetric matrix with eigenvalues belonging to the
interval [0, 2] and such that L1 = 0. If the graph is
strongly connected, the L has only one eigenvalue equal
to zero. Then by taking K = βL with any β such that
0 < β < 2/(2 − α) we have a solution of the clock
synchronization problem.

4. CONTROLLER OPTIMIZATION

In the previous Section we have seen that the clock syn-
chronization problem can be solved by properly choosing
the matrix K and the parameter α, i.e. there exist K and
α such that all clocks, asymptotically, are synchronized. Of
course one would like to go one step further asking whether
it is possible to optimize K and α for fastest convergence,
which amounts to pushing the eigenvalues of the systems
(3), i.e. the roots of (z − 1)2 +λ(z− 1+α) = 0, as close as
possible to zero. The root locus of (z−1)2+λ(z−1+α) = 0
is shown in figure 1 for α = 1/3 as λ varies in the interval
[λ2, λN ] = [1, 1.9].

For small values of λ (λ < 4α) the roots are complex
conjugate, while for large λ (λ > 4α) the roots are real.
For λ = 4α there are 2 coincident roots in z = 1 −
λ
2 = 1 − 2α. Since the initial conditions of the clocks
may be arbitrary, optimizing for fastest convergence is
equivalent to minimizing the absolute value of the largest
(in modulus) eigenvalue. Therefore, for future use, we
define

r(λ, α) := max{|z| : (z − 1)2 + λ(z − 1 + α) = 0}, (4)

i.e. the maximum modulus of the roots of the characteristic
polynomial associated to the systems (3). An explicit
expression for r(λ, α) can be easily found. When the
roots are complex conjugate, i.e. for λ < 4α, r(λ, α) =√

1 − λ + αλ. Instead, when the roots are real, i.e. for

λ > 4α, r(λ, α) = max{|1 − λ/2
(

1 ±
√

1 − 4α/λ
)

|}.
These simple expressions are useful to derive analytically
several statements which, for reasons of space, we only
discuss graphically with the help of the root locus in fig.
1. As mentioned above we have to minimize the largest (as
λ ∈ σ(K)) of the r(λ, α)’s, which we define as

R(K, α) := max
λ∈σ(K)

r(λ, α) (5)



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Root Locus

Real Axis

Im
a

g
in

a
ry

 A
xi

s

Fig. 1. Root locus of (z−1)2+λ(z−1+α) = 0 for α = 1/3
as a function of λ ∈ [λ2, λN ].

The optimal values of α and K are hence the solution of
the optimization problem

{Kopt, αopt} ∈ arg min
K∈K, α∈[0,1]

R(K, α). (6)

Note that (see fig. 1) r(λ, α) ≤ max{r(λ2, α), r(λN , α)};
therefore R(K, α) depends on K only through its maxi-
mum and minimum eigenvalues λ2 := λ2(K) and λN :=
λN (K), i.e.

R(K, α) = R̂(λ2, λN , α) := max{r(λ2, α), r(λN , α)}
It is also clear that, for fixed values of λ2 and λN ,

the optimal choice of α is such that λ2

4 ≤ αopt ≤ λN

4 ,
i.e. the roots corresponding to λ2 are complex conjugate
while those corresponding to λN are real. In fact, assume
αopt > λN

4 ; all roots would be complex conjugate; in
such case the absolute value of the roots associated to λ
is

√
1 − λ + αλ, which is monotonically increasing in α.

Therefore, by decreasing α one would reduce the absolute
value of all roots (and hence in particular of the maxi-
mum one), against the optimality assumption. A similar
argument holds if one would assume that αopt < λ2

4 . This
observation will be useful later on. For reasons which will
become clear later on it is convenient to introduce a new
parametrization of the matrix K by letting K := βK ′,
β > 0 where λ2(K

′) = 1. Note that, if the matrix K is
symmetric, positive semidefinite and compatible with the
graph structure, also K ′ is so. Note also that, if λ′ ∈ σ(K ′),
then λ := βλ′ ∈ σ(K), so that in particular λ2(K) = β
and λN (K) = βλN (K ′). Consider now the new costs

r′(λ′, α, β) := r(βλ′, α)
R′(K ′, α, β) := R(βK ′, α)

(7)

Define also λ′
N := λN (K ′) and

R̂′(λ′
N , α, β) := R̂(β, βλ′

N , α) (8)

Therefore, by letting Kopt = βoptK
′
opt, the solution of

the optimization problem (6) can be obtained from the
solution {K ′

opt, αopt, βopt} of

arg min
K ′ ∈ K

s.t.λ2(K′)=1
α ∈ [0, 1], β > 0

R̂′(λ′
N , α, β). (9)

Note that the optimal value of the cost depends on K ′

only through its maximum eigenvalue λ′
N .

The dependence of the cost R̂′(λ′
N , αopt, βopt) on λ′

N is
particularly simple. In fact, having found the values of
αopt and βopt corresponding to a given λ′

N , as shown

above λ2

4 =
βopt

4 ≤ αopt ≤ βoptλ
′

N

4 = λN

4 hold true, i.e.

(z − 1)2 + λ2(z − 1 + αopt) = 0 has complex roots while
(z − 1)2 + λN (z − 1 + αopt) = 0 has real roots. It thus
follows that r′(λ′

N , αopt, βopt) is locally increasing in λ′
N .

Therefore also R̂′(λ′
N , αopt, βopt) is locally increasing in

λ′
N . It follows that one needs first to optimize K ′ so that

λ′
N is minimized, i.e.

K ′
opt ∈ arg min

K ′ ∈ K
s.t.λ2(K′)=1

λ′
N ; (10)

Note that optimization problem above can be equivalently
be formulated as

K ′
opt ∈ arg min

K ′ ∈ K
s.t.λ2(K′)≥1

λ′
N , (11)

in which both the cost function and the optimization
set are convex. Thus the optimization problem (9) is
decoupled into the cascade of (11) above followed by

{αopt, βopt} ∈ arg min
α∈[0,1],β>0

R̂′(λN (K ′
opt), α, β). (12)

Problem (11) is a convex optimization problem since (i)
the objective λ′

N is a convex and symmetric spectral
function (see e.g. Borwein and Lewis (2000)) and (ii) the
set of positive semidefinite matrices K ′ compatible with
the graph structure, such that K ′1 = 0 and λ2(K) ≥ 1
is a convex set. In particular (11) can be formulated as a
SDP program for which standard and efficient software is
available.

We shall hence regard (11) as solved and consider only
problem (12). The solution turns out to be particularly
simple and reduces to a standard linear search over the two
parameters α and β thanks to the following observation:
for each value of α ∈ [0, 1], there is a set of values of
β which are candidates for making α the optimal value
for the given matrix K ′

opt. As discussed above 1 β
4 ≤

αopt ≤ βλ′

N

4 must hold, so that 4α
λ′

N

≤ β ≤ 4α is the

range of values we seek for. For the given value of α,
r′(1, α, β) is monotonically decreasing in β ∈ [ 4α

λ′

N

, 4α]

while r′(λ′
N , α, β) is monotonically increasing in β ∈

[ 4α
λ′

N

, 4α]. Therefore the optimal value βopt(α) for given α

is the unique value βopt(α) such that r′(1, α, βopt(α)) =
r′(λ′

N , α, βopt(α)) and can be found for instance using a
bisection method.

Last but not least, the optimal value of α can be found via
a linear search for α ranging in the interval [0, 1]. It turns
out (see figure 2, but we haven’t been able to prove it)

that R̂′(λ′
N , α, βopt(α)) is convex in α, making the search

even simpler, e.g. using again a bisection method.

1 Recall that λ′

2
= 1.
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5. NOISY MODEL

The model and the controller can be generalized in order to
consider the fact that the drifts di can be time varying and
the fact that the xj(t) received by the clock i from the clock
j will be corrupted by noise (for instance quantization
noise). More precisely we model the drift of the i-th
clock and the information that the i-th clock sends to its
neighbors, at the time instant t, respectively as di + ni(t)
and xi(t) + vi(t), where ni(t) and vi(t) are zero mean
noises such that E

[

n2
i (t)

]

= q, ∀ i, E
[

v2
i (t)

]

= r, ∀ i, and
E [ni(t)nj(τ)] = 0 and E [vi(t)vj(τ)] = 0 if i 6= j or
t 6= τ . Furthermore we assume that E

[

ni(t)v
T
j (τ)

]

= 0
for each pair of clocks i, j and time instants t, τ . We
can define the N -dimensional vectors v(t) and n(t) as
vectors with components vi(t) and ni(t), i.e. v(t) =

[v1(t), . . . , vN (t)]T and n(t) = [n1(t), . . . , nN (t)]T . Clearly
E

[

n(t)nT (τ)
]

= qδ(t−τ)I and E
[

v(t)vT (τ)
]

= rδ(t−τ)I.
More compactly we have that the model describing these
undesired phenomena can be written as

[

x(t + 1)
w(t + 1)

]

=

[

I − K I
−αK I

] [

x(t)
w(t)

]

+

[

−K
−αK

]

v(t) +

+

[

I
0

]

d +

[

I
0

]

n(t)

We consider again the variables y, ȳ. Moreover we define
the new variables z := w + d, z̄ := UT z, v̄ := UT v and
n̄ := UT n. After this change of coordinates and after some
manipulations the model becomes

[

ȳ(t + 1)
z̄(t + 1)

]

=

[

I − Λ UT
(

I − 1
N 11∗

)

U
−αΛ I

] [

ȳ(t)
z̄(t)

]

+

+

[

−Λ
−αΛ

]

v̄(t) +

[

UT
(

I − 1
N 11∗

)

U
0

]

n̄(t)

¿From (2) it follows that, as for the noiseless model, the
overall system continues to consist of N decoupled systems
which are the following

[

ȳ1(t + 1)
z̄1(t + 1)

]

= I

[

ȳ1(t)
z̄1(t)

]

and
[

ȳh(t + 1)
z̄h(t + 1)

]

=

[

1 − λh 1
−αλh 1

] [

ȳh(t)
z̄h(t)

]

+

[

−λh

−αλh

]

v̄h+

[

1
0

]

n̄h

for 2 ≤ h ≤ N. We recall that ȳ1(t) = 0, ∀ t. In order to
analyze the asymptotic property of the noisy model it is
convenient to introduce the N matrices

Ph(t) := E

{[

ȳh(t)
z̄h(t)

]

[ȳh(t) z̄h(t)]

}

After some calculations we obtain the following N recur-
sive equations

P1(t + 1) = P1(t)
and

Ph(t + 1) =

[

1 − λh 1
−αλh 1

]

Ph(t)

[

1 − λh 1
−αλh 1

]T

+

+λ2
h

[

1 α
α α2

]

r +

[

1 0
0 0

]

q

for 2 ≤ h ≤ N. Clearly the presence of the noises prevents
in general that y(t) → 0. In order to evaluate how much
the performance of our algorithm degrades we introduce
the following functional cost J(α, K) := 1

N E
[

‖y(∞)‖2
]

.
After some calculations one can show that

J(α, K) =
1

N

N
∑

h=1

P
(1,1)
h (∞)

where P
(1,1)
h (∞) denotes the element in the first row

and first column of the matrix Ph(∞). Since ȳ1(t) =

0, ∀ t, we have that P
(1,1)
1 (t) = 0, ∀ t. Instead for 2 ≤

h ≤ N , reasoning as in Section 3, if all the systems
are asymptotically stable, we have that the steady state
solution Ph(∞) must satisfy the following equation

Ph(∞) =

[

1 − λh 1
−αλh 1

]

Ph(∞)

[

1 − λh 1
−αλh 1

]T

+

+λ2
h

[

1 α
α α2

]

r +

[

1 0
0 0

]

q

from which it follows after some calculations that

P
(1,1)
h (∞) = −2rλ2

h + 2q − 3rαλ2
h + 2λhrα + rα2λ2

h

λh (−4 + 2λh + 4α − 3αλh + α2λh)

Hence it results that

J(α, K) =
1

N

N
∑

h=2

−2rλ2
h + 2q − 3rαλ2

h + 2λrα + rα2λ2
h

λh (−4 + 2λh + 4α − 3αλh + α2λh)
.

Now we would like to design K and to choose α in order to
minimize the above quantity. We restrict to the following
set of matrices

K′ = {K ∈ K : λN < 2/(4 − α)}
where K is the set of matrices introduced in the previous
section. In other words K′ is the set of positive semidefinite
matrices compatible with the graph structure, satisfying

K1 = 0 and ensuring that the all the terms P
(1,1)
h (∞), 2 ≤

h ≤ N, are finite. Hence our goal is to solve

arg min
K ∈K′, α∈(0,1)

J(α, K). (13)

This above minimization problem can be treated in the
following way. We start by observing that

min
K∈K′, α∈(0,1)

J(α, K) = min
α∈(0,1)

J
(

α, Kopt(α)
)

,

where Kopt(α) ∈ arg minK ∈K′ J(α, K). Assume now α
fixed. One can show that the h-th term of the summation



in the right-hand side of (13) is a convex function in

λh ∈
(

0, 2
4−α

)

. Hence, similarly to (11), it follows that

Kopt(α) ∈ arg min
K ∈K′

J(α, K) (14)

is a convex optimization problem since (i) the objective
J(α, K) is a convex and symmetric function spectral
function and (ii) the set K′ is a convex set. Therefore the
solution of (14) can be performed by suitable numerical
algorithms. Hence we can consider (14) as solved and
analyze the following problem

arg min
α∈ (0,1)

J
(

α, Kopt(α)
)

.

As for (12) the solution of the above problem turns out to
be particularly simple and reduces to a linear search over
the parameter α.

6. NUMERICAL EXAMPLES

In this section we provide an example illustrating the
algorithm proposed in this paper. In this simulation we
consider a connected random geometric graph generated
by choosing N = 15 points uniformly distributed in the
unit square, and then placing an edge between each pair
of points at distance less than 0.3. The speeds of the
clocks and the initial local time has been chosen randomly
respectively inside the interval [0.5, 1.5] and the interval
[0, 200]. In Figure 3 is depicted the behavior of x(t).

5 10 15 20 25 30
0

50

100

150

time

x(
t)

Fig. 3. Behavior of x(t)

7. CONCLUSIONS

We have presented a linear synchronization protocol which
borrows tools from standard control theory and consensus
algorithms. The optimal (in terms of speed of convergence)
controller in the class can be formulated as a convex
optimization problem. Linearity also allows to perform a
rather simple analysis of the effect of noise on the asymp-
totic performance. This is to be regarded as one of the
major contributions w.r.t. previous works in which non-
linear schemes have been proposed; in fact the nonlinearity
makes it very hard to study the effect of noise. Last but
not least, we should mention that the algorithm discussed
here is, in contrast with previous works, synchronous. As
mentioned in the Section 2, the algorithm only requires
time differences between adjacent nodes; however, when
the network is not synchronized, these time differences
cannot be computed synchronously. The effect of this jitter
can indeed be lumped into an additive error term, which,

thanks to the linearity of the scheme, can be analyzed
using standard tools. A more thorough analysis of this
and related aspects, together with an in-depth comparison
with existing approaches, is of course part of our plans for
the future.
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