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Abstract

In this work we address the problem feedback control design in the presence of a communication channel, which gives rise to tightly
coupled limitations in terms of quantization errors, decoding/computational delays and packet loss affecting the closed loop control
performance. We restrict our analysis in the context of LQG control subject to SNR limitations, packet loss, and delay, and we derive
their impact on optimal design for the controller parameters. In particular, we show that the stability of the closed loop system depends
on a tradeoff among quantization, packet loss probability and delay. Through this analysis we are also able to recover, as special cases,
several results already available in the literature that have treated packet loss, quantization error and delay separately. We also show that
the estimator and controller cannot be design independently even if the controller has full knowledge of the packet loss sequence and the
control inputs to the plant. In fact the optimal control gain, when accounting for the communication constraints is, in general, different
from the optimal gain derived under the classical LQG scenario, which is recaptured when the SNR over the channel goes to infinity.
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1 Introduction

Traditionally, control theory and communication theory have
been developed independently and have reached consider-
able success in providing fundamental tools for designing
information technology systems. The major objective of con-
trol theory has been to develop tools to stabilize unstable
plants and to optimize some performance metrics in closed
loop under the assumption that the communication channels
between sensors and controller and between the controller
and the plant were ideal, i.e. without distortion, packet loss
or delay. This assumption actually holds in many control
applications where the non idealities of the communication
channel have negligible impact, compared to the effects of
noise and uncertainty in the plants. With the advent of wire-
less communication, the Internet and the need for high per-
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formance control systems, however, the sharp separation be-
tween control and communication has been questioned and a
growing body of literature has appeared from both the com-
munication and the control communities trying to analyze
the interaction between control and communication.

This recent branch of research is known as Networked Con-
trol System (NCS) and considers control systems wherein
the control loops are closed through a real-time network, and
feedback signals are exchanged in the form of data packets.

Recent results in this area have revealed the existence of a
strict connection between the performance of the controlled
plant and the Shannon capacity of the feedback channel.
More precisely the paper [28] has introduced the concept
of anytime capacity to characterize feedback control un-
der communication constraints, whereas in [18] fundamen-
tal limitations on the achievable performances have been
studied. Stabilization of unstable plants through a control
loop has been studied for signal-to-noise ratio (SNR) limited
channels [19,3,31], rate-limited [24,35,21] or lossy chan-
nels [34,14,10,16,30,13], providing links between the chan-
nel limitation (SNR, rate or loss probability) and the unsta-
ble eigenvalues of the system. Recent extensions concern the
study of transient performance under feedback constraints,
see e.g. [4,12], of packet loss models accounting for corre-
lations [15,37,23,25,21] as well as model uncertainties [25].
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A subsequent step has been made to include multiple channel
limitations into the model, such as packet loss and quantiza-
tion [36,17], which however result in complex optimization
problems. The paper [2] addresses the LQG control problem
under communication constraints arising from delays and
bit rate limitations, but does not account for the possibility
of data losses. It shows that, if the innovation process is en-
coded with a finite alphabet and transmitted over a channel
with distortion and delay, the separation principle still holds.
Yet transmitting the innovation process requires that either
the coder has full knowledge of the packet loss sequence or
no losses occur. In the context of filtering the recent work
[8] studies possible tradeoffs when no information on the
packet loss sequence is available to the source coder.

In this work, we address the problem of performance op-
timization in a NCS with a communication channel model
which includes SNR limitations, losses and delays. More
specifically, we consider the Linear-Quadratic-Gaussian
(LQG) control problem, which consists in finding the con-
trol signal of a linear time-invariant (LTI) plant that mini-
mizes a quadratic cost function of the system state, when
both the system state and the output signal are affected by
Gaussian noise. While the optimal solution to the LQG
problem in LTI systems with ideal feedback channel is
known to be achieved by a controller formed by a Kalman
filter and a linear-quadratic regulator, the solution to the
problem in NCS systems with realistic feedback channels
has only been investigated for specific feedback channel
models, while the general solution still remains unknown.

The main contributions of this work are as follows: (i) we
provide a feedback channel model that is characterized in
terms of delay d, Signal-to-Noise-Ratio (SNR) ρ (and, in
turn, code rate limit), and packet loss probability ε, while still
being mathematically amenable to analysis; (ii) we setup an
optimal LQG control problem and provide, for a scalar un-
stable channel, necessary and sufficient conditions for sta-
bilizability in terms of the parameters of our channel model,
and analyze the joint effect of these parameters on the sys-
tem stability; (iii) as a byproduct we also obtain an expres-
sion for the system performance that can hence be used to
optimize the channel parameters. Preliminary results can be
found in [6,5] and [26].

We warn the reader that our channel model is intended as an
abstraction of a realistic channel, but we do not enter into
the important issues of coding, modulation, and decoding
schemes as, for instance, is done in [20], where it is shown
that the computational complexity of these operations plays
a fundamental role.

The paper is articulated as follows: Section 2 contains the
problem formulation and the channel modeling. In Section 3
we develop a model for scalar plants that accounts for con-
stant delays, losses and SNR limitations, then introduces the
structure of the controller and provides an explicit formula-
tion of the optimal control problem. Section 4 presents the
core results of our paper, which are compared in Section 5

against previous relevant results obtained in the literature.
To illustrate the main findings of our work, we present some
numerical results in Section 6. Finally, Section 7 draws con-
clusions. All proofs are in the Appendix.

2 Problem formulation

In this section, we cast the LQG problem into the NCS
framework. First, we introduce the LQG problem and then
we model the feedback transmission channel to character-
ize the NCS structure considered in this work. Finally, we
formally define the LQG problem in the NCS architecture

2.1 LQG problem definition

We consider a plant, modeled as a discrete-time, scalar, LTI
system, subject to additive white Gaussian measurement and
process noise. More specifically the state of the system at
step t, denoted as xt, evolves according to the following
linear model:

xt+1 = axt + ut + wt

yt = xt + vt
(1)

where ut and yt represent the input and output signals of the
plant, respectively, whereas wt and vt are two independent
discrete-time Gaussian white noise processes with variance
σ2
w and σ2

v , respectively. 1

We consider the as performance index the function J(r)
given by the steady state variance of the plant output yt,
plus a control penalty, namely 2

J(r) = lim sup
t→+∞

E[y2
t ] + rE[u2

t ] . (2)

The objective of the LQG problem is (i) to give condi-
tions under which J(r) can be made finite using a specific
estimator-controller pair and (ii) to minimize J by properly
designing such estimator and controller.

2.2 Feedback channel modeling

In the NCS framework, the plant output yt is not directly
accessible to the controller, but must be delivered through
a finite capacity channel by means of a suitable transmis-
sion scheme. In Fig. 1 we provide the abstraction of a finite
capacity communication scheme that includes an Additive

1 We assume a scaling of state and input such that the state-to-
output matrix is unitary, and the input is weighted with a unitary
coefficient on the state update equation. This can always be done
by rescaling accordingly also the weight r on the control objective
(2).
2 Of course, the term “steady state” is meaningful only if the limit
is finite.
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Fig. 1. Equivalent model of the feedback channel and state pre-
dictor, accounting for the presence of quantization noise, packet
loss and decoding delays.

White Gaussian Noise (AWGN) nt, an independent identi-
cally distributed (iid) Bernoulli process γt ∈ {0, 1} ∼ B(ε),
which models erasures/losses, and a delay of d steps be-
tween the plant output yt and the predicted state.

The noise nt is assumed to be independent of the signal yt,
with variance σ2

n = E
[
n2
t

]
proportional to the signal vari-

ance σ2
y = E

[
y2
t

]
, so that the signal-to-noise ratio (SNR),

ρ = σ2
y/σ

2
n, can be seen as a system parameter. Thus, sum-

ming up, the feedback channel model considered in this pa-
per has the following input-output relationship

ht = γt−d+1(yt−d+1 + nt−d+1) , (3)

and it is, hence, completely characterized by three parame-
ters, namely ε, d, and α := 1/ρ, with

d ≥ 1, P[γt = 0] = ε, σ2
n = αE

[
y2
t

]
. (4)

These parameters are clearly related; see for instance [27]
where a compact and tight approximation for the maximum
information rate allowed for a given code length and error
probability has been presented.

3 System Modeling and Structure of the Controller

In order to handle the delay in a compact form, we use the
standard technique of state augmentation and define

ξt := [xt−d+1 · · ·xt]>. (5)

The augmented state satisfies

ξt+1 = Aξt +But +Bwt ;

ht = γt−d+1 (Cξt + vt−d+1 + nt−d+1) ;

yt = Hξt + vt ;

(6)

where

A :=


0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

0 0 . . . a

 ; B :=


0
...

0

1

 ;
C = [1 0 . . . 0] ;

H = [0 0 . . . 1] .

Plant&

State&
Predictor&

State&
Feedback&

Fig. 2. NCS scheme for scalar output plants, where the plant
decoder is given by the cascade of a linear state predictor and a
state feedback.

We restrict our attention to the classical LQG structure for
the plant decoder, which is given by the cascade of a linear
state estimator and a state feedback, as represented in Fig. 2,
although this might not be the optimal architecture in this
context. The state estimator ξ̂t (which uses the data up to
time t− d) is governed by the following law

ξ̂t+1 = Aξ̂t+But+γt−d+1G
(
ht−Cξ̂t

)
(7)

where G is a constant estimator gain vector, and the estima-
tor (7) is time-varying since it depends on the sequence γt.
In fact, if a packet is not received correctly, i.e. γt = 0, then
the estimator updates its state using the model only, while
when γt = 1 the estimate is adjusted by a correction term,
based on the output innovation, similarly to a Kalman fil-
ter. The state feedback module, in turn, will simply return a
control signal proportional to the predicted state through L,
i.e., 3

ut = Lξ̂t = [`1 `2 . . . `d]ξ̂t . (8)

This scheme was first proposed in [29] and, although it does
not yield the optimal time-varying Kalman filter [34], it has
the advantage of being computationally simpler and allowing
for the explicit computation of the performance J , as will be
shown in the next section. In this framework, the objective
is to solve the following optimization problem:

min
G,L

J(r;G,L) s.t. E[||nt||2] = αE[||yt||2], nt ⊥ yt
(9)

where we made explicit the fact that J is a function of G
and L, given the proposed control architecture. In order to
fix terminology we give the following definition:

3 Note that ut in (8) is a function of measurements ht up to time
t− 1, i.e. of the signal ys + ns up to time s = t− d.
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Definition 1 System (1) is said to be mean square stabiliz-
able using the control architecture in Fig. 2 if problem (9)
admits a solution G∗, L∗ that yields a finite value of the cost
J for r = 0. 4

The first constraint in equation (9) implies the power of the
noise nt is always proportional to the power of the signal
st at any time t with the same scaling factor α = 1/ρ
allowed by the channel code rate. Later on in this paper,
Theorem 2 provides the conditions under which problem (9)
admits solution, while Theorem 1 shows that the optimalG∗
and L∗ have the following special structure:

G∗ = [a0g∗ a1g∗ . . . ad−1g∗]> , L∗ = [0 0 . . . `d] .

Although in this study we limit our attention to the case
of scalar systems, the same mathematical machinery can
be extended to the multidimensional case. We leave this
generalization to future work.

3.1 Controller/Estimator model and LQG cost

As a first step, we derive the dynamical equations that govern
the state as well as the error evolution for the estimator in
equation (7). Inserting the control law (8) in (6) and (7) we
obtain:

ξt+1 = Aξt +BLξ̂t +Bwt ;

ξ̂t+1 = ALξ̂t + γt−d+1G
(
Cξ̃t + vt−d+1 + nt−d+1

)
.

(10)
where ξ̃t := ξt − ξ̂t and AL := A+BL.

Let us now define C̄ := [C C], Ā := block diag{AL, A},
Ḡ := [G> − G>]>, B̄ := [0 B>]> and Āγ := Ā +
γḠ[0 C]. It follows that the equation of the feedback loop
system can be written in terms of the joint state st :=

[ξ̂>t , ξ̃
>
t ]> as:

st+1 = Āγt−d+1
st + B̄wt + γt−d+1Ḡ

[
vt−d+1 + nt−d+1

]
;

yt−d+1 = C̄st + vt−d+1 . (11)

It is a well known fact that a linear system with random
parameters is mean square stable if and only if the state
variance Pt := Var{st} admits a positive semidefinite and
finite limit P := limt→∞Pt [7], which is the unique solution
of a Lyapunov-like equation that can be derived as follows.
Let σ2

y = C̄P C̄> + σ2
v and σ2

n = ασ2
y . After some algebra,

we can show that the steady state variance P satisfies the

4 Theorem 2 shows that the existence of the solution of problem
(9) for r = 0 is a sufficient and necessary condition for the
existence of a solution for any r > 0. In other words, if the system
(1) is mean square stabilizable, then problem (9) admits solution
for any r ≥ 0.

Lyapunov-type equation

P =(1−ε)Ā1PĀ
>
1 +εĀ0PĀ

>
0 +B̄σ2

wB̄
>+

+(1− ε)Ḡ
[
σ2
v + σ2

n

]
Ḡ>

(12)

that, substituting σ2
n and σ2

y in (12), becomes

P = (1− ε)Ā1PĀ
>
1 + εĀ0PĀ

>
0 +

+σ2
wB̄B̄

> + α(1− ε)ḠC̄P C̄>Ḡ>

+(1− ε)(1 + α)Ḡσ2
vḠ
>=:M(G,L, P )

(13)

Remark 1 The operatorM(G,L, P ) in (13) is linear in P .
Conditions for existence of a fixed point (and equivalently
of convergence of the instantaneous state variance where
Pt replaces P on the right hand side and Pt+1 replaces P
on the left hand side) can be easily found via vectorization.
Theorem 2 will provide necessary and sufficient conditions
on ρ, ε and d for the existence of L and G that guarantee
existence of such a solution.

Minimization of the cost function (2) is equivalent to mini-
mization of

J(r;G,L)=E
[
ξt
>C>Cξt+rξ̂t

>L>Lξ̂t

]
= C̄P C̄>+rLP11L

> .

(14)
As a simple consequence of observability of the pair (A,C)
(and thus (Ā, C̄)), we have the following lemma:

Lemma 1 System (1) is mean square stabilizable, i.e., (14)
is finite for some choice of L and G, iff (13) admits a fixed
point for some choice of L and G.

Hence, the LQG-type optimal control problem can be written
as:

J∗(r) :=min
G,L

J(r;G,L) s.t. P =M(G,L, P ) (15)

and L∗, G∗ will denote the optimal gains, which can be
found adapting the results in [6] as explained in the next
section.

4 Solution to the Optimal Control Problem

The derivation of the solution to the LQG-type optimal
control problem (15), which uses results from [7], will go
through the following steps:

i) We first introduce the Lagrangian

L(P,Λ,L,G) :=J(r;G,L)−Tr{Λ (P−M(G,L, P ))} (16)
s.t. P = P> ≥ 0 , Λ = Λ> .
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For future reference let us define with Pij and Λij the
n × n blocks of P ∈ R2n×2n and Λ ∈ R2n×2n respec-
tively. According to the matrix maximum principle [1] the
necessary conditions for optimality of G∗ and L∗ are

∂L
∂P

= 0 ,
∂L
∂Λ

= 0 ,
∂L
∂L

= 0 ,
∂L
∂G

= 0 . (17)

ii) Proposition 1 derives the necessary conditions for opti-
mality.

iii) Theorem 1 shows that, under the assumption that the
solution is unique, the gains have a special structure.

iv) Theorem 2 shows that the solution exists, it is unique
for r > 0 and, therefore, the necessary conditions for
optimality provide the solution to (15).

Proposition 1 The necessary conditions (17) for stationar-
ity of the Lagrangian (16) admit the solution

P ∗12 = P ∗21 = 0 , Λ∗11 = Λ∗12 = Λ∗21 ;

and
G∗ = AP ∗22C

>Σ−1
α ;

L∗ = −
(
B>Λ∗11B + r

)−1
B>Λ∗11A ;

(18)

where

Σα := (1 + α)
(
σ2
v + CP ∗22C

>)+ αCP ∗11C
> . (19)

L∗ and G∗ are the candidate optimal gains for the LQG-
type optimal control problem (15). The matrices P ∗11, P ∗22,
Λ∗11 and Λ∗22 can be found solving the following (coupled)
Riccati-type equations

P ∗11 =AL∗P
∗
11A

>
L∗ + (1− ε)AP ∗22C

>Σ−1
α CP ∗22A

> ;

P ∗22 =AP ∗22A
> + σ2

wBB
>−(1−ε)AP ∗22C

>Σ−1
α CP ∗22A

> ;

Λ∗11 =A>L∗Λ
∗
11AL∗ + r (L∗)

>
L∗

+α(1− ε)C>(G∗)>(Λ∗22 − Λ∗11)G∗C + C>C ;

Λ∗22 =εA>Λ∗22A+ C>C + σ2
wBB

> + (1− ε)A>Λ∗11A+

(1− ε)(A−G∗C)>(Λ∗22 − Λ∗11)(A−G∗C)+

+α(1− ε)C>(G∗)>(Λ∗11 − Λ∗22)G∗C .

(20)
where AL∗ := A+BL∗.

We now report two important results (see the Appendix
for a proof) which characterize the structure, existence
and uniqueness of the stabilizing estimator-controller pair
(G∗, L∗). First we show that, provided it exists, the solu-
tion (G∗, L∗) have a special structure that guarantees the
control algorithm can be implemented with memory equal
to the state dimension.

Theorem 1 Assume that, for suitable L and G, equa-
tion (13) admits a solution. Then the gains (G∗, L∗) satisfy

G∗ = [g∗ ag∗ a2g∗ . . . ad−1g∗]> ;

L∗ = [0 0 . . . `d] , `d ∈ R .
(21)

If r = 0 then
L∗ = [0 0 . . . −a] , (22)

so that AL∗ is nilpotent, i.e. the optimal controller is dead-
beat.

We now show that the cost J(r;G,L) is finite only provided
a certain relation between packet loss probability ε, SNR ρ,
and delay d is satisfied. This condition neatly extends the
well known condition for the zero delay case [6]. Under the
same condition the solution is also unique.

Theorem 2 The optimal control problem (9) (or equiva-
lently (15)) admits a solution if and only if

δ :=
1− ε

1 + αa2d
> 1− 1

a2
(23)

If r > 0 the optimal control problem (9) admits a unique
solution, which necessarily coincides with the pair L∗, G∗
in (18). For r = 0 any solution to (15) will correspond to
the same value of the cost J∗(0) which can be expressed as

J∗(0) = a2dp∗22 +

d−1∑
i=0

a2iσ2
w + σ2

v

where p∗22 is unique the positive solution of the scalar Mod-
ified Algebraic Riccati Equation (MARE)

p∗22 = a2p∗22 + σ2
w − δ

a2(p∗22)2

p∗22 + r̄(d)
; (24)

and

r̄(d) :=
(
1 + αa2d

)−1

(
(1 + α)σ2

v + α

d−1∑
i=0

a2iσ2
w

)
.

Although the theorem has been formally derived for d ≥ 1,
it provides the correct solution also for d = 0, i.e., in the
zero delay case that was derived in our previous work [26].

5 Discussion of the results and related literature

The previous theorem recovers some of the results available
in the literature as special cases. To see this, let us prelim-

5



inarily observe that (23) is equivalent to the following con-
ditions:

1

α
= ρ ≥ (a2 − 1)a2d

1− εa2
; ε <

1

a2
. (25)

If we set ρ =∞ (α = 0), which is equivalent to consider a
channel with infinite capacity, the first condition in (25) is
always satisfied, and therefore the necessary and sufficient
condition reduces to the second condition in (25) which is
the same stability condition in the lossy network literature
[34]. Also, it shows that in the infinite capacity scenario, the
stability is independent of the delay d, as shown in [30].
Alternatively if we assume no packet loss in the channel, i.e.
ε = 0 so that the second equation in (25) is automatically
satisfied, and no delay, i.e. d = 0, then the stability condition
which stems from the first of (25) leads to

ρ > a2 − 1 , (26)

which is the same stability condition presented in the context
of SNR-limited control systems in [3]. Recalling that the
channel capacity C cannot be lower than the source rate
Rq that, in turn, depends logarithmically on ρ as Rq =
1
2 log(1 + ρ), we get that equation (26) is equivalent to the
well known logarithmic condition

C > log|a| . (27)

Consider now the results in [3], Theorem III.2, applied to
the simplified scenario of a scalar plant G(z) = 1

z−a with
unstable pole a and a channel delay d = 1. Consider an
augmented system which is used to model the delay, i.e.,
G1(z) = 1

z2−az , and apply Theorem III.2 in [3] thus ob-
taining the condition ρ > a4 − a2 . Clearly, this postulates
that the packet loss probability satisfies ε = 0. The same re-
sult can be readily obtained from condition (23) by setting
ε = 0 and d = 1. On the other hand, the results in [3] cannot
be generalized to incorporate the packet loss probability ε.
Consider now the paper [32] where a second order equivalent
model for the loss is introduced in Lemma 9. However this
second order equivalent formulation has non-trivial impli-
cations from the point of view of control/estimation. Under
the reasonable assumption that the receiver can recognize a
packet erasure, it can proceed in “prediction” mode. Instead,
the modeling adopted by [32] implicitly assumes that the
receiver treats the received signal (which is conventionally
set to zero in the loss event, see Fig. 3a in [32] where the
loss corresponds to the event θ = 0) as a finite variance ad-
ditive noise that overlaps to the signal y even when the data
is lost, which of course would give rise to a biased estimate
and degradation of performance. Incidentally, this model is
very similar to that proposed in [9,11], which therefore suf-
fers from the same problem. This is reflected, in fact, by an
apparently looser stability condition than the one found in
our paper for a scalar system with the same unstable pole a,
signal to quantization noise ratio ρ, packet loss probability
ε and delay d ≥ 1. In fact, by casting our scheme into the

model used in [32], we obtain an equivalent SNR which si-
multaneously takes into account SNR and packet loss, given
by

ρ′ =
ρ(1− ε)
(1 + ερ)

. (28)

If we now replace this equivalent SNR ρ′ in the stability
condition (23) and let ρ → ∞, so that ρ′ → (1 − ε)/ε, we
obtain the same stability condition found in [32], namely

1− ε
1 + ε(a2d − 1)

> 1− 1

a2
. (29)

Conversely, by taking the limit ρ → ∞ in our stability
condition (23) we get 1− ε > 1− 1

a2 that is independent of
the delay and it is less stringent that condition (29) derived
in [32], since 1 + ε(a2d − 1) > 1 for d ≥ 1.
Consider now the paper [33]. The results found in Section
4 are recovered from the equations above only when d = 0.
In fact, substituting ρ′ defined in (28) in place of ρ in (23),
setting d = 0, and rearranging the terms, we obtain the
stability condition

1− ε >
(

1 +
1

ρ

)(
1− 1

a2

)
;

which is identical to condition (29) in [33].
Note, however, that the same does not hold for d ≥ 1 and,
as discussed above, the conditions derived in [33] are more
stringent than those given in (25). As a result, this implies
that the estimator/controller design provided in our paper is
able to stabilize a wider class of closed loop systems under
the same channel limitations when compared with the con-
trollers proposed in [32,33].
Let us next consider the results obtained in [22]. In partic-
ular, we focus on equation (1) in [22], reported below for
convenience:

E
[(

a2

22Rt

)n]
< 1 . (30)

This is a necessary and sufficient condition for a scalar plant
with pole a to be second order stable when controlled over
a time varying channel where the instantaneous rate Rt is
a random variable. Now, when the delay d is equal to zero,
our channel model is captured by this framework setting
n = 1 (blocks of length one), andRt = R̄γt where γt are iid
Bernoulli random variables, taking value 0 with probability
ε which model the erasure events. Assuming the rate R̄ is
related to the SNR by R̄ = 1

2 log (1 + ρ), and substituting
this expression in (30), we get the condition

a2

1 + ρ
(1− ε) + a2ε < 1

that can be shown to be equivalent to our condition (23).
Note however that condition (30) (i.e. condition (1) in [22])
does not account for possible delays nor, in our opinion, it
can be easily modified to do so; therefore, also from this
point of view, our work nontrivially extends previous re-
sults. Finally, one might be tempted to reduce any system
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with delay d > 1 into an equivalent system with delay d = 1
by downsampling the system with sample period d. This is
equivalent to substituting a ← ad and d ← 1 into condi-
tion (23) which leads to

1− ε
1 + αa2d

> 1− 1

a2d
.

While the left hand side is unchanged, the right hand side
gives rise to a more stringent stability condition, thus show-
ing the benefit of controlling the system at a higher rate than
the delay. As a side note, we observe that our procedure
is constructive, thus yielding a practical and very simple
mean to design the controller as well as the coding/decoding
scheme.

6 Numerical results

In this section we present a few numerical results that il-
lustrate our derivation. As regards the control strategy, we
observe that the separation principle (i.e., the possibility of
designing separately the optimal controller and the optimal
estimator) does not hold for this specific control scheme.
This is illustrated in Figure 3 that shows the closed-loop pole
a` := a+b`d as a function of the control penalty coefficient
r, which is varied from a very small value (virtually equal
to zero) to 104. The upper curve with dot markers refers to
the “standard” LQG control design, which assumes a con-
trol channel with infinite capacity (i.e., ρ = ∞), while the
other curves are obtained for different values of the SNR ρ.
For all curves, we set a = 1.3, delay d = 4, and ε = 0.1.
Note that, for the cheap control case, the optimal control is
dead beat. We observe that, for a finite ρ, the gap with the
standard LQG design increases with the control penalty r,
while it reduces, as expected, when ρ → ∞. Although it
is well known that separation principle does not hold when
the controller has not full knowledge of the packet loss se-
quence or of the control input sequence entering the plant
[16,30], this is a somewhat counterintuitive example show-
ing that quantization noise leads to the loss of separation
principle even if the controller has full access to the packet
loss and plant control input history.

Next, Figure 4 illustrates how the delay affects the control
performance when all other parameters are fixed. In partic-
ular we consider a = 1.5, ε = 0.1, ρ = 100 and r = 10.
From (25), the maximum delay for which the system is sta-
bilized is

dmax =

⌊
log
(
ρ(1−εa2)
a2−1

)
2 log(a)

⌋
= 5.

We have verified numerically that, indeed, if we set d = 6
the cost blows up.
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Fig. 3. “Closed loop” matrix a` := a + b`d as a function of the
control penally r. The red curve with circles corresponds to the
standard LQG design without communication constraints.
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]
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delay d.

7 Conclusions and future work

We have considered an LQG control problem that accounts
for code rate limitations, as well as for packet drops and
delays arising from a communication channel between the
sensor and the controller. We have argued in fact that there
is a tight connection between the actual rate at which one
can transmit information, the decoding delay and the packet-
drop probability.

We have restricted our attention to a specific control archi-
tecture in which the plant outputs are transmitted via a rate
limited channel and then processed through the cascade of
a state estimator followed by a linear (state) feedback con-
troller. We have considered a scalar model, with feedback
channel subject to delay, packet losses, and limited transmit
rate. Conditions for stability are derived in terms of a mod-
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ified algebraic Riccati equation and recapture results from
the literature as special cases.

The tools and methods we have developed can be used to
deal with an arbitrary multivariate model; yet we have not
been able, so far, to develop simple and transparent condi-
tions for stability. As such, in order to keep the exposition as
simple as possible, we have preferred to stick to the scalar
case. A detailed analysis of the multivariable case is post-
poned to future work; some preliminary results are found
in [6]. Future work will also include a detailed study of the
tradeoff between packet loss, delay and SNR for specific
limited capacity channels with realistic coding schemes.

Appendix

7.1 Proof of Proposition 1

Defining L̄ := [L 0], Q̄ := σ2
wB̄B̄

> and recalling that
σ2
y = C̄P C̄> + σ2

v the Lagrangian in (16) can be written
explicitly as:

L(P,Λ, L,G)=Tr
{
PC̄>C̄

}
+ rTr

{
L̄P L̄>

}
− Tr {PΛ}

Tr
{[

(1− ε)Ā1PĀ
>
1 + εĀ0PĀ

>
0 + Q̄

]
Λ
}

+Tr
{

(1− ε)Ḡ(σ2
v + ασ2

y)Ḡ>Λ
}

Now, we need to compute the derivatives (17). Let ∂F
∂Θij

denote the partial derivative of a function F(Θ) : Θ ∈
Rm×n → Rp×q w.r.t. the (i, j) − th element of the matrix
Θ and ∆F(Θ)ij := ∂F(Θ)

∂Θij
. In addition, we set: σ2

α :=

σ2
v + ασ2

y . We hence have

∂L
∂Gij

∝ Tr
{[

∂Ā1

∂Gij
PĀ>1 + ∂Ḡ

∂Gij
σ2
αḠ
>
]

Λ
}

∝ Tr

{[
0 ∆GijC

0 −∆Gij

]
PĀ>1 + ∆Ḡijσ

2
αḠ
>Λ

}

Now, defining AG := A−GC we obtain:

∂L
∂Gij

∝ Tr
{

∆Ḡij

(
CP21 CP22

)
Ā>1 Λ + ∆Ḡijσ

2
αḠ
>
}

∝ Tr
{

∆Ḡij

(
CP21A

>
L + CP22C

>G> CP22A
>
G

)
Λ
}

+ Tr
{

∆Ḡijσ
2
αḠΛ

}
(31)

∝ Tr
{

∆Gij
[
CP21A

>
L +

(
CP22C

> + σ2
α

)
G>
]

Λ11

}
+ Tr

{
∆Gij

(
CP22A

>
G − σ2

αG
>)Λ21

}
− Tr

{
∆Gij

[
CP21A

>
L +

(
CP22C

> + σ2
α

)
G>
]

Λ12

}
− Tr

{
∆Gij

(
CP22A

>
G − σ2

αG
>)Λ22

}
.

We shall see later on that the solution P ∗ satisfies P ∗12 = 0
and Λ∗ satisfies Λ∗11 = Λ∗12 = Λ∗21, so that the latter equation

reduces to

∂L
∂Gij

∝ Tr
{

∆Gij
[(
CP ∗22C

> + σ2
α

)
G>
]

Λ∗11

}
+ Tr

{
∆Gij

(
CP ∗22A

>
G − σ2

αG
>)Λ∗11

}
− Tr

{
∆Gij

[(
CP ∗22C

> + σ2
α

)
G>
]

Λ∗11

}
(32)

− Tr
{

∆Gij
(
CP ∗22A

>
G − σ2

αG
>)Λ∗22

}
= Tr

{
∆Gij

[
CP ∗22A

> − σ2
αG
> − CP ∗22C

>G>
]

(Λ∗11 − Λ∗22)
}

Using (32), the equation ∂L
∂Gij

= 0 is clearly satisfied for:

G∗ := AP ∗22C
> (CP ∗22C

> + σ2
α

)−1
(33)

= AP ∗22C
> ((1 + α)

(
σ2
v + CP ∗22C

>)+ CP ∗11C
>)−1

.

Note now that from the equation P = M(G,L, P ) (see
(12)) the equation for P12 reads as

P12 = (1− ε)
[
ALP12A

>
G +GCP22A

>
G −Gσ2

αG
>] (34)

+ εALP12A
>

Substituting G = G∗, (34) reduces to

P12 = (1− ε)ALP12A
>
G∗ + εALP12A

> , (35)

which clearly admitsP ∗12 = 0 as a solution. We now consider
the derivative w.r.t. L. First write

L(P,Λ, L,G) = Tr{PC̄>C̄}+ rTr{PL̄>L̄}−
+Tr

{
ΛP − (1− ε)Ā>1 ΛA1P − εĀ>0 ΛA>0 P

}
+Tr

{
(1− ε)Ḡ>ΛḠσ2

α

}
+ Tr

{
ΛQ̄
}

so that

∂L
∂Lij

∝ Tr
{

(1− ε)∂Ā
>
1

∂Lij
ΛĀ1P + ε

∂Ā>0
∂Lij

ΛĀ0P
}

+ rTr
{

∂L̄
∂Lij

>
L̄P
}
.

Observe now that

∂Ā>`
∂Lij

=

[
∆L>ijB

> 0

0 0

]
, ` = 0, 1 ;

and, therefore, the necessary conditions for optimality
∂L
∂Lij

= 0 can be written as

∂L
∂Lij

∝ Tr
{

∆L>ij
(
B>Λ11AL + rL

)
P11

}
= 0 . (36)

Since AL = A + BL than B>Λ11AL = B>Λ11A +
B>Λ11BL, therefore the previous equation returns, as its
unique solution:

L∗ = −
(
B>Λ∗11B + r

)−1
B>Λ∗11A . (37)
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It now remains to verify that the solution Λ∗ satisfies Λ∗11 =
Λ∗12 = Λ∗21. The equation for Λ can be obtained by equat-
ing to zero the partial derivative ∂L

∂Pij
. After some simple

calculations one obtains:

Λ = (1−ε)
(
Ā>1 ΛĀ1 + αC̄>Ḡ>ΛḠC̄

)
+εĀ>0 ΛĀ0 +C̄>C̄

(38)
which can be expanded yielding

Λ = (1− ε)

[
A>LΛ11AL A>L (Λ11GC + Λ12AG)

∗ ∗

]
+

+ε

[
A>LΛ11AL A>LΛ12A

A>Λ21AL A>Λ22A

]
+ C̄>C̄ + rL̄>L̄+

+α(1− ε)C̄>
[
G>(Λ11 − Λ21 − Λ12 + Λ22)G

]
C̄

=(1−ε)

[
A>LΛ11AL + rL>L A>L (Λ11GC + Λ12AG)

∗ ∗

]
+

+ε

[
A>LΛ11AL + rL>L A>LΛ12A

A>Λ21AL A>Λ22A

]
+ C̄>C̄+

+α(1− ε)C̄>
[
G>(Λ11 − Λ21 − Λ12 + Λ22)G

]
C̄

(39)
where the blocks denoted with ∗ are unimportant to our pur-
poses. Using now the expressions for L∗ in (37) we observe
that, for L = L∗, it holds A>LΛ∗11BL+ rL>L = 0 (see also
(36)), so that

A>L∗Λ
∗
11AL + rL>L = A>LΛ∗11A

and therefore (39) can be rewritten as:

Λ = ε

[
A>LΛ11A A>LΛ12A

A>Λ21AL A>Λ22A

]
+ C̄>C̄+

= (1− ε)

[
A>LΛ11A A>L (Λ11 − Λ12)GC +A>LΛ12A

∗ ∗

]
+

+α(1− ε)C̄>
[
G>(Λ11 − Λ21 − Λ12 + Λ22)G

]
C̄ =

=

[
A>LΛ11A (1− ε)A>L (Λ11 − Λ12)GC +A>LΛ12A

∗ ∗

]
+

+α(1− ε)C̄>
[
G>(Λ11 − Λ21 − Λ12 + Λ22)G

]
C̄ + C̄>C̄

(40)
Note now that setting Λ11 = Λ12 = Λ21, equation (40)
becomes[

Λ11 Λ11

Λ11 Λ22

]
=

[
A>LΛ11A A>LΛ11A

∗ ∗

]
+ C̄>C̄+

+α(1− ε)C̄>
[
G>(Λ22 − Λ11)G

]
C̄

(41)

from which it is clear that Λ11 = Λ12 = Λ21 is a solu-
tion. Eq. (39) just says that the off-diagonal blocks do not
add constraints, so that only the diagonal blocks need to

be solved for determining Λ11 and Λ22. The off-diagonal
blocks are automatically satisfied.

7.2 Proof of Theorem 1

We start by noting that according to the theorem hypotheses
(i) there exist L and G such that the closed loop system (11)
is mean square stable (i.e., (13) admits a finite solution), and
also that (ii) r > 0, (iii) σ2

v > 0, (iv) and both (A>, BB>),
(A,C>C) are mean square detectable. These conditions sat-
isfy the hypotheses of Theorem 3 in [7] which guarantees
that a solution P ∗11, P ∗22, Λ∗11, Λ∗22 exists, is unique and can
be obtained as fixed points of the iterates:

Gi=AP i22C
>Σ−1

α

Li=−
(
B>Λi11B + r

)−1
B>Λi11A

P i+1
11 =ALiP i11A

>
Li + (1− ε)AP i22C

>Σ−1
α CP i22A

>

P i+1
22 =AP i22A

>+σ2
wBB

>−(1−ε)AP i22C
>Σ−1

α CP i22A
>

Λi+1
11 =A>LiΛi11ALi + r

(
Li
)>
Li+

+α(1− ε)C>(Gi)>(Λi22 − Λi11)GiC + C>C

Λi+1
22 =εA>Λi22A+ C>C + σ2

wBB
> +(1−ε)A>Λi11A+

(1− ε)(A−GiC)>(Λi22 − Λi11)(A−GiC)+

+α(1− ε)C>(Gi)>(Λi11 − Λi22)GiC

(42)
with initial conditions P 0

11 = P 0
22 = Λ0

11 = Λ0
22 = 0.

Now, observe that B> = [0 . . . 0 1]. This implies that
B>Λ0

11 = [0 . . . 0 Λ0
11(d, d)] so that L0 = [0 . . . 0 `0d]

where `0d = −a Λ0
11(d,d)

Λ0
11(d,d)+r

. Since Λ0
11 is diagonal,

also A>L0Λ0
11AL0 is diagonal and Λ1

11 is still diago-
nal. As such B>Λ1

11 = [0 . . . 0 Λ1
11(d, d)] and there-

fore L1 = [0 . . . 0 `0d] where `1d = −a Λ1
11(d,d)

Λ1
11(d,d)+r

. The
same argument can be iterated showing that, provided
Li = [0 . . . 0 ∗] and Λi11 is diagonal, then Λi+1

11 is di-

agonal and Li+1 = [0 . . . 0 − a
Λi+1

11 (d,d)

Λi+1
11 (d,d)+r

]. Therefore,

by induction, Li = [0 . . . 0 ∗] ∀i, which implies that
L∗ = limi→∞ Li = [0 . . . 0 `∗d], `

∗
d = −a Λ∗11(d,d)

Λ∗11(d,d)+r . This
completes the proof as far as the structure of L∗ is con-
cerned. For r = 0 the hypotheses of Theorem 3 in [7] are
not satisfied and therefore uniqueness of the solution cannot
be guaranteed. However, if we now take the limit as r → 0,
by continuity of the cost w.r.t. r, we obtain that for r = 0
one optimal solution is given by 5 L∗ = [0 . . . 0 − a] and
thus the controller is dead-beat. Let us now consider the
optimal gain G∗. From Proposition 1 we know that ξ̂t and
ξ̃t are uncorrelated. Therefore ξ̂t can be interpreted as the
projection of ξt on a certain stationaryred subspace Ξt−d of

5 Note that Λ∗ > 0 for all r ≥ 0 and for all ε ∈ [0, 1] since the
pairs (Āγ , C̄

>), γ = {0, 1} are reachable (see eq. (38)). Therefore
also Λ∗11(d, d) > 0 for all r ≥ 0.
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(the space spanned by the components of) z−t−d+1, i.e.,

ξ̂t = Ê[ξt|Ξt−d] ξ̂t+1 = Ê[ξt+1|Ξt−d+1] .

where Ê[·|·] denotes the orthogonal projection (linear mini-
mum variance estimator). Recalling (5), we now compute the
projection components of ξt+1 := [xt−d+2 xt−d+3 . . . xt+1]
assuming γt−d+1 = 1. Using the standard Kalman measure-
ments update and (7) if follows that

Ê[xt−d+2|Ξt−d+1] = Ê[xt−d+2|Ξt−d] + g∗
(
ht − Cξ̂t

)
,

for a suitable gain g∗. Similarly,

Ê[xt−d+3|Ξt−d+1] = aÊ[xt−d+2|Ξt−d+1] + but−d+2

= aÊ[xt−d+2|Ξt−d] + but−d+2 + ag∗
(
ht − Cξ̂t

)
= Ê[xt−d+3|Ξt−d]+ag∗

(
ht−Cξ̂t

)
, (43)

where the third equality has been obtained using the identity

xt−d+3 = axt−d+2 + but−d+2 + wt−d+2 ,

and the fact that wt−d+2 is orthogonal to Ξt−d. Iterating we
obtain, ∀k ≥ 3:

Ê[xt−d+k|Ξt−d+1]=aÊ[xt−d+k−1|Ξt−d+1] + but−d+k

=Ê[xt−d+k|Ξt−d+1] + akg∗
(
ht−Cξ̂t

)
,

which shows that G∗ = [g∗ ag∗ . . . ad−1g∗].

7.3 Proof of Theorem 2

The proof is divided in two parts: first we consider the cheap
control case, i.e., we assume that r = 0 in (2), (14). Then
we shall show that a solution exists for r > 0 if and only if
it exists for r = 0.
Consider now r = 0; first of all let us observe that, using
(10), the state update equation can be written in the form

ξt+1 = AL∗ ξ̂t +Aξ̃t +Bwt .

As shown in Proposition 1 the necessary conditions admit
P12 = 0 as a possible solution for any value of r. Moreover,
Theorem 3 in [7] guarantees that P ∗12 = 0 is the unique
optimal solution for r > 0. If we choose P ∗12 = 0 then
this returns a cost that is the same cost of optimal unique
solution for r → 0, therefore by continuity of the cost in r,
then P ∗12 = 0 is surely one optimal solution. When using
the gains L∗ and G∗ the estimate ξ̂t and the error ξ̃t are
uncorrelated. Our aim now is to see under which conditions
the cost J is finite with this choice of L∗ and G∗. Obviously,
if under these conditions the optimal control problem admits

a solution, then the necessary conditions are also sufficient.
If a steady state exists, then

Σ∗ := V ar{ξt+1} = P ∗11 + P ∗22

= AL∗P
∗
11A

>
L∗ +AP ∗22A

> + σ2
wBB

>
(44)

Note also that Σ∗ is the Toeplitz matrix built with the co-
variance function of xt−d+i and, as such, it is constant along
the diagonal. Therefore

CΣ∗C> = HΣ∗H> , H := [0 0 . . . 0 1] .

Note also that HAL∗ = [0 . . . 0] so that, using (44), we get

CΣ∗C> = HΣ∗H> = HAP ∗22A
>H> + σ2

wHBB
>H>

= [0 . . . 0 a]P ∗22[0 . . . 0 a]> + σ2
w

= a2P ∗22(d, d) + σ2
w ;

where P ∗22(d, d) is the diagonal element in position (d, d) of
the matrix P ∗22 (the south-east corner). Now, using the fact
that P ∗22(i, i) is the i−steps ahead state prediction error, it
is easy to see that

P ∗22(d, d) = a2d−2P ∗22(1, 1) +

d−2∑
i=0

a2iσ2
w , (45)

so that

C (P ∗11 + P ∗22)C> = CΣ∗C>

= a2P ∗22(d, d) + σ2
w

= a2dP ∗22(1, 1) +
∑d−1
i=0 a

2iσ2
w

= a2dCP ∗22C + q̄(d) ,

(46)

where q̄(d) :=
∑d−1
i=0 a

2iσ2
w. We can use this last condition

to manipulate Σα in (19) as follows:

Σα = (1 + α)
(
σ2
v + CP ∗22C

>)+ αCP ∗11C
>

= (1 + α)σ2
v + CP ∗22C

> + αC (P ∗11 + P ∗22)C>

=
(
1 + αa2d

)
CP ∗22C

> + (1 + α)σ2
v + αq̄(d)

=
(
1 + αa2d

) (
CP ∗22C

> + r̄(d)
)
,

where the last equation defines r̄(d). Therefore the equa-
tion for P ∗22 in (20) takes the form of a Modified Algebraic
Riccati Equation (MARE) [34]

P ∗22 = AP ∗22A
> + σ2

wBB
>

−δAP ∗22C
> (CP ∗22C

> + r̄(d)
)−1

CP ∗22A
> ,

(47)
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where
δ :=

1− ε
1 + αa2d

.

Note also thatHPC> = E[x̃t−d+1x̃t] = ad−1E
[
x̃2
t−d+1

]
=

ad−1P ∗22(1, 1). Now using the fact that HA = [0 . . . 0 a]
and multiplying (47) by H and H> from left and right
respectively, we obtain

HP ∗22H
> = a2HP ∗22H

> + σ2
w − δ

a2HP∗22C
>CP∗22H

>

CP∗22C
>+r̄(d)

.

(48)
Defining p∗22 := CP ∗22C

> and using (45), so that
HP ∗22H

> = a2d−2p∗22 +
∑d−2
i=0 a

2iσ2
w equation (48) can be

manipulated to yield:

p∗22 = a2p∗22 + σ2
w − δ

(a2p∗22)
2

p∗22+r̄(d) . (49)

It is well known (see [30]) that (49) admits a solution if and
only if

δ =
1− ε

1 + αa2d
> 1− 1

a2

which yields (23). Using now (46) we immediately obtain
an expression for the optimal cost:

J∗ = C(P ∗11 + P ∗22)C> + σ2
v

= a2dCP ∗22C + q̄(d) + σ2
v

= a2dp∗22 +
∑d−1
i=0 a

2iσ2
w + σ2

v .

This concludes the proof for the case r = 0. Now, de-
note with P ∗ii(r) the solutions of the coupled Riccati equa-
tions (20) as a function of r. Using the fact that C(P11 +
P22)C> = H(P11+P22)H> andL∗(r) = `∗(r)H for some
`∗(r) < +∞, we can derive the following upper bound for
the optimal value of the cost J∗(r) where the dependency
on r is made explicit:

J∗(r) = CP ∗11(r)C> + CP ∗22(r)C>+

+rL∗(r)P ∗11(r) (L∗(r))
>

≤ CP ∗11(r)C> + CP ∗22(r)C>+

+rL∗(r) (P ∗11(r) + P ∗22(r)) (L∗(r))
>

= (1 + r`2∗(r))H(P ∗11(r) + P ∗22(r))H>

Assume now that a solution exists for r = 0. Clearly
J∗(0) = H(P ∗11(0)+P ∗22(0))H> is bounded and, therefore,
so is (1 + r`∗(0)2)H(P ∗11(0) +P ∗22(0))H>. In addition the
following chain of inequalities holds:

J∗(r) = H(P ∗11(r) + P ∗22(r))H> + r`2∗(r)HP
∗
11(r)H>

≤ H(P ∗11(0) + P ∗22(0))H> + r`2∗(0)HP ∗11(0)H>

≤ (1 + r`∗(0)2)H(P ∗11(0) + P ∗22(0))H>

< +∞ ,

where the first inequality stems from the fact that J∗(r) is
certainly smaller than J(r) computed when G and L are
chosen optimizing J(0). The second inequality follows just
adding r`∗(0)HP22(0)H>. The previous equation guaran-
tees that the optimal value J∗(r) is finite and, as such, the so-
lution exists. Conversely, if a solution exists for some r > 0,
then H(P ∗11(r) +P ∗22(r))H> ≤ H(P ∗11(r) +P ∗22(r))H>+
r`2∗(r)HP

∗
11(r)H> = J∗(r) < +∞. Therefore:

J∗(0) = H(P ∗11(0) + P ∗22(0))H>

≤ H(P ∗11(r) + P ∗22(r))H>

≤ (1 + r`∗(0)2)H(P ∗11(r) + P ∗22(r))H>

≤ (1 + r`∗(0)2)J∗(r)

< +∞

and, therefore, a solution exists also for r = 0. This con-
cludes the existence part of the proof. 6 Now, note that
σ2
v > 0, (A,B) is a reachable pair and (A,C) is an observ-

able pair. This last observation implies that (A>, BB>) and
(A,C>C) are detectable and hence mean square detectable.
If also r > 0, then all the assumptions of Theorem 3 in [7]
are satisfied and hence the solution is unique. For r = 0 the
theorem does not apply, yet from continuity of the cost in
r, if there are multiple solutions, they will correspond the
same value of cost as the one obtained using

L∗(0) := lim
r→0

L∗(r) G∗(0) := lim
r→0

G∗(r) ,

which can be therefore regarded as “the” optimal solution.
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