
Multi-agent perimeter patrolling subject to mobility constraints

Riccardo Alberton Ruggero Carli Angelo Cenedese Luca Schenato

Abstract— In this paper we study the problem of real-time
optimal distributed partitioning for perimeter patrolling in
the context of multi-camera networks for surveillance. The
objective is to partition a given segment into non-overlapping
sub-segments, each assigned to a different camera to patrol.
Each camera has both physical mobility range and limited
speed, and it must patrol its assigned sub-segment by sweeping
it back and forth at maximum speed. Here we first review
the solution for the centralized optimal partitioning. Then we
propose two different distributed control strategies to determine
the extremes of the optimal patrolling areas of each camera.
Both these strategies require only local communication with
the neighboring cameras but adopt different communication
schemes, respectively, symmetric gossip and asynchronous
asymmetric broadcast. The first scheme is shown to be provably
convergent to the optimal solution. Some theoretical insights
are provided also for the second scheme whose effectiveness is
validated through numerical simulations.

I. INTRODUCTION

The task of patrolling refers to the act of an agent that
senses a different portion of the environment at a time,
in order to detect events or anomalies: The possibility of
controlling the information acquisition is central to the task
and characterizes the patrolling agent both as a sensor and
as an actuator.

The problem of patrolling has been and is extensively
studied in the framework of mobile agents (see for exam-
ple [5][9][6] and references within) where a set of robots or
other autonomous vehicles moves in the environment in order
to attain the optimal area coverage in a dynamic sense and to
act coordinately according to the information they gather and
share. In this case, the mobile agents are typically constrained
by their motion dynamics, by their sensing capabilities, and
by the communication protocols. Indeed, there may be need
for the agents to exchange information only when in close
contact [8], or for the whole system to trade off with finite
capacity issue in wireless links.

In [2], the case of smart camera patrolling is studied as a
particular case of the multiagent network. In this work, the
problem of patrolling is cast into a pursuit-evasion paradigm:
Two players are considered, a rational patroller and a rational
intruder and game-theory techniques are applied in order
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to design an optimal patrolling strategy for the patroller, in
terms of Pan-Tilt-Zoom (PTZ) commands.

A smart camera network is introduced in our previous
work [1], where the considered problem is that of patrolling
executed by a network of PTZ cameras in a typical outdoor
videosurveillance setup. Differently from [2], the particular
focus here is on the coordination and communication among
cameras, which is studied in the context of distributed algo-
rithms. In this scenario, the case of perimeter patrolling is
considered and each camera is located in a fixed position with
limited visibility of the scene and limited motion capability:
Since the patrolling task corresponds to the action of visually
monitoring the environment, each camera needs to coordinate
its motion with the its neighbors in order to ensure an optimal
coverage policy of the whole monitored area.

The paper is organized as follows. The case of perimeter
patrolling is studied reducing the domain of interest to a
one dimensional domain, as formally detailed in Section II
and in Section III. In Section IV and in Section V the main
contributions are presented, related respectively to the sym-
metric gossip and the asynchronous asymmetric broadcast
algorithms. We conclude in Section VI with some numerical
examples.

II. PERIMETER PATROLLING

In this section we review the problem of patrolling a one-
dimensional environment of finite length with a finite number
of cameras and its optimal solution as described in [1].

Specifically let L = [0, L], L > 0, denote the segment to
be monitored and let N be the cardinality of the camera
set. The cameras are labeled 1 through N and, for the
sake of simplicity, we assume that (a) the cameras are 1-
d.o.f., meaning that the field of view (f.o.v.) of each camera
is allowed to change due to pan movements only; (b) the
cameras have fixed coverage range, meaning that during pan
movements the camera coverage range is not altered by the
view perspective; (c) cameras have point f.o.v..

In this context we also introduce the following definitions.
The patrolling range Di is the total potential area that i-th
camera can patrol due to the scenario topology, the agent
configuration and their physical constraints. More formally
Di =

[
di, di

]
⊂ L, di < di, where di, di are the left and

the right extreme of the interval Di, respectively. The max
speed vi ∈ R+ is the maximum speed of i-th camera during
pan movements, i.e. |vi(t)| ≤ vi. The patrolling area Ai:
denotes the area that is actively patrolled by the i-th camera
where, clearly, it must hold Ai ⊆ Di, ∀ i ∈ {1, . . . , N}
where Ai = [`i, ri], being `i, ri, respectively, the left and
right extreme of Ai. In our analysis, we assume that the



coverage ranges Di, i ∈ {1, . . . , N}, satisfies the following
interlacing physical coverage constraint,

di ≤ di+1 ≤ di ≤ di+1, i = 1, . . . , N − 1. (1)

Moreover we impose that d1 = 0 and dN = L. These
conditions guarantee that the area can be fully patrolled, i.e.
∪Ni=1Di = L.
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Fig. 1. Perimeter patrolled by a camera set. For the first four cameras,
the physical coverages {Di} with some overlapping sections are shown,
together with the optimal partition domains {Ai}.

In order to properly define the patrolling problem we need
to introduce an appropriate cost function J and state an
optimality criterium. The camera position zi(t) : R+ → Di

is the the position of the f.o.v. of the i-th camera as a
function of the time variable t. The authors in [1] propose
a functional J whose rationale is as follows: at each time
instant t and position x ∈ L, J is equal to 0 if location x
is currently seen by any camera (∃ i s.t. zi(t) = x), else it
takes a positive real value which is a monotonic function of
the patrolling time lag Tlag defined as the maximum (w.r.t.
x ∈ L) elapsed time between two visits of the same location,
therefore the minimization problem for J corresponds to the
computation of the smallest time lag Tlag, constrained to the
system dynamics

żi(t) = vi(t) s.t.

{
|vi(t)| ≤ vi
zi(t) ∈ Di

. (2)

We now consider the problem of optimally patrol, i.e., of
minimizing the patrolling time lag, a certain area Ai by the
i-th camera. The next proposition states which is the smallest
achievable patrolling time lag and the corresponding camera
motion.

Proposition II.1 Let Ai = [`i, ri] the patrolling area as-
signed to the i-th camera. Then the minimum patrolling time
lag T ∗i within this area is given by

T ∗i = T ∗lag(Ai) =
2|Ai|
vi

=
2(ri − `i)

vi
(3)

and is achieved by assuming that camera i moves at its
maximum speed v̄i sweeping back and forth Ai with a
periodical motion of period T ∗i .

The previous proposition states that once a patrolling area Ai
is assigned to a camera, the optimal strategy is to sweep back
and forth this area at maximum speed. As a consequence
the problem of globally minimizing the patrolling time lag

reduces to the problem of design the patrolling area Ai,
which is a partitioning problem. More formally, we are
interested in solving the following optimization problem

minA1,...,AN
max
i

{
T ∗lag(Ai)

}
(4)

P1 : s.t. Ai ⊆ Di i = 1, . . . , N (5)
∪Ni=1Ai = L (6)

where Eqn. (4) represents the objective which is the min-
imization of the largest patrolling time leg among all pa-
trolling areas Ai, Eqn. (5) represents the physical constrains
arising from the limited patrolling range of the cameras,
and Eqn. (6) represents the requirement that all points in L
are eventually visited. The next proposition shows that the
previous problem can be re-casted as a linear program (LP),
i.e., it can efficiently solved using standard optimization
software.

Proposition II.2 Consider the problem P1 := (T ∗P1
, XP1)

defined by Equations (4)-(6) where T ∗P1
is the minimum and

XP1 = {{Ai}Ni=1 | maxi{T ∗lag(Ai)} = T ∗P1
} is the set of

minimizers. Then the optimization problem P1 is equivalent
to the following LP problem:

minτ,{ri}N−1
i=1 ,{`i}N

i=2
2τ (7)

P2 : s.t. ri−`i
vi
≤ τ i = 1, . . . , N (8)

di ≤ `i ≤ di, di ≤ ri ≤ di i = 1, . . . , N (9)
ri ≥ `i+1 i=1, . . . , N−1(10)

where d1 = `1 = 0 and dN = rN = L

Proof: The equivalence between the two optimization
problem P1 and P2 is obtained by adding a slack variable τ
to transform the max function into a linear function subject
to linear inequalities, which give rise to Eqn. (7) and (8).
Eqn. (9) and Eqn. (10) are simply the reformulation of
Eqn. (5) and Eqn. (6) in terms of the representation of the
areas Ai through their extremes (`i, ri).
The previous proposition provides a centralized solution to
the patrolling problem but cannot be easily computed in a
distributed fashion. Although distributed algorithm exists for
the solution of LP problems [7], these involve the solution
of the all problem at each node, i.e., each camera would
compute the optimal patrolling areas Ai also for all other
cameras, which is not necessary since each camera needs
to compute only its own optimal patrolling area Ai. More-
over, the previous optimization problem might have multiple
minimizers. The next proposition states that it is possible
to reformulate a new optimization problem P3 which has
the properties that its minimizer is unique and it is also a
minimizer for the original problem P1.

Proposition II.3 Consider the following optimization prob-
lem

min{ri}N−1
i=1 ,{`i}N

i=2

∑N
i=1

1
vi

(ri − `i)2 (11)

(P3) di ≤ `i ≤ di, di ≤ ri ≤ di i = 1, . . . , N (12)
ri ≥ `i+1 i = 1, . . . , N − 1(13)



where d1 = `1 = 0 and dN = rN = L. Let XP3 the cor-
responding set of minimizers. Then XP3 = {(A∗1, . . . , A∗N )}
is a singleton and XP3 ⊆ XP1 .

Proof: For the sake of clarity, the proof is divided into
several steps:

(a) Without loss of generality we identify a parti-
tion set {A1, . . . , AN} with its set of free extremes
ξ := (r1, `2, r2, . . . , `N ) ∈ R2N−2 since by definition `1 = 0
and rN = L. Consider the function

f(ξ) =
1
v1
r2
1 +

N−1∑
i=2

1
vi

(ri − `i)2 +
1
vN

(L− `N )2

which is the objective function of Eqn. (11). This function
is quadratic and positive definite which implies that it is also
strictly convex. The constraints set C defined by Eqn. (12)
and Eqn. (13) is convex, compact and non-empty, therefore
the minimum of the function f(·) restricted to the set C
exists and it is unique. We refer to this minimum as ξ∗ ≡
(A∗1, . . . , A

∗
N ). This proves the first part of the proposition.

(b) We now show that |A∗i ∩A∗i+1| = 0 for i = 1, . . . , N−
1, i.e.

r∗i = `∗i+1 (14)

Assume by contradiction that this is not true, i.e. there is i
such that r∗i > `∗i+1. From Eqn. (1) it follows that `∗i+1 ≥
di+1 ≥ di and r∗i ≤ di ≤ di+1. Let us consider the new
partition ξ′ = ξ∗ for all elements except for r′i which is
set to r′i = `∗i+1. This choice is feasible, i.e. ξ′ ∈ C, since
r′i ≥ `′i+1 = `∗i+1 ≥ di. This leads to f(ξ∗) − f(ξ′) =
1
vi

((r∗i − `∗i )
2 − (`∗i+1 − `∗i )

2) > 0, which contradicts the
assumption that ξ∗ is the global minimum of f over C.

(c) Let us define T ∗P3
:= maxi{T ∗lag(A∗i )} =

maxi
{
|A∗i |
vi

}
. Let j be the index of most left region for

which the maximum period is achieved, i.e.

j := argmin{i |T ∗lag(A∗i ) = T ∗P3
}

and similarly let

h = argmin{h |T ∗h+1 < T ∗P3
or h = N}

be the index of the last contiguous region with the max-
imum period. Clearly, this implies that that T ∗lag(A

∗
j ) =

T ∗lag(A
∗
j+1) = · · · = T ∗lag(A

∗
h) = T ∗P3

. We now show that

`∗j = dj−1, r∗h = dh+1 (15)

where we adopted the little abuse of notation d0 := d1 = 0
and dN+1 := dN = L. If j > 1, then by definition
T ∗leg(A

∗
j−1) < T ∗leg(A

∗
j ) which implies that

r∗j−r
∗
j−1

vj
−

r∗j−1−`
∗
j−1

vj−1
= ε > 0 where we used Eqn (14). We now

show that we must have `∗j = r∗j−1 = dj−1. Assume by
contradiction that `∗j = r∗j−1 < dj−1. Let us define the
positive scalar δ as follows

δ := min
(

vj−1vj
vj−1 + vj

ε , dj−1−r∗j−1

)

Consider the new feasible partition ξ′ where ξ′ = ξ∗ for all
elements except for r′j−1 = `′j = r∗j−1 + δ. Clearly ξ′ ∈ C.
This leads to

f(ξ′)−f(ξ∗) = (r∗j−r
∗
j−1−δ)

2

vj
+ (r∗j−1−̀

∗
j−1+δ)

2

vj−1
− (r∗j−r

∗
j−1)2

vj
−

− (r∗j−1−̀
∗
j−1)2

vj−1
= δ

(
−2 r

∗
j−r

∗
j−1

vj
+2 r

∗
j−1−̀

∗
j−1

vj−1
+ δ
vj−1

+ δ
vj−1

)
≤ δ(−2ε+ ε) = −δε < 0

which contradicts the hypothesis that ξ∗ is the unique min-
imizer of f over C. The same line of reasoning can be
employed to show that r∗h = `∗h+1 = dh+1 if h < N .

(d) We now want to show that ξ∗ ∈ XP1 , i.e. T ∗P3
= T ∗P1

.
Assume by contradiction that T ∗P3

> T ∗P1
. From Eqns. (14)-

(15) it follow that ∪Ni=1A
∗
i = [dj−1, dh+1] and |A∗i ∩

A∗i+1| = 0, therefore
∑h
i=j |A∗i | = dh+1− dj−1. Let us now

consider any optimal partition for the original problem P1,
i.e. (A1, . . . , AN ) ∈ XP1 , then T ∗lag(Ai) ≤ T ∗P1

,∀i, which
implies that |Ai| ≤ 1

2viT
∗
P1
< 1

2viT
∗
P3

= |A∗i |. Moreover, we
must have ∪hi=j Ai ⊇ [dj−1, dh+1] since `j ≤ rj−1 ≤ dj−1

and rh ≥ `h+1 ≥ dh+1 from Eqns. (9)-(10). This implies
that

∑h
i=j |Ai| ≥ dh+1 − dj−1 which contradicts the obser-

vation that
∑h
i=j |Ai| ≤

∑h
i=j

1
2viT

∗
P1

<
∑h
i=j

1
2viT

∗
P3

=∑h
i=j |A∗i | = dh+1 − dj−1. Therefore T ∗P3

= T ∗P1
, which

concludes the proof.
From the proof of the previous proposition, it follows the

following corollary that shows that for unlimited patrolling
range the optimal partitioning corresponds to assign to each
camera an area whole length is proportional to its pan speed,
i.e. faster cameras patrol longer perimeter segments. If in
addition the camera speeds are all equal, then the optimal
partitioning is the equal partitioning, as one would intuitively
expect.

Corollary II.4 Let us consider the optimization problem P1

and P1 without patrolling range constraints given by Eqn. (5)
and Eqn. (12), i.e. di = 0 and di = L for all i. Then

|Ai| =
vi∑N
i=1 vi

L, ∀i

and in particular |Ai| = L
N if vi = v,∀i.

The benefits of the optimization problem P3 as compared
to the optimization problem P1 is twofold. The first benefit is
that under specific communication strategies, namely gossip
communication, it can be solved with distributed algorithms
which are scalable and parallelizable, as shown in the next
sections. The second benefit is that uniqueness of the mini-
mizer in P3 guarantees the practical convergence of iterative
numerical algorithms to a unique point, which otherwise as
in the case of P1 might oscillate within the set XP1 .

III. DISTRIBUTED OPTIMAL PARTITIONING: PROBLEM
FORMULATION

In this section we consider the partitioning problems P1

and P3 within an ”iterative” and ”distributed” scenario.
Specifically, we assume each camera is initialized at time
t = 0 with a partition Ai(0) that, in general, does not



coincide with the optimal solution. Each camera is allowed
to iteratively update Ai using only the local information
coming from the neighboring cameras. The goal is to provide
strategies that lead the cameras to asymptotically reach the
optimal steady-state configuration for patrolling extremes.

In the next section we formally describe the setup we
consider and the problem we aim to solve.

We assume that at time t = 0 each camera is initialized
with a dominance interval Ai(0). More precisely, for i ∈
{1, . . . , N} let Ai(0) = [`i(0), ri(0)] where `i(0) and ri(0)
are respectively the left extreme and the right extreme of
Ai(0). We assume that the set {A1(0), . . . , AN (0)} satisfies
two constraints. Firstly, we assume a physical constraint, that
is,

Ai(0) ⊆ Di, i ∈ {1, . . . , N}. (16)

Secondly, a interlacing constraint is posed, that is,

`i(0) ≤ `i+1(0) ≤ ri(0) ≤ ri+1(0). (17)

Moreover we impose the following boundary conditions

`i(0) = d1, rN (0) = dN . (18)

Observe that from (17) and (18) it follows that the set
{A1(0), . . . , AN (0)} satisfies also the following covering
constraint ⋃

i∈{1,...,N}

Ai(0) = L.

The goal is to design iterative partitioning algorithms that
allow the cameras to update their dominance intervals using
only information coming from neighboring cameras and such
that

(i) the physical constraints, the interlacing constraints
and the boundary conditions, introduced in (16), (17)
and (18), respectively, are satisfied at each iteration;
and

(ii) the set of dominance intervals converge to the optimal
partition.

It is worth clarifying that for neighboring cameras we
mean that camera i, i ∈ {2, . . . , N − 1} exchange infor-
mation with camera i− 1 and camera i+ 1. If i = 1 (resp.
i = N ) the only neighbor of camera 1 (resp. N ) is camera
2 (resp. N − 1).

In next sections we consider two different communication
protocols adopted by the cameras to exchange information
with each other. More precisely, in Section IV we consider a
symmetric gossip-type communication protocol; specifically,
at each iteration of the partitioning algorithm only a pair of
neighboring cameras communicate with each other while the
other cameras do not transmit or receive any information. In
this context we introduce the symmetric-gossip partitioning
algorithm.

In Section V we relax the communication-symmetry re-
quired in the previous Section and we consider an asym-
metric gossip-type communication protocol. While in the
symmetric gossip the active communication link is bidi-
rectional, that is, if camera i transmits to camera i + 1,

then at the same time camera i + 1 transmits to camera
i, in the asymmetric gossip only one direction is active,
that is, either camera i transmits to camera i+ 1 or camera
i + 1 transmits to camera i. Accordingly we introduce the
asymmetric broadcast partitioning algorithm.

IV. THE SYMMETRIC-GOSSIP PARTITIONING ALGORITHM

In this section we introduce the symmetric-gossip parti-
tioning algorithm (denoted as s-PA hereafter). The algorithm
is formally described as follows.
Processor states: For each i ∈ {1, . . . , N}, camera i keeps

in memory the extremes defining its dominance interval,
i.e., `i and ri. Moreover, we assume also that each
camera knows the maximum patrolling-speed of its
neighboring cameras;

Initialization: For i ∈ {1, . . . , N} values `i(0), ri(0) are
given as part of the problem. We assume that the
initial conditions satisfy the interlacing and physical
constraints and the boundary conditions.

Transmission iteration: For t ∈ N, during the t-th iteration
of the s-PA, only a pair of neighboring cameras, say i
and i+ 1, communicate with each other; the communi-
cating link is bidirectional, namely, camera i sends to
camera i+ 1 the values of its extremes `i(t) and ri(t)
and, camera i + 1 sends to camera i the values of its
extremes `i+1(t) and ri+1(t);

Extremes’ iteration: For h /∈ {i, i+ 1}, camera h left
unchanged its extremes, that is, `h(t + 1) = `h(t) and
rh(t+ 1) = rh(t).
Camera i and camera i + 1, based on the received
information, update ri and `i+1 performing the fol-
lowing two actions. First they compute the point p∗

according to the following neighbors’ equal traveling
time criterion
”the time required to camera i to travel at the speed
vi from p∗ to `i(t) is equal to the time required by the
camera i+1 to travel at speed vi+1 from p∗ to ri+1(t)”;
Formally p∗ satisfies the condition

p∗ − `i(t)
v̄i

=
ri+1(t)− p∗

v̄i+1
(19)

which yields

p∗ =
`i(t) v̄i+1 + ri+1(t) v̄i

v̄i + v̄i+1
. (20)

Second both cameras i and i + 1 check if the in-
tervals [`i(t), p∗] and [p∗, ri+1(t)] satisfy the physical
constraints and they update ri and `i+1 by setting

ri(t+ 1) = `i+1(t+ 1) = p∗

if p∗ ∈
[
di+1, di

]
, that is, if [`i(t), p∗] ⊆ Di and

[p∗, ri+1(t)] ⊆ Di+1, otherwise they set

ri(t+ 1) = `i+1(t+ 1) =
{

di if p∗ > di
di+1 if p∗ < di+1

Moreover for all t ∈ N we have that

`1(t) = 0 and rN (t) = L.



We characterizes now the convergence properties of the
s-PA. We provide conditions ensuring both deterministic and
probabilistic convergence. We start with the deterministic
convergence.

Theorem IV.1 Consider the s-PA. Let {Ai(0)}Ni=1 be the
initial set of dominance intervals which is assumed to satisfy
the boundary conditions, the interlacing and physical con-
straints. Moreover assume that there exists a positive integer
number τ such that, for all t ∈ N, any pair of neighboring
cameras (i, i + 1), i ∈ {1, . . . , N − 1}, communicates with
each other at least once within the interval [t, t + τ). Then
the evolution t→ {Ai(t)} generated by the s-PA algorithm
satisfies:

(i) the boundary conditions, the interlacing and physical
constraints are verified for all t ∈ N; and

(ii) the set {Ai(t)}Ni=1 converges asymptotically to the
optimal solution {A∗i }

N
i=1 of Problem P3 and, in turn,

to one optimal solution of Problem P1.

Proof: The fact that the boundary conditions, the
interlacing and physical constraints are verified for all t ∈ N,
easily follows from the description of the s-PA. We prove
now that the sequence {Ai(t)}Ni=1 converges asymptotically
to an optimal solution of Problem P3. We start by observing
that after τ iterations of the s-PA algorithm, we have that
the right extreme of camera i is equal to the left extreme of
camera i+1, i.e, ri(t) = `i+1(t) for t ≥ τ . For t ≥ τ , let us
introduce the auxiliary variables x1(t), . . . , xN−1(t) where
xi(t) = ri(t) = `i+1(t). Define x(t) = [x1(t), . . . , xN−1(t)]
and notice that, according to the physical constraints, di+1 ≤
xi(t) ≤ di. Let

W =
N−1∏
i=1

[
di+1, di

]
.

Since W is given by the Cartesian product of N − 1
closed intervals, it follows that W is compact. Now, for
i ∈ {1, . . . , N − 1} let Ti : W → W be the map
describing the Extremes’ iteration of the s-PA in case the
communicating pair of cameras is (i, i + 1). Observe that,
for i ∈ {1, . . . , N − 1}, the map Ti is continuous with the
respect to the standard Euclidean metric.

The goal is to apply Theorem VII.1 reported in Appendix.
To this end, for x = [x1, . . . , xN−1] ∈ W , let us introduce
the function U : W → R such that

U(x) =
1
v̄1

+
N−1∑
i=2

1
v̄i

(xi − xi−1)2 +
1
v̄N

(L− xN−1)2.

Observe that, for i ∈ {1, . . . , N − 1}, U is a convex
parabola on the variable xi having as vertex the point
v̄i+1xi−1+v̄ixi+1

v̄i+v̄i+1
which, according to the definition of the

variables {xi}N−1
i=1 , coincides with the point p∗ defined

in (20).
Assume x(t+ 1) = Ti(x(t)) for some i ∈ {1, . . . , N − 1}

and observe that, according to the s-PA, either xi(t + 1) ∈

[xi(t), p∗] or xi(t + 1) ∈ [p∗, xi(t)]. Hence, if xi(t + 1) 6=
xi(t) then U(x(t+ 1))− U(x(t)) < 0.

We are now in position of applying Theorem VII.1 and to
conclude that x(t) converges to the set

F1 ∩ · · · ∩Fm,

where Fi = {x ∈ W | Ti(x) = x} is the set of fixed points
of Ti. Clearly F1 ∩ · · · ∩Fm is a singleton which coincides
with the optimum of problem P3.

We provide now conditions ensuring probabilistic conver-
gence.

Theorem IV.2 Consider the s-PA algorithm. Let
{Ai(0)}Ni=1 be the initial set of dominance intervals
which is assumed to satisfy the boundary conditions, the
interlacing and physical constraints. Moreover assume that
there exists a real number p̄, 0 < p̄ < 1, such that, for all
t ∈ N and for all i ∈ {1, . . . , N − 1}

P [(i, i+ 1) communicates at iteration t] ≥ p̄. (21)

Then the evolution t → {Ai(t)} generated by the s-PA
algorithm satisfies:

(i) the boundary conditions, the interlacing and physical
constraints are verified for all t ∈ N; and

(ii) the set {Ai(t)}Ni=1 converges almost surely to the
optimal solution {A∗i }

N
i=1 of Problem P3 and, in turn,

to one optimal solution of Problem P1.

Proof:
The proof is based on the application of Theorem VII.2

reported in the Appendix and it is similar to the one of
Theorem IV.1.

Remark IV.3 It is worth remarking that the s-PA was al-
ready introduced in [4]. However in [4] the authors provided
the convergence of the s-PA only in the simplified scenario
without physical constraints or, equivalently, when D1 =
D2 = . . . = DN = L.

V. THE ASYMMETRIC BROADCAST PARTITIONING
ALGORITHM

The aim of this section is to reduce the requirements of the
s-PA, in terms of symmetric and reliable communications. To
do so, we next introduce the asymmetric broadcast partition-
ing algorithm (denoted as a-PA hereafter). This algorithm is
based on a asymmetric broadcast communication protocol.
Differently from the s-PA, at each iteration of the a-PA there
is only one camera transmitting information to its neighbors.

With the respect of the s-PA, the Transmission iteration
and the Extremes’ update are modified as follows
Transmission iteration: For t ∈ N, during the t-th iteration

of the algorithm there is only a camera, say i, which
transmits information to its neighbors; precisely camera
i sends to camera i−1 and camera i+1 the values of the
extremes of its dominance region Ai(t), i.e., `i(t), ri(t).



Extremes’ iteration: For h 6= i − 1, i + 1, camera h left
unchanged its extremes, i.e., `h(t + 1) = `h(t) and
rh(t + 1) = rh(t). Instead, based on the received
information, camera i − 1 and camera i + 1 updates
only the extremes ”closer” to camera i. Specifically
`i−1(t+ 1) = `i−1(t) and ri+1(t+ 1) = ri+1(t) while
ri−1 and `i+1 are updated as we next describe.
Similarly to (20), camera i − 1 computes the point p∗

such that

p∗ =
ri(t)vi−1 + `i−1(t)vi

vi−1 + vi

and updates ri−1 according to

ri−1(t+ 1) = p∗ (22)

if the interlacing and physical constraints are satisfied,
namely if p∗ ≥ `i(t) and p∗ ≤ di−1, otherwise it sets

ri−1(t+ 1) =
{
di−1 if p∗ > di−1

`i(t) if p∗ < `i(t)
(23)

Analogously camera i + 1 computes the point p∗ such
that

p∗ =
ri+1(t)vi + `i(t)vi+1

vi + vi+1

and it sets
`i+1(t+ 1) = p∗,

if p∗ ≤ ri(t) and p∗ ≥ di+1, otherwise

`i+1(t+ 1) =
{
ri(t) if p∗ > ri(t)
di+1 if p∗ < di+1

(24)

Clearly, if the transmitting camera is camera 1 (re-
spectively camera N ), then only camera 2 (respectively
camera N − 1) performs the extremes’ updating action.

The following Proposition provides a desired characteri-
zation of the sequence {A∗i (t)}t∈N.

Proposition V.1 Consider the a-PA. Let {Ai(0)}Ni=1 be the
initial set of dominance intervals, which is assumed to satisfy
the interlacing and physical constraints and the boundary
conditions. Then, the evolution t → {Ai(t)}Ni=1 generated
by the a-PA satisfies the property that the interlacing and
physical constraint, the boundary conditions and, in turn,
the covering conditions, are verified for all t ∈ N.

Unfortunately we were not able so far to theoretically
characterize the convergence properties of the a-PA. How-
ever we run a number of simulations for different initial
conditions, for different values of the camera velocities and
for different physical constraints under the assumption of
Uniformly persistent transmissions: namely, there exists an
integer number τ such that, for all t ∈ N, each camera
performs a data transmission within the interval [t, t+ τ ].
In all the cases the a-PA converged to an optimal partition
of Problem P1.

VI. NUMERICAL EXAMPLES

In this section we provide two examples illustrating the
effectiveness of a-PA.

Example VI.1 We consider a set of N = 6 cameras with
the goal of patrolling the interval L = [0, 60]. We assume
that all the velocities v̄i, i ∈ {1, . . . , N}, take the same value
v and that at each iteration of the of the a-PA, a transmitting
camera is randomly chosen in {1, . . . , N}, with the constrain
that, for all t ∈ N, each camera is selected at least once
within the time window [t, t+ τ ] with τ = 50. Moreover for
simplicity we assume that no physical constraints are present,
or equivalently that Di = L, for all i ∈ {1, . . . , N}.

In Figure 2 we plot the behavior of `i, ri, i ∈ {1, . . . , N}.
The simulation shows how `i+1 and ri converge to the same
value.
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Fig. 2. Behavior of the extremes when a-PA is applied with N = 6
cameras.

Example VI.2 We consider a set of 50 cameras with the
goal of patrolling the interval L = [0, 200]. We assume that
the velocities are all equal to the same value v, i.e., v̄i = v,
for all i ∈ {1, . . . , N}. We assume that at each iteration
of the a-PA, a transmitting camera is randomly chosen in
{1, . . . , N}, with the constrain that, for all t ∈ N, each
camera is selected at least once within the time window
[t, t+ τ ] with τ = 200.

To evaluate the performance of a-PA we consider the
following functional cost

J(t) =
1
N

50∑
i=1

(`i(t)− `∗i )
2 +

(
ri(t)− `∗i+1

)2
where {[`∗i , r∗i ]} represents the optimal solution of Problem
P3.

The obtained result is plotted in Figure 3. Observe that
J goes to 0 as t increases showing the effectiveness of the
a-PA.
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Fig. 3. Simulation of the a-PA with N = 50 cameras.

VII. CONCLUSIONS

In this paper, we studied the problem of real-time optimal
perimeter partitioning taking into accounts physical, covering
and mobility constraints. We proposed a symmetric gossip-
type and asymmetric broadcast-type adaptive algorithms and
we studied their properties analytically and numerically.
Several future directions are possible. One of the most
important is to provide analytical proof of convergence of
the asymmetric broadcast-type algorithm.

APPENDIX

IN this appendix we review two convergence results for
set-valued algorithms. In doing so, we follow the treatment
in [3].

Given a set X , a set-valued map T : X ⇒ X is a map
which associates to an element x ∈ X a subset Z ⊂ X.
A set-valued map is non-empty if T (x) 6= ∅ for all x ∈
X . A set W ⊂ X is strongly positively invariant for T if
T (w) ⊂ W for all w ∈ W . Given a non-empty set-valued
map T , an evolution of the dynamical system associated to
T is a sequence {xn}n∈Z≥0 ⊂ X with the property that
xn+1 ∈ T (xn) for all n ∈ Z≥0.

Theorem VII.1 Let (X, d) be a metric space. Given a
collection of maps T1, . . . , Tm : X → X , define the set-
valued map T : X ⇒ X by T (x) = {T1(x), . . . , Tm(x)}
and let {xn}n∈Z≥0 be an evolution of T . Assume that:

(i) there exists a compact set W ⊆ X that is strongly
positively invariant for T ;

(ii) there exists a function U : W → R such that U(w′) <
U(w), for all w ∈W and w′ ∈ T (w) \ {w};

(iii) the maps Ti, for i ∈ {1, . . . ,m}, and U are continuous
on W ; and

(iv) for all i ∈ {1, . . . ,m}, there exists an increasing
sequence of times {nk | k ∈ Z≥0} such that xnk+1 =
Ti(xnk

) and (nk+1 − nk) is bounded.
If x0 ∈ W , there exists c ∈ R such that the evolution
{xn}n∈Z≥0 approaches the set

(F1 ∩ · · · ∩Fm)∩U−1(c),

where Fi = {w ∈W | Ti(w) = w} is the set of fixed points
of Ti in W , i ∈ {1, . . . ,m}.

Next, we provide a probabilistic version of the previous
theorem.

Theorem VII.2 Let (X, d) be a metric space. Given a
collection of maps T1, . . . , Tm : X → X , define the set-
valued map T : X ⇒ X by T (x) = {T1(x), . . . , Tm(x)}.
Given a stochastic process σ : Z≥0 → {1, . . . ,m}, consider
an evolution {xn}n∈Z≥0 of T satisfying

xn+1 = Tσ(n)(xn).

Assume that:
(i) there exists a compact set W ⊆ X that is strongly

positively invariant for T ;
(ii) there exists a function U : W → R such that U(w′) <

U(w), for all w ∈W and w′ ∈ T (w) \ {w};
(iii) the maps Ti, for i ∈ {1, . . . ,m}, and U are continuous

on W ; and
(iv) there exists p ∈ ]0, 1[ and k ∈ N such that, for all i ∈

{1, . . . ,m} and n ∈ Z≥0, there exists h ∈ {1, . . . , k}
such that

P
[
σ(n+ h) = i |σ(n), . . . , σ(1)

]
≥ p.

If x0 ∈ W , then there exists c ∈ R such that almost surely
the evolution {xn}n∈Z≥0 approaches the set

(F1 ∩ · · · ∩Fm)∩U−1(c),

where Fi = {w ∈W | Ti(w) = w} is the set of fixed points
of Ti in W , i ∈ {1, . . . ,m}.
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